
Michael R. Groh, Joseph C. Stockman, Gavin Powell,
Cary N. Prague, Michael R. Irwin, Jennifer Reardon

Build custom database
solutions

Explore the new UI
and file formats

Store, view, analyze,
and share data

Groh, et al

The book you need to succeed!

Updated edition with exciting
new Access 2007 features!
Harness the power of Access 2007 with the expert
guidance in this comprehensive reference. Beginners
will appreciate the thorough attention to database
fundamentals and terminology. Experienced users can
jump right into Access 2007 enhancements like the
all-new user interface and wider use of XML and Web
services. Each of the book’s six parts thoroughly
focuses on key elements in a logical sequence, so you
have what you need, when you need it. Designed as
both a reference and a tutorial, Access 2007 Bible is a
powerful tool for developers needing to make the most
of the new features in Access 2007.
• Build Access tables using good relational database techniques
• Construct efficient databases using a five-step design method
• Design efficient data-entry and data display forms
• Utilize the improved Access report designer
• Use Visual Basic® for Applications and the VBA Editor to automate applications
• Build and customize Access 2007 ribbons
• Seamlessly exchange Access data with SharePoint®

• Employ advanced techniques such as the Windows® API and object-
oriented programming

• Add security and use data replication in your Access applications

CD-ROM Included!
• Examples from the book
• Sample databases

Value-Packed CD-ROM

“ I recommend this book for anyone who wants a strong foundation in Access.”
— Jeff Lenamon, CIBC World Markets

Shelving Category:
COMPUTERS/
Database Management/General

Reader Level:
Beginning to Advanced

$49.99 USA
$59.99 Canada
£31.99 UK

ISBN 0-470-04673-2

™

What’s on the
CD-ROM?
Follow the examples in the book
chapter by chapter using the bonus
materials on the CD-ROM. You’ll find
separate Microsoft Access database
files for each chapter and other
working files, including

• All the examples and
databases used in the book,
including database files,
images, data files in various
formats, and icon files used
in the book’s examples

• A complete sample application
file, including queries, reports,
objects, and modules, that you
can use as a reference

See the CD-ROM appendix for details and
complete system requirements.

A
ccess 2

0
0

7
M

icro
so

ft ® O
ff ice

™

Microsoft® Office

Access™ 2007 Bible

01_046732 ffirs.qxp 11/21/06 8:43 AM Page i

01_046732 ffirs.qxp 11/21/06 8:43 AM Page ii

Access™ 2007 Bible

Michael R. Groh, Joseph C. Stockman,

Gavin Powell, Cary N. Prague,

Michael R. Irwin, and Jennifer Reardon

01_046732 ffirs.qxp 11/21/06 8:43 AM Page iii

Access™ 2007 Bible

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Control Number: 2006936763

ISBN-13: 978-0-470-04673-9
ISBN-10: 0-470-04673-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RT/RS/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE
LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS
REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE
ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Access
is a trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are the property
of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

01_046732 ffirs.qxp 11/21/06 8:43 AM Page iv

About the Authors
Michael R. Groh is a well-known author, writer, and consultant specializing in Windows database
systems. His company, PC Productivity Solutions, provides information-management applications
to companies across the country. Over the last 25 years, Mike has worked with a wide variety of
programming languages, operating systems, and computer hardware, ranging from programming a
DEC PDP-8A using the Focal interpreted language to building distributed applications under
Visual Studio .NET and Microsoft SharePoint.

Mike was one of the first people outside of Microsoft to see Access in action. He was among a select
group of journalists and publishers invited to preview the Access 1.0 beta (then called Cirrus) at
the 1992 Windows World Conference in Chicago. Since then, Mike has been involved in every
Microsoft Access beta program, as an insider and as a journalist and reporter documenting the evo-
lution of this fascinating product.

Mike has authored parts of more than 20 different computer books and is a frequent contributor to
computer magazines and journals. Mike has written more than 200 articles and editorials over the
last 15 years, mostly for Advisor Media (San Diego, CA). He frequently speaks at computer confer-
ences virtually everywhere in the world, and is technical editor and contributor to periodicals and
publications produced by Advisor Media.

Mike holds a master’s degree in Clinical Chemistry from the University of Iowa (Iowa City, IA) and
an MBA from Northeastern University (Boston, MA).

Mike can be reached at AccessBible@mikegroh.com. Please prefix the e-mail subject line
with “AccessBible:” to get past the spam blocker on this account.

Joseph C. Stockman is an independent consultant, software designer, and author who has been
using Microsoft Access since its initial release. He has also developed courseware and taught classes
in Access and VBA. Joe developed his first application in Access, and then migrated into Visual
Basic and Visual Basic .NET, where he specializes in creating applications for the Windows Mobile
platform. He worked for several software companies before forming his consulting business in
2002, where he deals with all types of clients including healthcare, financial, government, manu-
facturing, and small business. His ability to turn his customers’ wishes into working applications
keeps them satisfied. Joe is also writing the fundamentals column for the Advisor Guide to Microsoft
Access magazine.

Gavin Powell is a computer consultant and a writer, with over 20 years of IT experience and over
10 titles to his credit. He has worked as a programmer, analyst, data modeler, database administra-
tor, and Unix administrator. Gavin is also a semiprofessional musician, songwriter, and recording
engineer, playing multiple instruments and writing prolifically. Gavin can be reached by e-mail at
info@oracledbaexpert.com or ezpowell@ezpowell.com.

Cary N. Prague is an internationally best-selling author and lecturer in the database industry. He
owns Database Creations, Inc., the world’s largest Microsoft Access add-on company. Their products

01_046732 ffirs.qxp 11/21/06 8:43 AM Page v

include a line of financial software; Business! for Microsoft Office, a mid-range accounting system,
POSitively Business! Point of Sale software, the Inventory Barcode manager for mobile data collec-
tion, and the Check Writer and General Ledger. Database Creations also produces a line of devel-
oper tools including the appBuilder, an application generator for Microsoft Access, the EZ Access
Developer Tools for building great user interfaces, appWatcher for maintaining code bases among
several developers, and Surgical Strike, the only Patch Manager for Microsoft Access.

Cary also owns Database Creations Consulting, LLC., a successful consulting firm specializing in
Microsoft Access and SQL Server applications. Local and national clients include many Fortune
100 companies including manufacturers, defense contractors, insurance, health-care, and software
industry companies. His client list includes Microsoft, United Technologies, ABB, Smith & Wesson
Firearms, Pratt and Whitney Aircraft, ProHealth, OfficeMax, Continental Airlines, and other
Fortune 500 companies.

Formerly, he has held numerous management positions in corporate information systems, includ-
ing Director of Managed Care Reporting for MetraHealth, Director of Corporate Finance and
Software Productivity at Travelers Insurance where he was responsible for software support for
35,000 end users, and Manager of Information Systems support for Northeast Utilities.

He is one of the top best-selling authors in the computer database management market, having
written over 40 books that have sold over one million copies on software including Microsoft
Access, Borland (Ashton-Tate) dBASE, Paradox, R:Base, Framework, and graphics. Cary’s books
include 11 books in the Access Bible series (recently number one on the Ingram Bestselling
Database Titles list and in the Amazon.com top 100), Access 97 Secrets, dBASE for Windows
Handbook, dBASE IV Programming (winner of the Computer Press Association’s Book of the Year
award for Best Software Specific Book), and Everyman’s Database Primer Featuring dBASE IV. He
recently completed several books for Access 2003 including Weekend Crash Course in Office Access
2003 Programming. Cary recently sold a product line named eTools for Microsoft Access to
MightyWords, a division of FatBrain.com and Barnes and Noble.

Cary is certified in Access as a Microsoft Certified Professional and has passed the MOUS test in
Access and Word. He is a frequent speaker at seminars and conferences around the country. He is
on the exclusive Microsoft Access Insider Advisory Board and makes frequent trips to Microsoft
headquarters in Redmond, WA. He has been voted the best speaker by the attendees of several
national conferences. Recently, he was a speaker for Microsoft sponsored conferences in New
Orleans, Hawaii, Phoenix, Chicago, Toronto, Palm Springs, Boston, and Orlando. He has also spo-
ken at Borland’s Database Conference, Digital Consulting’s Database World, Microsoft’s Developer
Days, Computerland’s Technomics Conference, COMDEX, and COMPAQ Computer’s Innovate. He
was a contributing editor to Access Advisor magazine and has written for the Microsoft Office
Developer’s journal.

He is active in local town politics serving on the South Windsor, Connecticut Board of Education,
Parks and Recreation Commission, and the Board of Assessment Appeals.

Cary holds a master’s degree in computer science from Rensselaer Polytechnic Institute, and an
M.B.A and Bachelor of Accounting from the University of Connecticut. He is also a Certified Data
Processor.

vi

About the Authors

01_046732 ffirs.qxp 11/21/06 8:43 AM Page vi

Michael R. Irwin is considered one of the leading authorities on automated database and Internet
management systems today. He is a noted worldwide lecturer, a winner of national and interna-
tional awards, best-selling author, and developer of client/server, Internet, Intranet, and PC-based
database management systems.

Michael has extensive database knowledge, gained by working with the Metropolitan Police
Department in Washington, D.C. as a developer and analyst for the Information Systems Division
for over 20 years and assorted Federal Agencies of the United States Government. Since retiring in
June 1992, he runs his own consulting firm, named The Irwin Group, and is principal partner in
the company - IT in Asia, LLC, specializing in Internet database integration and emphasizing
Client/Server and net solutions. With consulting offices in Cincinnati, Ohio, Bangkok, Thailand,
and Manila, Philippines, his companies offer training and development of Internet and database
applications. His company has the distinction of being one of the first Microsoft Solution’s
Providers (in 1992). His local, national, and international clients include many software compa-
nies, manufacturers, government agencies, and international companies.

His range of expertise includes database processing and integration between mainframe, minicom-
puter, and PC-based database systems, as well as B-2-B and B-2-C integration between back-end
databases; he is a leading authority on PC-based databases.

He is one of the top best-selling authors in the computer database management market, having
authored numerous database books, with several of them consistently on the best-sellers lists. His
books, combined, have sold nearly a million copies worldwide. His most recent works include The
OOPs Primer (Borland Press), dBASE 5.5 for Windows Programming (Prentice Hall), Microsoft Access
2002 Bible, Microsoft Access 2002 Bible Gold Edition (co-authored), and Working with the Internet. The
Access Bible series have constantly been number one on the Ingram Best-selling Database Titles list
and is consistently in the Amazon.com and Buy.com top 10. He has also written several books on
customs and cultures of the countries of Asia (including China, Japan, Thailand, and India). Two of
his books have won international acclaim. His books are published in over 24 languages world-
wide. He has been a contributing editor and author to many well-known magazines and journals.

He is a frequent speaker at seminars and conferences around the world and has been voted the best
speaker by the attendees of several international conferences.

Michael has developed and markets several add-on software products for the Internet and produc-
tivity related applications. Many of his productivity applications can be obtained from several of his
Internet sites or on many common download sites. Many of his application and systems are dis-
tributed as freeware and careware. He has also developed and distributes several development tools
and add-ins for a wide range of developer applications.

Jennifer Reardon is considered a leading developer of custom database applications. She has over
ten years’ experience developing client/server and PC-based applications. She has accumulated
much of her application development experience working as lead developer for Database
Creations. She has partnered with Cary Prague developing applications for many Fortune 500
companies.

vii

About the Authors

01_046732 ffirs.qxp 11/21/06 8:43 AM Page vii

Her most significant projects include a spare parts inventory control system for Pratt & Whitney’s
F22 program, an engineering specifications system for ABB-Combustion Engineering, and an
emergency event tracking system for the State of Connecticut. She was also the lead developer of
many of the Database Creations add-on software products including Business, Yes! I Can Run My
Business, Check Writer, and the User Interface Construction Kit.

She has co-authored Access 2003 Bible, Access 2002 Bible, and Access 2000 Weekend Crash Course.
She has also written chapters in other books on subjects including Data Access Pages, the Microsoft
Database Engine, the VBA programming environment, creating help systems, and using Microsoft
Office 2000 Developer. She has authored chapters in Microsoft Access 97 Bible and Access 97 Secrets.

Jennifer owns her own consulting firm, Advanced Software Concepts, providing custom applica-
tions to both the public and private sectors. She specializes in developing client information sys-
tems for state-managed and privately-held healthcare organizations. She has also developed a job
costing and project management system for an international construction company. Her corporate
experience includes seven years with The Travelers where she was an Associate Software Engineer
serving on numerous mission-critical client/server software development projects using Easel, C,
SQL Server, and DB2. She has contributed several chapters for books on dBase and Microsoft
Access.

Jennifer holds a Bachelor of Science degree from the University of Massachusetts.

viii

About the Authors

01_046732 ffirs.qxp 11/21/06 8:43 AM Page viii

ix

Credits
Acquisitions Manager
Greg Croy

Project Editor
Elizabeth Kuball

Technical Editor
Vincent McCune

Copy Editor
Elizabeth Kuball

Editorial Manager
Jodi Jensen

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Andy Cummings

Editorial Director
Mary C. Corder

Project Coordinator
Heather Kolter

Graphics and Production Specialists
Carrie A. Foster
Brooke Graczyk
Denny Hager
Joyce Haughey
Jennifer Mayberry

Quality Control Technicians
Laura Albert
Jessica Kramer
Christine Pingleton

Media Development Project Supervisor
Laura Moss

Media Development Specialist
Kit Malone

Proofreading and Indexing
Techbooks

01_046732 ffirs.qxp 11/21/06 8:43 AM Page ix

Acknowledgments ..xxxix
Foreword ..xli

Part I: Access Building Blocks . 1
Chapter 1: An Introduction to Database Development ..3
Chapter 2: Creating Access Tables ..23
Chapter 3: Designing Bulletproof Databases..87
Chapter 4: Selecting Data with Queries ..123
Chapter 5: Using Operators and Expressions in Access ..161
Chapter 6: Working with Datasheet View..203
Chapter 7: Creating Basic Access Forms..237
Chapter 8: Working with Data on Access Forms ..269
Chapter 9: Presenting Data with Access Reports..297

Part II: Programming Microsoft Access 345
Chapter 10: VBA Programming Fundamentals ..347
Chapter 11: Mastering VBA Data Types and Procedures ..385
Chapter 12: Understanding the Access Event Model ..417
Chapter 13: Using Expressions in Queries and VBA Code ..443
Chapter 14: Accessing Data with VBA Code..471
Chapter 15: Using the VBA Debugging Tools ..497

Part III: More Advanced Access Techniques 523
Chapter 16: Working with External Data ..525
Chapter 17: Importing and Exporting Data ..555
Chapter 18: Advanced Access Query Techniques ..581
Chapter 19: Advanced Access Form Techniques ..617
Chapter 20: Advanced Access Report Techniques ..647
Chapter 21: Building Multiuser Applications ..685
Chapter 22: Integrating Access with Other Applications ..723
Chapter 23: Integrating Access with SharePoint ..749
Chapter 24: Using ActiveX Controls..769
Chapter 25: Handling Errors and Exceptions ..801

x

02_046732 ftoc.qxp 11/21/06 8:43 AM Page x

Part IV: Professional Database Development 821
Chapter 26: Optimizing Access Applications ..823
Chapter 27: Advanced Data Access with VBA..863
Chapter 28: Bulletproofing Access Applications ..877
Chapter 29: Securing Access Applications ..909
Chapter 30: Using the Windows API ..951
Chapter 31: Using the Access Replication Features ..987
Chapter 32: Object-Oriented Programming with VBA ..1037
Chapter 33: Reusing VBA Code with Libraries ..1079
Chapter 34: Customizing Access Ribbons ..1089
Chapter 35: Distributing Access Applications..1117
Chapter 36: Using Access Macros..1133

Part V: Access as an Enterprise Platform 1163
Chapter 37: Using XML in Access 2007 ..1165
Chapter 38: SharePoint as a Data Source ..1191
Chapter 39: Client/Server Concepts ..1209
Chapter 40: SQL Server as an Access Companion ..1223
Chapter 41: Upsizing Access Databases to SQL Server ..1249

Part VI: Appendixes . 1265
Appendix A: Access 2007 Specifications ..1267
Appendix B: What’s on the CD-ROM ..1275
Appendix C: What’s New in Access 2007..1279

Index ..1291
Wiley Publishing, Inc. End-User License Agreement ..1362

xi

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xi

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xii

Acknowledgments. xxxix

Introduction . xli

Part I: Access Building Blocks 1

Chapter 1: An Introduction to Database Development 3
The Database Terminology of Access ..4

Databases ..4
Tables ..5
Records and fields ..6
Values ..6

Relational Databases ..7
Working with multiple tables ..7
Knowing why you should create multiple tables..7

Access Database Objects and Views ..8
Datasheets ..8
Queries..9
Data-entry and display forms ..9
Reports ..10
Designing the system’s objects ..10

A Five-Step Design Method ..10
Step 1: The overall design — from concept to reality ..11
Step 2: Report design ..13
Step 3: Data design: What fields are required? ..14
Step 4: Table design ..17
Step 5: Form design: Input ..21

Summary ..22

Chapter 2: Creating Access Tables . 23
Getting Started with Access 2007 ..23

The Templates section ..24
The File menu ..25

Creating a Database ..26

xiii

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xiii

The Access 2007 Environment ..29
The Navigation Pane..30
The ribbon ..32
Other relevant features of the Access environment ..33

Creating a New Table ..35
The importance of naming conventions ..36
The table design process ..37
Using the Design ribbon tab ..42
Working with fields ..43

Creating tblContacts..51
AutoNumber fields and Access ..51
Completing tblContacts ..52

Changing a Table Design ..52
Inserting a new field ..52
Deleting a field ..53
Changing a field location ..53
Changing a field name ..53
Changing a field size..54
Data conversion issues ..54
Assigning field properties ..55

Understanding tblContacts Field Properties ..71
Understanding the Lookup Property window ..71

Setting the Primary Key ..72
Understanding unique values ..73
Choosing a primary key ..73
Creating the primary key ..74
Creating composite primary keys ..74

Indexing Access Tables ..75
The importance of indexes ..76
Multiple-field indexes..78
When to index tables ..80
Indexing tblContacts ..80

Printing a Table Design..81
Saving the Completed Table ..82
Manipulating Tables in a Database Window ..82

Renaming tables ..82
Deleting tables ..83
Copying tables in a database..83
Copying a table to another database ..84

Adding Records to a Database Table ..85
Understanding the Attachment Data Type ..85
Summary ..86

xiv

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xiv

Chapter 3: Designing Bulletproof Databases 87
Data Normalization ..89

First normal form ..90
Second normal form..92
Third normal form ..96
More on anomalies ..96
Denormalization..97

Table Relationships..98
Connecting the data ..99
One-to-one..101
One-to-many ..102
Many-to-many ..104
Pass-through..105

Integrity Rules ..106
Understanding Keys ..110

Deciding on a primary key ..110
Recognizing the benefits of a primary key..112
Designating a primary key ..113
Creating relationships and enforcing referential integrity ..115
Viewing all relationships..120
Deleting relationships ..121
Application-specific integrity rules ..121

Summary ..122

Chapter 4: Selecting Data with Queries 123
Understanding Queries ..123

What is a query?..124
Types of queries ..126
Query capabilities..127
How recordsets work ..128

Creating a Query ..128
Using the Query window ..130
Navigating the Query Design window ..130
Using the Query Design ribbon ..130
Using the QBE grid of the Query Design window..131

Selecting Fields ..131
Adding a single field ..131
Adding multiple fields ..132

Displaying the Recordset ..134
Working with Fields..135

Selecting a field in the QBE grid ..135
Changing field order..136
Resizing columns in the QBE grid ..136
Removing a field..137

xv

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xv

Inserting a field..137
Providing an alias for the field name..137
Showing a field..138

Changing the Sort Order ..139
Displaying Only Selected Records ..141

Understanding selection criteria ..141
Entering simple string criteria..141
Entering other simple criteria ..143

Printing a Query’s Recordset ..144
Saving a Query ..145
Adding More Than One Table to a Query..145
Working with the Table/Query Pane..146

The join line ..146
Manipulating the Field List window ..147
Moving a table ..147
Removing a table ..147
Adding more tables ..147

Adding Fields from More Than One Table ..148
Viewing the table names ..148
Adding multiple fields ..149

Understanding Multi-Table Query Limitations ..149
Updating limitations..150
Overcoming query limitations ..151

Creating and Working with Query Joins..151
Joining tables ..153
Specify the type of join ..153
Deleting joins ..155

Understanding Table Join Types ..156
Inner joins (equi-joins) ..156
Changing join properties ..157
Inner and outer joins ..158
Creating a Cartesian product ..159

Summary ..160

Chapter 5: Using Operators and Expressions in Access 161
What Are Operators? ..161

Types of operators..162
Operator precedence ..173

Moving beyond Simple Queries ..175
Using query comparison operators ..176
Understanding complex criteria selection ..177
Using functions in select queries..181
Referencing fields in select queries ..181

Entering Single-Value Field Criteria ..181
Entering character (Text or Memo) criteria ..182
The Like operator and wildcards ..183

xvi

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xvi

Specifying non-matching values ..187
Entering numeric (Number, Currency, or Counter) criteria......................................188
Entering Yes/No (logic) criteria ..189
Entering a criterion for an OLE object ..190

Entering Multiple Criteria in One Field ..190
Understanding an Or operation ..190
Specifying multiple values for a field using the Or operator191
Using the Or: cell of the QBE pane ..192
Using a list of values with the In operator..192
Understanding an And query ..193
Specifying a range using the And operator ..193
Using the Between...And operator ..194
Searching for Null data ..195

Entering Criteria in Multiple Fields ..196
Using And and Or across fields in a query ..196
Specifying And criteria across fields of a query ..197
Specifying Or criteria across fields of a query ..198
Using And and Or together in different fields ..199
A complex query on different lines ..199

Creating a New Calculated Field in a Query..200
Summary ..201

Chapter 6: Working with Datasheet View. 203
Understanding Datasheets ..203
The Datasheet Window ..205

Moving within a datasheet ..206
The Navigation buttons ..206
The Datasheet ribbon ..207

Opening a Datasheet ..208
Entering New Data ..208

Saving the record ..210
Understanding automatic data-type validation ..211
Understanding how properties affect data entry ..212

Navigating Records in a Datasheet ..214
Moving between records..214
Finding a specific value ..215

Changing Values in a Datasheet ..217
Replacing an existing value manually ..217
Changing an existing value ..217
Fields that you can’t edit..218

Using the Undo Feature ..219
Copying and Pasting Values ..219
Replacing Values..220
Adding New Records ..221
Deleting Records ..221

xvii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xvii

Displaying Records..222
Changing the field order..222
Changing the field display width ..223
Changing the record display height ..224
Changing display fonts ..225
Displaying cell gridlines and alternate row colors ..226
Aligning data in columns ..228
Hiding and unhiding columns ..228
Freezing columns ..229
Saving the changed layout ..229
Saving a record ..229

Sorting and Filtering Records in a Datasheet ..229
Using the QuickSort feature ..230
Using Filter by Selection..230
Using Filter by Form ..233

Printing Records..233
Printing the datasheet ..234
Using the Print Preview window..235

Summary ..235

Chapter 7: Creating Basic Access Forms 237
Adding Forms Using the Ribbon ..237

Creating a new form ..238
Creating a split form..239
Creating a multiple-items form..240
Creating a form using the Form Wizard ..241
Creating a datasheet form ..242
Creating a blank form..243

Adding Controls..243
Resizing the form area ..244
Saving the form ..244
Understanding controls ..245
The different control types ..245
The two ways to add a control ..247

Selecting Controls ..252
Selecting a single control ..253
Selecting multiple controls ..253
Deselecting controls ..253

Manipulating Controls ..254
Resizing a control ..254
Sizing controls automatically ..255
Moving a control ..255
Aligning controls ..256
Modifying the appearance of a control ..258
Modifying the appearance of multiple controls ..259
Grouping controls ..259
Deleting a control ..260

xviii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xviii

Attaching a label to a control ..260
Copying a control ..261
Changing the control type ..262

Understanding properties..262
Displaying the Property Sheet..263
Understanding the Property Sheet ..264
Changing a control’s property setting ..264

Summary ..267

Chapter 8: Working with Data on Access Forms 269
Using Form View ..269

The Form ribbon ..271
Navigating between fields ..272
Moving between records in a form ..273

Changing Values in a Form..273
Controls that you can’t edit..274
Working with pictures and OLE objects ..274
Memo field data entry..276
Date field data entry ..276
Using option groups ..277
Using combo boxes and list boxes ..278
Switching to Datasheet View..278
Saving a record ..279

Printing a Form ..279
Using the Print Preview window..280

Working with Form Properties ..280
Changing the title bar text with the Caption property..281
Creating a bound form ..282
Specifying how to view the form..282
Eliminating the Record Selector bar ..284
Other form properties..284

Adding a Form Header or Footer ..290
Changing the Layout ..291

Changing a control’s properties..291
Setting the Tab Order ..292
Aligning controls ..293
Modifying the format of text in a control ..293

Creating a Calculated Control ..295
Converting a Form to a Report ..296
Summary ..296

Chapter 9: Presenting Data with Access Reports 297
Understanding Reports..297

Understanding report types ..297
Distinguishing between reports and forms ..300
Understanding the process of creating a report ..301

xix

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xix

Creating a Report with Report Wizards ..301
Creating a new report ..302
Selecting the grouping levels..303
Defining the group data ..304
Selecting the sort order ..304
Selecting summary options..305
Selecting the layout ..306
Choosing the style ..307
Opening the report design ..307
Using the Print Preview window..308
Viewing the Report Design window ..310

Printing a Report ..310
Saving the Report ..311
Starting with a Blank Form..311

Layout view ..311
Report Design view..312

Banded Report Writer Concepts ..313
The Report Designer sections ..314

Creating a Report from Scratch..317
Creating a new report and binding it to a query ..319
Defining the report page size and layout..320
Placing controls on the report..321
Resizing a section ..322
Working with text boxes and their attached label controls324
Changing label and text box control properties ..330
Growing and shrinking text box controls ..331
Sorting and grouping data ..332
Sorting data within groups ..333
Adding page breaks ..337

Making the Report Presentation Quality ..337
Adjusting the Page Header ..338
Creating an expression in the group header ..339
Changing the picture properties and the Detail section..340
Creating a standard page footer ..341
Saving your report ..343

Summary ..343

Part II: Programming Microsoft Access 345

Chapter 10: VBA Programming Fundamentals 347
Understanding the Limitations of Macros ..347
Introducing Visual Basic for Applications ..348
Understanding VBA Terminology ..349

xx

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xx

Migrating from Macros to VBA ..351
When to use macros and when to use VBA..351
Converting existing macros to VBA..352
Using the Command Button Wizard to create VBA code..354

Creating VBA Programs ..356
Understanding events and event procedures..357
Understanding modules ..358
Creating a new module..360

Understanding VBA Branching Constructs ..368
Conditional execution ..369

Repetitive Looping ..372
Working with Objects and Collections ..374

The With statement ..375
The For Each statement ..376

Using Compiler Directives ..377
Access 2007 Options for Developers ..379

Editor tab in Options dialog box ..379
The Project Properties dialog box ..380
Command-line arguments ..383

Summary ..384

Chapter 11: Mastering VBA Data Types and Procedures 385
The Access VBA Editor ..386
Using Variables..389

Naming variables ..390
Declaring variables ..391

Working with Data Types ..395
Comparing implicit and explicit variables..397
Forcing explicit declaration ..399
Using a naming convention ..399
Understanding variable scope and lifetime ..400

Understanding Subs and Functions ..403
Understanding where to create a procedure ..404
Calling VBA procedures ..404
Creating subs ..405

Creating Functions ..409
Handling parameters ..409
Calling a function and passing parameters ..411

Creating a Function to Calculate Taxes..413
Named arguments ..415

Summary ..416

xxi

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxi

Chapter 12: Understanding the Access Event Model 417
Programming Events ..417

How do events trigger VBA code? ..418
Where to trigger event procedures ..419

Common Events..420
Form Event Procedures ..421

Primary form events ..421
Form mouse and keyboard events ..423
Form data events ..423
Form PivotTable events ..424
Form Access Data Project events..425

Control Event Procedures..426
Event Order ..428

Opening a form with an event procedure ..431
Running an event procedure when closing a form ..433
Using an event procedure to confirm record deletion ..434
Using the MsgBox() function ..435

Report Event Procedures ..438
Running an event procedure as a report opens ..438

Report Section Event Procedures ..439
Using the Format event ..440

Summary ..441

Chapter 13: Using Expressions in Queries and VBA Code 443
Understanding Expressions ..443

The parts of an expression ..445
Creating an expression ..448
Special identifier operators and expressions ..451
Special keywords and properties..454

Understanding Functions ..455
Using functions in Access ..455
Types of functions..456
Using the DLookUp() function for lookup tables ..467

Summary ..469

Chapter 14: Accessing Data with VBA Code 471
Understanding SQL ..471

Viewing SQL statements in queries ..472
An SQL primer ..473

Creating Programs to Update a Table ..480
Updating fields in a record using ADO ..481
Updating a calculated field for a record ..486
Adding a new record ..490
Deleting a record ..491
Deleting related records in multiple tables ..492

Summary ..495

xxii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxii

Chapter 15: Using the VBA Debugging Tools 497
Testing and Debugging Your Applications ..498
Understanding the Sources of Errors ..499

Syntactical errors ..499
Logical errors ..501
Runtime errors ..501
Avoiding errors ..502

Using the Module Options ..504
Auto Syntax Check ..504
Break on All Errors ..504
Require Variable Declaration..505
Compile on Demand ..505
Auto List Members ..505
Auto Quick Info ..505
Auto Data Tips ..506

Compiling VBA Code ..506
Traditional Debugging Techniques ..508

Using MsgBox..508
Using compiler directives ..509
Using Debug.Print ..511

Using the Access Debugging Tools ..512
Getting to know the Immediate window..512
Running code with the Immediate window ..512
Suspending execution with breakpoints ..513
Stepping through statements ..515
Using the Locals window ..517
Setting watches..518
Using conditional watches ..520
Using the Call Stack window ..521

Summary ..522

Part III: More Advanced Access Techniques 523

Chapter 16: Working with External Data 525
Access and External Data ..526

Types of external data ..526
Methods of working with external data..526

Linking External Data..529
Linking to external database tables ..530
Limitations of linked data ..532
Linking to other Access database tables ..533
Linking to ODBC data sources ..536
Linking to dBASE databases (tables) ..536
Linking to Paradox tables ..537

xxiii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxiii

Linking to non-database data ..537
Splitting an Access database ..542

Working with Linked Tables..543
Setting view properties ..543
Setting relationships ..544
Optimizing linked tables ..544
Deleting a linked table reference..544
Viewing or changing information for linked tables ..545

Using Code to Link Tables in Access ..546
The Connect and SourceTableName properties..546
Checking links ..552

Summary ..554

Chapter 17: Importing and Exporting Data 555
Types of Imports and Exports ..555
Importing External Data..557

Importing from another Access database ..557
Importing spreadsheet data ..558
Importing a SharePoint list ..561
Importing text file data ..561
Importing an XML document ..569
Importing an HTML document..570
Importing Access objects other than tables ..571
Importing an Outlook folder ..572
Importing through ODBC drivers ..572
Importing non-Access, PC-based database tables ..574
Troubleshooting import errors ..576

Exporting to External Formats ..577
Exporting objects to other Access databases ..577
Exporting through ODBC drivers ..578
Functionality exclusive to exports..579

Summary ..580

Chapter 18: Advanced Access Query Techniques. 581
Using Calculated Fields ..581
Finding the Number of Records in a Table or Query ..585
Finding the Top (n) Records in a Query ..585
How Queries Save Field Selections ..587

Hiding (not showing) fields ..587
Renaming fields in queries ..588
Hiding and unhiding columns in Design View ..589

Setting Query Properties..589
Creating Queries That Calculate Totals ..592

Query Wizard summaries ..592
Aggregate queries in Design View ..593
Grand totals in aggregates..595

xxiv

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxiv

Subtotals in aggregates ..595
Filtering aggregates with criteria ..597

Crosstab Queries ..599
Duplicate and Unmatched Queries..601

Find Duplicates Query Wizard ..601
Find Unmatched Query Wizard ..603

SQL-Specific Queries ..604
Creating union queries ..604
Creating pass-through queries ..607
Creating data definition queries ..608
Creating SQL subqueries in an Access query ..608

Action Queries ..609
Types of action queries ..609
Viewing the results of an action query ..610
Action queries cannot be reversed ..611
Creating Action Queries ..611
Troubleshooting action queries ..615

Summary ..616

Chapter 19: Advanced Access Form Techniques 617
Setting Control Properties ..617

Customizing default properties..619
Manipulating controls at runtime ..620
Reading control properties ..623

Working with Subforms ..624
Form Design Techniques ..626

Using the Tab Stop property ..626
Tallying check boxes..626
Adding animation..627
Using SQL for a faster refresh ..628
Selecting data for overtyping ..628
Toggling properties with Not ..629
Creating an auto-closing form ..629
Combo box techniques..630
Determining whether a form is open ..631

Advanced Forms Techniques ..632
Page Number and Date/Time controls ..632
Image control ..633
Control “morphing” ..634
Format Painter ..635
Offering more end-user help..635
Adding background pictures ..636
Form events ..638

Using the Tab Control ..638
Using Dialog Boxes to Collect Information ..641

Composing the SQL statement ..643
Adding a default button ..644

xxv

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxv

Setting a Cancel button..645
Removing the control menu ..645
Closing the form..645

Summary ..646

Chapter 20: Advanced Access Report Techniques 647
Hide Repeating Information ..648
Alphabetically Group Data ..650
Group on Date Intervals ..654
Create Numbered Lists ..655
Add Bullet Characters..658
Add Emphasis at Runtime ..660
Hide a Page Header ..662
Avoid Empty Reports ..663
Start a New Page Number for Each Group ..664
Avoid Null Values in a Tabular Report ..664
Add More Information to Report ..665
Add the User’s Name to a Bound Report..666
Add Vertical Lines between Columns ..666
Add a Blank Line Every n Records ..668
Even-Odd Page Printing ..670
Display All Reports in a Combo Box..672
Use Different Formats in the Same Text Box ..674
Fast Printing from Queried Data..674
Hide Forms during Print Preview ..675
A Few Quick Report Tips ..676

Center the title ..676
Easily align control labels ..676
Micro-adjust controls ..676
Always assign unique names to controls ..677

Use Snaking Columns in a Report ..677
Exploiting Two-Pass Report Processing..682
Summary ..684

Chapter 21: Building Multiuser Applications 685
Network Issues..686

Network performance..686
File location ..686
Data sources ..688
Special network situations ..689

Database Open Options ..690
Splitting Databases for Network Access ..692

Where to put which objects ..696
Using the Database Splitter add-in ..696

Locking Issues ..698
Access’s built-in record-locking features ..699
Default Open Mode ..701

xxvi

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxvi

Number of Update Retries ..701
Update Retry Interval ..701
Refresh Interval ..701
ODBC Refresh Interval ..702

Record-Lock Error Handling ..702
A function to handle lock errors ..703
Error 3260: Couldn’t update; currently locked by user705
Error 3186: Couldn’t save; currently locked by user x on machine y709
What about Error 3188?..711
Error: 3197: Data has changed; operation stopped ..712

Using Unbound Forms in Multiuser Environments ..714
Creating an unbound form ..715
Making it work..716
The Tag property ..716
The form Open event ..716
Moving through records ..718
Editing data ..720

Summary ..722

Chapter 22: Integrating Access with Other Applications. 723
Using Automation to Integrate with Office ..724

Creating Automation references ..724
Creating an instance of an Automation object..727
Getting an existing object instance ..728
Working with Automation objects ..729
Closing an instance of an Automation object ..730

An Automation Example Using Word..730
Creating an instance of a Word object..735
Making the instance of Word visible ..736
Creating a new document based on an existing template ..736
Using Bookmarks to insert data ..736
Activating the instance of Word ..737
Moving the cursor in Word..737
Closing the instance of the Word object ..737
Inserting pictures by using bookmarks ..737
Using Office’s Macro Recorder ..738

Collecting Data with Outlook 2007 ..740
Creating an e-mail ..740
Managing replies ..743

Summary ..747

Chapter 23: Integrating Access with SharePoint 749
What Is SharePoint? ..749

What is SharePoint Services technology? ..750
What is a SharePoint Portal Server? ..750

SharePoint Applications: Types of Web Sites..751
What Is a SharePoint List? ..754

xxvii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxvii

Introducing a SharePoint Services Web Site ..754
Integrating Access 2007 and SharePoint ..758

Sourcing data from a SharePoint Services Web site ..759
Sourcing data from an Access database ..764

SharePoint and Different Operating Systems ..766
SharePoint Lists as External Data ..767
Summary ..768

Chapter 24: Using ActiveX Controls. 769
Understanding Objects..769

Looking at the types of objects ..770
Using bound and unbound objects..770
Linking and embedding ..771

Embedding Objects ..772
Embedding an unbound object ..773
Embedding bound objects ..777
Adding a bound OLE object ..777
Adding a picture to a bound object frame..778
Editing an embedded object ..779

Linking Objects ..780
Creating a Graph or Chart ..782

The different ways to create a graph ..782
Creating graphs using the Toolbox ..783

Embedding a Graph in a Form..783
Assembling the data ..783
Adding the graph to the form ..784
Customizing a graph ..791

Integration with Microsoft Office ..792
Checking the spelling of one or more fields and records..792
Using OLE automation with Office ..793
Creating an Excel-type PivotTable..793

Summary ..799

Chapter 25: Handling Errors and Exceptions 801
Dealing with Errors ..801

Logical errors ..802
Runtime errors ..802

Which Errors Can Be Detected? ..806
What is an error handle?..806
Setting a basic error trap..807

Trapping Errors with VBA ..808
The Error event ..809
The ADO Errors collection ..810
The Err object..812
VBA Error statement variations..813

Summary ..820

xxviii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxviii

Part IV: Professional Database Development 821

Chapter 26: Optimizing Access Applications 823
Understanding Module Load on Demand..823

Organizing your modules ..824
Access 2007 prunes the call tree ..824

Using the Access 2007 Database File Format ..826
Distributing .accde Files ..828
Understanding the Compiled State..829

Putting your application’s code into a compiled state ..830
Losing the compiled state ..831
Distributing applications in a compiled or uncompiled state832

Improving Absolute Speed ..836
Opening a database exclusively ..836
Compacting a database ..837
Tuning your system ..838
Getting the most from your tables ..838
Getting the most from your queries ..840
Getting the most from your forms and reports ..842
Getting the most from your modules ..844
Increasing Network performance ..849

Improving Perceived Speed ..849
Using a splash screen ..849
Loading and keeping forms hidden ..851
Using the hourglass ..851
Using the built-in progress meter ..851
Creating a progress meter with a pop-up form ..853
Speeding up the progress meter display ..855

Working with Large Program Databases in Access 2007 ..856
How databases grow in size ..856
Compiling and compacting may not be enough ..857
Rebooting gives you a clean memory map ..857
Fixing a single corrupt form by removing the record source857
Creating a new database and importing all objects ..858
Using the decompile option in Access 2007 ..858
Recapping the six steps to large database success ..859
Detecting an uncompiled database and automatically recompiling860
Making small changes to large databases — Export ..861

Summary ..862

Chapter 27: Advanced Data Access with VBA 863
Adding an Unbound Combo Box ..863
Using the FindRecord Method ..865
Using the Bookmark to Locate a Record ..867

xxix

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxix

Filtering a Form Using Code ..869
Using a Query to Filter a Form Interactively..871

Creating a parameter query ..871
Creating an interactive dialog box..874
Linking the dialog box to another form ..875

Summary ..876

Chapter 28: Bulletproofing Access Applications 877
What Is Bulletproofing? ..878
Characteristics of Bulletproof Applications ..878
Bulletproofing Goes Beyond Code ..879

Document the code you write..880
Build to a specification ..880
Document the application ..880
Use professional installation tools ..881
Provide the Access runtime module to users..882
Consider the user’s skill and training requirements ..882
Understand the user’s motivations ..884
Check for obvious hardware errors ..884
Continue to improve the product ..885

Principles of Bulletproofing ..885
Make the application easy to start ..886
Use startup options..886
Use a login form ..889
Use a splash screen ..890
Add switchboards to the application..891
Control the ribbons ..891
Hide the Navigation Pane and remove menus..892
Display one form at a time ..893
Trap unwanted keystrokes ..893
Build bulletproof forms ..893
Validate user input ..894
Keep the user informed ..894
Maintain usage logs ..894

Develop to a Specification ..895
Securing the Environment ..897
Setting Startup Options in Code..897
Disable Startup Bypass ..898

Setting property values ..900
Getting property values ..901

Providing User Feedback ..902
Creating and using a progress meter ..905

Adding Logging to Applications ..906
Summary ..908

xxx

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxx

Chapter 29: Securing Access Applications 909
Understanding Jet Security ..909

Understanding workgroup files ..910
Understanding permissions ..910
Understanding security limitations ..911

Choosing a Security Level to Implement ..912
Creating a Database Password ..912
Using the /runtime Option ..915
Using the Current Database Options ..917
Using the Jet User-Level Security Model ..919

Enabling security ..920
Working with workgroups ..921
Working with users ..921
Working with groups ..925
Securing objects by using permissions ..929

Using the Access Security Wizard..934
Encrypting/Encoding a Database ..942
Decrypting/Decoding a Database ..943
Protecting Visual Basic Code ..944
Preventing Virus Infections..945

Enabling sandbox mode ..946
The Trust Center..948

Summary ..949

Chapter 30: Using the Windows API . 951
What Is the Windows API?..951

Dynamic linking..952
Why Use the Windows API?..952

Common codebase ..953
Tested and proven code ..953
Cross-platform compatibility ..953
Smaller application footprint ..953

DLL Documentation..953
Where to find documentation..954
Deciphering the documentation ..954
Data types..954
What you can’t do with the API ..957

How to Use the Windows API ..958
The Declare statement ..958
Using wrapper functions ..961
What is this “hwnd” thing? ..962

API Examples ..962
Retrieving system information ..964
General-purpose Windows API functions ..972

xxxi

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxi

Manipulating application settings with the Windows API ..975
Controlling applications with the Registry ..980

Summary ..986

Chapter 31: Using the Access Replication Features 987
Understanding Replication ..988
A Replication Demonstration ..990

Creating the database ..990
Changing the replica..993

Replication Pros and Cons ..995
Introducing the Access Replication Tools ..996

Using Access menus ..997
Replicating through VBA and DAO..997

Creating a Replica Set..997
Using Access replication menus ..998
Programmatic replication ..998

Understanding Database Security in Replication Sets ..998
The Importance of Local Objects ..999
Resolving Replication Conflicts ..1000

Design errors ..1000
Synchronization conflicts ..1001
Manual conflict resolution ..1002
Synchronization errors ..1003

Replication Topologies ..1004
Replication from the Developer’s Perspective ..1005
Understanding the Changes to Database Objects ..1005

Globally unique ID ..1005
New system tables ..1006
New fields ..1009
Changes to AutoNumber fields..1010

Changes to the Design Master Structure ..1011
Changes to data ..1011
Controlling replica creation ..1011
Things to avoid..1013

Programming Replication ..1014
Keeping objects local ..1014
Converting a database to a Design Master..1017
Making new replicas..1021
Synchronizing replicas ..1022
Replication properties..1023
Moving the Design Master ..1023
Scheduling synchronization events ..1024

Partial Replicas ..1025
Using the Partial Replica Wizard..1026
Choosing the type of replica ..1029
Programming partial replication with VBA ..1029

xxxii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxii

Advanced Replication Considerations..1035
Summary ..1036

Chapter 32: Object-Oriented Programming with VBA 1037
Benefits of Object-Oriented Programming ..1038

Object basics ..1039
Class module basics ..1040
A simple class module ..1042
Adding a class module to a database..1043
Creating simple product properties..1044
Creating methods ..1045
Using the product object ..1046
Create bulletproof property procedures ..1049

Other Advantages of Object-Oriented Programming Techniques1050
Object-Oriented Programming Rules ..1053

Never reveal a user interface component, such as a message box,
from a class module..1053

Preserve the class’s interface as the class is updated..1053
Using Property Procedures ..1054

Persisting property values ..1055
Property Let syntax..1056
Property Set syntax..1056
Property Get syntax ..1057
Property procedure rules ..1057

Extending the Product Class..1059
Retrieving product details ..1059
The new ProductID property ..1060
A new property..1062

Product Methods ..1063
Class Events ..1065

The Class_Initialize event procedure ..1065
The Class_Terminate event procedure ..1066

Adding Events to Class Modules ..1067
An Access events primer..1068
The need for events ..1068
Creating custom events..1069
Raising events..1070
Trapping custom events ..1071
Passing data through events ..1073
Exploiting Access class module events ..1073
Access forms are objects ..1076

Summary ..1077

Chapter 33: Reusing VBA Code with Libraries 1079
What Are Libraries? ..1080

Traditional Access programming..1081
Sharing code between applications ..1081

xxxiii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxiii

Access library basics ..1082
Access 2007 library database references ..1082

Creating Library Databases ..1085
Create the objects and write the functions ..1085
Save as .accde ..1086
Load the database as a library ..1087

Debugging Library Databases ..1087
Library Database Object References ..1087
Summary ..1088

Chapter 34: Customizing Access Ribbons 1089
Why Replace Toolbars and Menus? ..1090

New controls for Access ribbons..1092
SplitButton ..1092
DropDown ..1092
Gallery ..1093
SuperTips ..1094

Working with the Access 2007 Ribbon..1095
Tabs ..1095
Groups ..1096
Controls ..1096
Managing the ribbon ..1096

Working with the Quick Access Toolbar..1097
Access 2007 Ribbons: The Developer’s Perspective..1098

The ribbon creation process ..1098
Using VBA callbacks ..1098

The Ribbon Hierarchy ..1100
Getting Started with Access 2007 Ribbons ..1100

Step 1: Design the ribbon and build the XML..1101
Step 2: Write the callback routines ..1101
Step 3: Create the USysRibbons table ..1103
Step 4: Add XML to USysRibbons ..1104
Step 5: Specify the custom ribbon property ..1106

The Basic Ribbon XML ..1106
Adding Ribbon Controls..1107

Label control ..1108
Separator ..1108
Check boxes ..1109
DropDown control ..1110

Using Visual Web Developer 2005 ..1112
Managing Ribbons ..1114
Completely Removing the Access 2007 Ribbon ..1115
Summary ..1116

xxxiv

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxiv

Chapter 35: Distributing Access Applications 1117
Defining the Current Database Options ..1118

Application Options ..1119
Navigation Options ..1121
Toolbar Options ..1123

Testing the Application before Distribution ..1124
Polishing Your Application ..1126

Giving your application a consistent look and feel ..1126
Adding common professional components ..1127

Bulletproofing an Application..1130
Using error trapping on all Visual Basic procedures ..1130
Separating the tables from the rest of the application ..1131
Documenting the application ..1132
Creating a Help system..1132
Implementing a security structure ..1132

Summary ..1132

Chapter 36: Using Access Macros . 1133
Understanding Macros ..1133

The Hello World macro ..1134
Assign a macro to an event ..1136

Multiaction Macros..1137
Running multiple action queries..1138

Macro Names ..1140
Opening forms ..1140

Using Conditions ..1143
Opening reports using conditions..1143
Multiple actions in conditions ..1146

Using Temporary Variables ..1146
Enhanced Hello World macro..1147
Enhanced reporting macro ..1148
Using temporary variables in VBA ..1150

Handling Errors and Debugging Macros..1151
The OnError action ..1153
The MacroError object ..1155
Debugging macros ..1156

Embedded Macros ..1157
Macros versus VBA Statements ..1159

Converting existing macros to VBA..1160
Summary ..1162

xxxv

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxv

Part V: Access as an Enterprise Platform 1163

Chapter 37: Using XML in Access 2007 1165
Introducing HTML and XML ..1165

What is HTML? ..1166
What is XML?..1167
What is a DOM? ..1171
Formatting and transforming XSL(T) ..1171
Sharing data using XML ..1175
Some really advanced XML stuff ..1176
XML as a database ..1177

DAO, ADO, ADO.Net, Access 2007, and XML..1179
Summary ..1190

Chapter 38: SharePoint as a Data Source 1191
Building Access Interfaces with SharePoint..1192

Copying from Access to SharePoint ..1193
Building an Access form using SharePoint data..1196
Building an Access report using SharePoint data..1198

SharePoint Application Types ..1200
Tracking applications ..1201
Collaborative applications and databases ..1206

Microsoft SharePoint Designer 2007..1207
Summary ..1208

Chapter 39: Client/Server Concepts . 1209
The Parts of Client/Server Architecture..1209

Applications ..1211
The back office ..1212

Multitier Architecture ..1217
Two-tier systems ..1217
Three-tier systems ..1218

What Is an OLTP Database? ..1218
Access, Client/Server, and Multiple Tiers ..1219

Where does Access 2007 fit? ..1219
Summary ..1222

Chapter 40: SQL Server as an Access Companion 1223
Connecting to SQL Server ..1225

What is a listener? ..1225
What is a connection string?..1225
Connecting to SQL Server from Access..1227
SQL Server security ..1236

xxxvi

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxvi

Working with SQL Server Objects from Access ..1239
Using SQL Server tables from Access ..1239
Views in SQL Server ..1243
Stored procedures, functions, and triggers ..1245

Summary ..1248

Chapter 41: Upsizing Access Databases to SQL Server 1249
Upsizing Access and the Upsizing Wizard ..1250

Before upsizing an application ..1251
Running the Upsizing Wizard..1252
Working with an Access ADP file ..1257
Comparing Access 2007 to SQL Server data types ..1259

Summary ..1264

Part VI: Appendixes 1265

Appendix A: Access 2007 Specifications 1267

Appendix B: What’s on the CD-ROM . 1275

Appendix C: What’s New in Access 2007 1279

Index . 1291

Wiley Publishing, Inc. End-User License Agreement 1362

xxxvii

Contents

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxvii

02_046732 ftoc.qxp 11/21/06 8:43 AM Page xxxviii

When we first saw Access in July of 1992, we were instantly sold on this new-generation
database management and access tool. We’ve all spent the last 15 years using Access
daily. In fact, we eat, breathe, live, and sleep Access!

The fact that we can earn a living from our work with principally one product is a tribute to the
Microsoft Access designers. This product has changed the productivity of corporations and private
citizens of the world. More people use this product to run their businesses, manage their affairs,
track the most important things in their lives, and manage data in their work and play than any
other product ever written. It is indeed a privilege to be part of this worldwide community.

Now we have completely rewritten this book for Access 2007, with new examples and more in-
depth coverage. We’ve covered every new feature we could think of for the beginning and interme-
diate users and especially enhanced our programming section. Over 500,000 copies of our Access
Bibles have been sold for all versions of Microsoft Access; for this we thank all of our loyal readers.

Our first acknowledgment is to all the users of Access who have profited and benefited beyond
everyone’s wildest dreams.

There are many people who assisted us in writing this book. We’d like to recognize each of them.

To Greg Croy, whom we complain to each day. Thanks for listening, Pilgrim.

To Carole McClendon, the very best literary agent in the business, and all the folks at Waterside
Productions for being our agents.

A special thank you to Erik Rucker, Clint Covington, Michael McCormack, Jensen Harris, Shavaj
Dhanial, and the rest of the Microsoft Access 2007 Team! You’ve built a terrific product, and we
thank you!

Also, thanks to the Fixed Income–IT group at Raymond James Financial: Julie Valdez,
Marek Pokropinski, Aalan Elliot, Aly Fernandez, Bernard Brown, Coni Brown, Lilly
Dejesus-Normand, Mae Mello, Michel Thiran, Nancy Hawkins, Renee Crumity, and Steven
Twors. Thanks so much for your patience during my many absences during this project!

Thanks to these wonderful people, we were able to deliver a quality book to our readers.

For Pam. You are the one.

—Mike Groh

xxxix

03_046732 flast.qxp 11/21/06 8:43 AM Page xxxix

This book is dedicated to my mom, who sadly passed away a few days after I finished the
project. She has always supported me and encouraged me in everything that I’ve done. She
may not have known what Access is or does, but she knew I loved working with it. I’m
sure she’s looking into bookstores everywhere and is proud to see her son’s name. I miss
you, mom, and you’ll always be with me. Also, a big thanks to my family and friends, who
supported me during this project and the difficult time afterwards.

—Joe Stockman

This book is dedicated to anyone and everyone using Access 2007. My hope is that readers
have as much fun exploring the interface and features as I did during the process of work-
ing on parts of this book.

—Gavin Powell

xl

Acknowledgments

03_046732 flast.qxp 11/21/06 8:43 AM Page xl

Welcome to the Access 2007 Bible, your personal guide to a powerful, easy-to-use
database-management system. This book is in its tenth revision and has been totally
rewritten for Microsoft Access 2007 with new text, new pictures, and a completely new

and improved set of example files.

This book examines Access 2007 with more examples than any other Access 2007 book. We
strongly believe that Microsoft Access is an excellent database manager and the best desktop and
workgroup database-development system available today. Our goal with this book is to share what
we know about Access and, in the process, to help make your work and your life easier.

This book contains everything you need in order to learn Microsoft Access to a mid-advanced
level. The book starts off with database basics and builds, chapter by chapter, on topics previously
covered. In places where it is essential that you understand previously covered topics, we present
the concepts again and review how to perform specific tasks before moving on. Although each
chapter is an integral part of the book as a whole, each chapter can also stand on its own and has
its own example files. You can read the book in any order you want, skipping from chapter to
chapter and from topic to topic. (Note that this book’s index is particularly thorough; you can refer
to the index to find the location of a particular topic you’re interested in.)

The examples in this book have been well thought out to simulate the types of tables, queries,
forms, and reports most people need to create when performing common business activities. There
are many notes, tips, and techniques (and even a few secrets) to help you better understand
Microsoft Access.

This book easily substitutes for the online help included with Access. This book guides you
through each task you need to perform with Access. This book follows a much more structured
approach than the Microsoft Access online help, going into more depth on almost every topic and
showing many different types of examples. You’re also going to find much more detail than in most
other books on Microsoft Access.

Is This Book for You?
We wrote this book for beginning, intermediate, and even advanced users of Microsoft Access
2007. With any product, most users start at the beginning. If, however, you’re already familiar with
Microsoft Access and you’ve worked with the sample files or other Access applications, you may
want to start with the later parts of this book. Note, however, that starting at the beginning of a
book is usually a good idea so you don’t miss out on the secrets and tips in the early chapters.

xli

03_046732 flast.qxp 11/21/06 8:43 AM Page xli

We think this book covers Microsoft Access 2007 in detail better than any other book currently on
the market. We hope you’ll find this book helpful while working with Access, and that you enjoy
the innovative style of a Wiley book.

Yes — If you have no database experience
If you’re new to the world of database management, this book has everything you need to get
started with Microsoft Access 2007. It then offers advanced topics for reference and learning.
Beginning developers should pay particular attention to Part I, where we cover the essential skills
necessary for building successful and efficient databases. Your ability as a database designer is con-
stantly judged by how well the applications you build perform, and how well they handle data
entrusted to them by their users. The chapters in Part I won’t necessarily make you an expert
database designer, but we guarantee you’ll be a better developer if you carefully read this material.

Yes — If you’ve used other database
managers like Filemaker
If you’re abandoning another database (such as Filemaker, Paradox, or FoxPro) or even upgrading
from an earlier version of Access, this book is for you. You’ll have a head start because you’re
already familiar with database managers and how to use them. With Microsoft Access, you will be
able to do all the tasks you’ve performed with other database systems — without programming or
getting lost. This book will take you through each subject step by step.

Yes — If you want to learn the basics of Visual Basic
for Applications (VBA) programming
We understand that a very large book is needed to properly cover VBA, but we took the time to put
together many chapters that build on what you learn in the forms chapters of this book. The VBA
programming chapters use the same examples you’ll be familiar with by the end of the book. Part II
of this book explains the nuts and bolts — with lots of gritty technical details — of writing VBA
procedures and building Access applications around the code you add to your databases. Part II pro-
vides everything you need (other than a lot of practice!) to become a bona-fide VBA programmer.

Conventions Used in This Book
The following conventions are used in this book:

n When you’re instructed to press a key combination (press and hold down one key while
pressing another key), the key combination is separated by a plus sign. Ctrl+Esc, for
example, indicates that you must hold down the Ctrl key and press the Esc key; then
release both keys.

xlii

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page xlii

n Point the mouse refers to moving the mouse so that the mouse pointer is on a specific
item. Click refers to pressing the left mouse button once and releasing it. Double-click
refers to pressing the left mouse button twice in rapid succession and then releasing it.
Right-click refers to pressing the right mouse button once and releasing it. Drag refers to
pressing and holding down the left mouse button while moving the mouse.

n Italic type is used for new terms and for emphasis.

n Bold type is used for material you need to type directly into the computer.

n A special typeface is used for information you see on-screen — error messages,
expressions, and formulas, for example.

Icons and Alerts
You’ll notice special graphic symbols, or icons, used in the margins throughout this book. These
icons are intended to alert you to points that are particularly important or noteworthy. The follow-
ing icons are used in this book:

This icon highlights a special point of interest about the topic under discussion.

This icon points to a useful hint that may save you time or trouble.

This icon alerts you that the operation being described can cause problems if you’re not
careful.

This icon points to a more complete discussion in another chapter of the book.

This icon highlights information for readers who are following the examples and using
the sample files included on the disc accompanying this book.

This icon calls attention to new features of Access 2007.
NEW FEATURENEW FEATURE

ON the CD-ROMON the CD-ROM

CROSS-REFCROSS-REF

CAUTION CAUTION

TIPTIP

NOTENOTE

xliii

Introduction

Sidebars

In addition to noticing the icons used throughout this book, you’ll also notice material placed in
gray boxes. This material offers background information, an expanded discussion, or a deeper

insight about the topic under discussion. Some sidebars offer nuts-and-bolts technical explanations,
and others provide useful anecdotal material.

03_046732 flast.qxp 11/21/06 8:43 AM Page xliii

How This Book Is Organized
This book contains 41 chapters divided into five parts. In addition, the book contains a sixth part
containing three appendixes.

Part I: Access Building Blocks
Part I consists of nine chapters that cover virtually every aspect of Access development. For many
Access developers, these chapters are all that you’ll ever need. The chapters in this part cover basic
database design, referential integrity, constructing tables and queries, building forms and reports,
and using the new features in Access 2007.

Chapters 1 through 3 contains great conceptual material on understanding the basic elements of
data, introduces you to the buzzwords of database management, and teaches you how to plan
tables and work with Access data types. Chapter 4 through 6 teaches you Access queries, expres-
sions, and working with Datasheet view. Much has changed in Access 2007, and even experienced
Access users are easily confused by the new user interface.

Chapters 7 through 9 take you on a tour of various types of forms and get a complete understand-
ing of form controls. These chapters drill into the process of creating great-looking and effective
forms and reports. You’ll learn how to take best advantage of the new features in Access 2007.

Part II: Programming Microsoft Access
Virtually every serious Access application uses VBA code to perform operations not possible with
macros, or to make using the application easier and more reliable. Learning VBA programming is
often a daunting task, so the six chapters in this part take extra care to explain the principles
behind VBA programming, and show you how to take advantage of this powerful programming
language.

In these chapters, you’ll learn not only the fundamental skills required to become proficient in
VBA, you’ll also learn many “inside” tricks and techniques to apply to your Access application
development projects. You’ll come to understand and appreciate the complex object and event
models that drive Access applications, and how to construct the VBA code necessary to take
advantage of this rich programming environment.

Part III: More Advanced Access Techniques
One you’ve gotten through the basics of building Access applications, you’ll want your database
development skills to extend and enhance your Access applications. Part III includes ten chapters
that cover virtually every aspect of advanced Access development, including importing and

xliv

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page xliv

exporting data, exchanging data with other Windows applications, and integrating Access with
Microsoft SharePoint.

The techniques in Part III would normally take most Access developers several years to master.
We’ve carefully selected a potpourri of techniques that have proven valuable to each of us in rele-
vant development efforts. Each chapter is accompanied by an example database that demonstrates
the techniques documented in the chapter.

Part IV: Professional Database Development
Over the years, Access has grown in its features and capabilities. Although most Access developers
never have to use the techniques and features documented in Part IV, we’ve included these tech-
niques to make the Microsoft Access 2007 Bible the most comprehensive reference possible.

Part IV includes 11 chapters covering a wide range of professional-level Access techniques. In these
chapters, you’ll read about advanced features such as database replication, object-oriented pro-
gramming in Access, using the Windows API, creating Access libraries as a way to reuse your VBA
code, and customizing the Access 2007 ribbons. Almost all of the information in Part IV has been
added for this edition of the Microsoft Access Bible, and reflects the growth and expansion of Access’s
capabilities.

Part V: Access as an Enterprise Platform
Access is often employed in “enterprise” environments as a front-end to data stored in a variety of
server database systems, such as Microsoft SQL Server and Oracle. In addition, Microsoft has
improved SharePoint Services, and has added seamless integration and data sharing between
Access and SharePoint. The five chapters in Part V cover a variety of topics that are of interest to
developers working in enterprise environments. In these chapters, you’ll see how XML is often
used as a data exchange medium, and how Access integrates with server database engines such as
SQL Server and Oracle.

You’ll also learn how to upsize Access applications to SQL Server. Access 2007 seamlessly inte-
grates with SQL Server, as either a simple consumer of SQL Server data, or as a direct interface to a
SQL Server database. The chapters in Part V cover this important technology in detail.

Part VI: Appendixes
The last part contains three appendixes. Appendix A presents a series of tables listing Access speci-
fications, including maximum and minimum sizes of many of the controls in Access. Appendix B
describes the contents of the CD-ROM. And Appendix C tells you what’s new with Access 2007.

xlv

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page xlv

Guide to the Examples
The examples in Access 2007 Bible are specially designed to maximize your learning experience.
Throughout this book, you’ll see many examples of good business table design and implementation,
form and report creation, and module coding in Visual Basic. You’ll see examples that use both Jet (the
internal database of Microsoft Access) as well as examples that connect to SQL Server databases. You’ll
also see forms that work with SharePoint data located in remote locations on the Internet.

As every developer knows, it’s important to understand what you’re creating and programming
from the application standpoint. This is sometimes called “the business of business,” and in this
book we have chosen a simple example that we hope any business or developer can relate to.
More importantly, in this or any book you must relate to it successfully in order to learn. When
developing systems, you often find yourself analyzing applications that you don’t have a lot of
experience with. Obviously an aerospace engineer makes a better analyst when developing a sys-
tem to track airplane engines, but any good developer can develop any system as long as he’s will-
ing to work with the business experts. In this book, the authors and their words will serve as the
business experts.

The examples in this book use a fictitious company named Access Auto Auctions, or AA Auctions
for short. AA Auctions buys and sells cars, trucks, and other vehicles. They directly sell these vehi-
cles and also offer them for sale through auctions both at their equally fictitious showroom and on
the Internet. The example database contains the necessary tables, queries, forms, reports, and
module code to facilitate their business needs.

Within this guide we use some terms that have not been thoroughly explained yet. Feel
free to skip over them and return to this guide often as you start new chapters that use

these forms and reports.

NOTENOTE

xlvi

Introduction

Pardon Our Dust!

It almost goes without saying that this book was written during the Access 2007 beta testing phase.
It’s possible that a few of the figures in this book don’t exactly match what you see when you open

Access 2007, or that the terminology will have changed between the time we wrote our chapters
and the time you installed Access 2007 on your computer. Please bear with us — Microsoft has done
a great job of documenting its plans and expectations for Access 2007 and we authors have done
our best to explain the many changes. We hope that any differences you encounter between our
descriptions and explanations and your experience with Access 2007 are minor and do not impact
your workflow.

Please feel free to drop us an e-mail at AccessBible@mikegroh.com if you have a question or
comment about the material in the Access 2007 Bible. Also, contact us if you have a more general
question about development with Access or SQL Server, and we will try to help you out. Before to
prefix the subject line of your e-mail with AccessBible: or you won’t get past the spam blocker on
this account.

03_046732 flast.qxp 11/21/06 8:43 AM Page xlvi

While professional developers will always split program and data objects into two sepa-
rate database files, it is acceptable during development to combine all of the objects

into one database and split them when development is complete. When you’re working in a program
database and you’re linked to your data file, you must load the data database file before you can
make changes to the table design. You’ll learn more about this throughout the book.

The Main Menu Switchboard
When you load the completed example file (Access Auto Auctions.mdb), you’ll see the
main menu (known as a Switchboard) shown in Figure FM-1. This Switchboard contains buttons
that display the main areas of the system.

FIGURE FM-1

The Access Auto Auctions main Switchboard that allows the user to open various forms and reports

These main areas include

n Contacts: Buyers and Sellers of vehicles and parts that AA Auctions deal with. Rather
than traditionally separate Customer and Supplier tables, the Contacts table provides a
single source of all people working with AA Auctions.

n Sales: This button displays an invoice form that lets AA Auctions enter information about
the buyer (which comes from the Contacts information). Sales allows for an unlimited
number of line items on the Invoice, and each item is selected from information stored in
the Products system.

n Products: Lists of everything that AA Auctions sells or offers for auctions These include
vehicles, parts, and anything that needs to be tracked for sales or inventory purposes
including descriptions, costs, selling prices, and even pictures of each vehicle or part.

n Reports: Any good application contains reports at many levels. This button actually does
nothing. Normally, it would be used to display a generic report manager that displays
reports while allowing specifications of the report name and parameters that only shows
data between certain dates or for certain vehicle types.

TIPTIP

xlvii

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page xlvii

n Company Setup: This displays a form that contains information used by the entire sys-
tem. This is used when you need global values such as your company name (Access Auto
Auctions in this example) or other information that can be used by the entire application.

Understanding the Data Tables
Data is the most important part of any system and in Access (as well as every other database man-
agement system), data is arranged into logical groupings known as tables. Tables help define the
structure of the data, as well as hold the data itself. Tables are related to each other in order to pass
data back and forth and to help assemble the chaos of data into well-defined and well-formatted
information.

The diagram in Figure FM-2 displays the table schema in the Access Auto Auctions example. As
you will learn in Part I of this book, the lines, arrows, and symbols between the tables mean some-
thing important and communicate to the developer how the data interacts. You’ll learn terms like
table, field, record, relationship, referential integrity, normalization, primary keys, and foreign keys as you
begin to understand how tables work within a database.

FIGURE FM-2

The Access Auto Auctions relationship diagram

The example database consists of the 11 core tables shown in Figure FM-2. Many of the smaller
tables are lookup tables whose sole purpose is to provide a list of valid selections. The larger tables
hold data used by the database application itself. All of these tables include a number of data fields
that are used as the definitions of the data. The lines between the tables show how tables are related:

n tblSales: Contains fields for the main part of the sale. This includes information that
occurs once for each sale, such as the invoice number, dates of the sale, the buyer ID (which
links to the tblContacts table to retrieve information about the buyer including taxing

xlviii

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page xlviii

information), the salesperson ID (which links to the tblSalesperson table), the taxing
location (which links to the tblTaxRates table), and various other financial information.

n tblSalesPerson: Contains salespeople that sell products for Access Auto Auctions
along with their commission rates. It is linked to the sales invoice and is used when a
salesperson is selected in the invoice form.

n tblTaxRates: Contains a list of taxing locations and tax rates and is used by the sales
invoice when the buyer is selected in the form. The taxing location is retrieved from
tblTaxRates, and then the tax rate used by the invoice to calculate taxes owed.

n tblSalesLineItems: Contains fields for the individual line items that will make up
the sale. The sale may contain a variety of items. Several vehicles may be sold to a single
buyer at one time. The buyer may buy parts, accessories, or services. You’ll see a form
created later that allows for the data entry of an invoice and an unlimited number of line
items that will be stored in this table.

The data fields in the tblSalesLineItems table include the invoice number, which is
used to link the main invoice table to the invoice line items table as well as the quantity
purchased. The product ID field (which links to the tblProducts table) is used to
retrieve information about the product including the item description, price, and taxabil-
ity status. A discount field allows a discount to be entered.

The way this table is used violates true relational database theory. Rather than simply link
from the tblSalesLineItems table to the tblProducts table by the product ID
field, data values from the tblProducts table are copied to the tblSalesLineItems.
This is often done with time-dependent data. If a customer bought a part today with a
price of $10 and next week the price goes up to $15 as stored in the tblProducts table,
it would be wrong if the invoice then showed the price of $15.

You learn more about relational database theory and how to build tables in Part I of this
book

n tblSalesPayments: Contains fields for the individual payment lines. The invoice may
be paid for by a variety of methods. The customer may make a deposit for the sale with a
check, and then split the remaining amount owed with a variety of credit cards. By hav-
ing unlimited payment lines in the invoice form you can do this.

The data fields in tblSalesPayments include the invoice number which is used to
link the main invoice table. There is a field for the payment type (which links to
tblPaymentType) to only allow entry of valid payment types, as well as the payment
date, payment amount, and any check or credit-card number and the credit-card expira-
tion date.

n tblPaymentType: Is simply a lookup table with valid values for types of payments.
Only valid payment types can be chosen for a payment.

n tblContacts: Contains information about all the people and companies that Access
Auto Auctions works with. This data includes customers, suppliers, buyers, and sellers.
Names, physical addresses, phone and fax numbers, e-mail addresses, and Web sites
and all the financial information about the contact is stored in this table. Unlike the
tblSalesLineitems table information, this data is linked from an invoice form and,

CROSS-REFCROSS-REF

xlix

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page xlix

with the exception of some changing financial data, is never copied to any other table.
This way if a customer changes his address or phone number, any invoice that is related
to the contact data, instantly shows the updated information.

n tblContactLog: Contains zero or more entries for each contact in tblContacts.
This information includes the contact date, notes or items discussed, and follow-up infor-
mation. The contacts form manages all of this information.

n tblCustomerTypes: Simply contains a list of valid customer types that can be selected
through the Contacts form. It is important in all applications that certain data be limited
to valid values. In this example, each valid value triggers certain business rules.
Therefore, data entry must be limited to those values.

n tblProducts: Contains information about the items sold or auctioned by Access Auto
Auctions. This table contains information used by the invoices line items.

tblProducts will be one of the main tables used in this book. The frmProducts
form is used to teach nearly all form development lessons in the book so you should pay
particular attention to it.

n tblCategories: Is used to lookup a list of valid categories.

Understanding the Products Form
frmProducts, shown in Figure FM-3, is the first form that shows how to build Access forms. It
is also one of the forms that you’ll use frequently through the book. The Products form was devel-
oped with most of the form control types used in Microsoft Access to handle data types such as
text, currency, date, yes/no, memo, and OLE pictures.

It is important to have a good understanding of the use of the form as well as the technical details
of building it. The form contains information about each product and is bound (tied) to
tblProducts. As you enter information into the frmProducts form, it is stored in the
tblProducts table.

The top of the frmProducts form contains a control that allows you to quickly find a record.
This Quick Find is programmed using VBA code behind a combo box selection. The bottom of the
form contains a series of command buttons that will be used to demonstrate how to create new
records, delete existing records, and display a custom search and custom print dialog box.

Understanding the Product Form Subform
frmProducts is a great example of how a form works. It displays many records at once but only
selected fields. There is also a button alongside each record to delete any records that are no longer
needed. Each of the column headers is actually a button with code behind it that can be clicked on
to sort the records displayed by the form. One click and the data in that column is used to sort the
records in ascending order. The next click sorts the records in descending order.

l

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page l

FIGURE FM-3

The Access Auto Auctions Products form, which allows data entry for all vehicles and parts sold or auctioned

Understanding the Contacts Form
frmContacts, shown in Figure FM-4, is used to maintain information about the various Access
Auto Auctions contacts. This includes the contact’s name and address, whether they are a buyer,
seller, or both. This form includes information if the buyer or seller is a car dealer or parts store that
they regularly do business with or someone who just once came to an auction, bid on a car, and won.

The Contact form, like the Products form, contains a tab control. This allows you to show several
screens within one form. The Contacts form is used in later chapters to illustrate how to display
objects within a form based on certain conditions and to show how to use a calendar to store and
display data as well.

FIGURE FM-4

The Access Auto Auctions frmContacts form showing a tabbed dialog box and values used with the
tblContacts table

li

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page li

Using the Sales Form
frmSales, shown in Figure FM-5, demonstrates some more advanced form concepts. Unlike all
the other forms, the Invoice form contains two subforms, each of which uses a relationship known
as one-to-many. This means that there may be one or more records in each subform that relate to
(use the same key as) the main form. In this example, each invoice is used to sell one or more
products to a buyer. After all the products are selected for the invoice and a total price is calcu-
lated, you enter one or more payments to pay for the vehicle. The buyer may make a deposit with
a check, and then pay the remaining balance with two different credit cards.

This form also demonstrates simple and complex calculations. The calculation of the Amount col-
umn in the invoice line items is Qty x Price x (1-Discount%) for example. All of the amount
records have to be totaled to calculate the subtotal field. Then a tax rate is retrieved and calculated
to get the tax amount. This plus the other amount must be summed to get the total. All this is hap-
pening using fields in the Invoice Line items (fsubSalesLineitems) subform.

fsubSalesPayments subform also shows how to calculate a total in one subform (the total of
all payments) and use that total with controls in other parts of the form. This is how the amount
due is calculated, using data from the main form and both subforms.

The invoice form also shows several other important techniques, including displaying values in
other forms. Each line item and payment can also be deleted by using a button and the code will
be explained here as well. The bottom of the invoice form also contains buttons to create a new
record to fill in any defaults, as well as to delete an unneeded invoice and to display search and
print dialog boxes.

FIGURE FM-5

The Access Auto Auctions Sales Invoice form used to show multiple linked subforms and totals

lii

Introduction

03_046732 flast.qxp 11/21/06 8:43 AM Page lii

Access Building
Blocks

Each part of this book builds on previous parts, and the chap-
ters in each part contain examples that draw on techniques
explained in previous parts and chapters. As a developer,

your applications will benefit from the skills you acquire by reading
the chapters and practicing the examples contained in this book.

But everyone has to start somewhere when they approach a new
discipline, and Part I of this book presents the fundamental skills
necessary for anyone to succeed at database development with
Microsoft Access. The topics covered in this part explain the skills
and techniques that are necessary to successfully use the Microsoft
Access capabilities documented in the remaining parts of this book.

The chapters in this part provide the information that you’ll need
to build strong applications with Microsoft Access. These chapters
go well beyond simply describing how to build tables, forms, and
reports with Access. They give you the essential skills necessary to
normalize data and plan and implement effective tables. Not the
least of these essential skills is choosing the data types for the
fields in your tables and providing strong, descriptive names for
these important database objects. You’ll also examine the steps
necessary to properly create relationships between tables and
specify the characteristics that govern those relationships.

If you’re already familiar with the steps involved in database design,
you may want to skim these chapters to learn how to perform these
operations with Access 2007. Even if you’re familiar with earlier
versions of Access, you have a lot to learn from these chapters
because so much has changed in the Access developer environment.
And if you’re new to Access, you’ll want to read carefully the chap-
ters in this part and spend enough time working through the exam-
ples to gain a thorough understanding of these important topics.

IN THIS PART
Chapter 1
An Introduction to Database
Development

Chapter 2
Building Access Tables

Chapter 3
Designing Bulletproof Databases

Chapter 4
Selecting Data with Queries

Chapter 5
Using Operators and Expressions
in Access

Chapter 6
Working with Datasheet View

Chapter 7
Creating Basic Access Forms

Chapter 8
Working with Data on Access
Forms

Chapter 9
Presenting Data with Access
Reports

04_046732 pt01.qxp 11/21/06 8:44 AM Page 1

04_046732 pt01.qxp 11/21/06 8:44 AM Page 2

In this chapter, you learn the concepts and terminology of databases and
how to design the tables that your forms and reports will use. Finally,
you build the actual tables used by this book’s Access Auto Auctions

example database.

The fundamental concept underlying Access databases is that data is stored
in tables. Tables are comprised of rows and columns of data, much like an
Excel worksheet. Each table represents a single entity, such as a person or
product.

As you work with Access, you’ll spend considerable time designing and
refining the tables in your Access applications. Table design and implementa-
tion are two characteristics that distinguish database development from most
other activities you may pursue.

After you understand the basic concepts and terminology, the next important
lesson to learn is good database design. Without a good design, you con-
stantly rework your tables, and you may not be able to extract the informa-
tion you want from your database. Throughout this book, you learn how to
use the basic components of Access applications, including queries, forms,
and reports. You also learn how to design and implement each of these
objects. The Access Auto Auctions case study provides invented examples,
but the concepts are not fictitious.

This chapter is not easy to understand; some of its concepts are complex. If
your goal is to get right into Access, you may want to skip to Chapter 2 and
read about the process of building tables. If you’re fairly familiar with Access
but new to designing and creating tables, you may want to read this chapter
before starting to create tables.

3

IN THIS CHAPTER
Understanding what a database is

Examining the differences
between databases, tables,
records, fields, and values

Learning why multiple tables are
used in a database

Looking at database objects

Learning a five-step design
method

Creating the overall design of a
database system

Designing database tables and
relationships

Designing input forms

Designing menus

An Introduction to
Database Development

05_046732 ch01.qxp 11/21/06 8:44 AM Page 3

To jump right into using Access, skip to Chapter 2.

The Database Terminology of Access
Before examining the actual table examples in this book, it’s a good idea to have a firm understand-
ing of the terminology that is used when working with databases — especially Access databases.
Microsoft Access follows traditional database terminology. The terms database, table, record, field,
and value indicate a hierarchy from largest to smallest.

Databases
Generally, the word database is a computer term for a collection of information concerning a cer-
tain topic or business application. Databases help you organize this related information in a logical
fashion for easy access and retrieval.

Databases aren’t only for computers. There are also manual databases; we simply refer to these as
manual filing systems or manual database systems. These filing systems usually consist of people,
papers, folders, and filing cabinets — paper is the key to a manual database system. In a real man-
ual database system, you probably have in/out baskets and some type of formal filing method. You
access information manually by opening a file cabinet, taking out a file folder, and finding the cor-
rect piece of paper. You use paper forms for input, perhaps by using a typewriter. You find infor-
mation by manually sorting the papers or by copying information from many papers to another
piece of paper (or even into an Excel spreadsheet). You may use a spreadsheet or calculator to ana-
lyze the data or display it in new and interesting ways.

An Access database is nothing more than an automated version of the filing and retrieval functions
of a paper filing system. Access databases store information in a carefully defined structure. Access
tables store data in a variety of forms, from simple lines of text (such as name and address) to com-
plex data such as pictures, sounds, or video images. Storing data in a precise, known format
enables a database management system (DBMS) like Access to turn data into useful information.

Tables serve as the primary data repository in an Access database. Queries, forms, and reports pro-
vide access to the data, enabling a user to add or extract data, and presenting the data in useful
ways. Most developers add macros or Visual Basic for Applications (VBA) code to forms and
reports to make their applications easier to use.

A relational database management system (RDBMS), such as Access, stores data in related tables.
For instance, a table containing employee data (names and addresses) may be related to a table
containing payroll data (pay date, pay amount, and check number). Queries allow the user to ask
complex questions (such as “What is the sum of all paychecks issued to Jane Doe in 2007?”) from
these related tables, with the answers displayed as on-screen forms and printed reports.

CROSS-REFCROSS-REF

4

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 4

In Access, a database is the overall container for the data and associated objects. It is more than the
collection of tables, however — a database includes many types of objects, including queries,
forms, reports, macros, and code modules.

Access works a single database at a time. As you open Access, a single database is presented for you
to use. You may open several copies of Access at the same time and simultaneously work with
more than one database.

Many Access databases contain hundreds, or even thousands, of tables, forms, queries, reports,
macros, and modules. With a few exceptions, all of the objects in an Access 2007 database reside
within a single file with an extension of accdb, .accde, or .adp.

The .adp file format is a special database format used by Access to act as a front end to work with
SQL Server data.

Tables
A table is just a container for raw information (called data), similar to a folder in a manual filing
system. Each table in an Access database contains information about a single entity, such as a per-
son or product, and the data is organized into rows and columns.

In the section titled “A Five-Step Design Method” later in this chapter, you learn a successful tech-
nique for planning Access tables. In Chapters 2 and 3, you learn the very important rules govern-
ing relational table design and how to incorporate those rules into your Access databases. These
rules and guidelines ensure your applications perform with the very best performance while pro-
tecting the integrity of the data contained within your tables.

In fact, it is very important that you begin to think of the objects managed by your applications in
abstract terms. Because each Access table defines an entity, you must learn to think of the table as
the entity. As you design and build Access databases, or even when working with an existing appli-
cation, you must think of how the tables and other database objects represent the physical entities
managed by your database.

After you create a table, you view the table in a spreadsheet-like form, called a datasheet, compris-
ing rows and columns (known as records and fields, respectively — see the following section,
“Records and fields”). Figure 1-1 shows the datasheet view of the Contacts table in the Access Auto
Auction application.

The Contacts table represents people who work with the Auto Auction. Notice how the table is
divided into horizontal (left-to-right) rows, and vertical (top-to-bottom) columns of data. Each row
(or record) defines a single contact, while each column (or field) represents one type of informa-
tion known about a contact entity.

5

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 5

FIGURE 1-1

A table displayed as a datasheet

For instance, the top row in tblContacts contains data describing John Jones, including his first
name and last name, his address, and the company he works for. Each bit of information describ-
ing Mr. Jones is a field (FirstName, LastName, Address, Company, and so on). Fields are
combined to form a record, and records are grouped to build the table.

Each field in an Access table includes many properties that specify the type of data contained
within the field, and how Access should handle the field’s data. These properties include the name
of the field (LastName) and the type of data in the field (Text). A field may include other proper-
ties as well. For instance, the Size property tells Access how many characters to allow for a person’s
last name. (You learn much more about fields and field properties in Chapter 2.)

Records and fields
As Figure 1-1 shows, the datasheet is divided into rows (called records) and columns (called fields),
with the first row (the heading on top of each column) containing the names of the fields in the
database. Each row is a single record containing fields that are related to that record. In a manual
system, the rows are individual forms (sheets of paper), and the fields are equivalent to the blank
areas on a printed form that you fill in.

Values
At the intersection of a row (record) and a column (field) is a value — the actual data element. For
example, John, the name in the first record, represents one data value. You may have a couple
questions, such as: What makes this row different from other rows in the table? Is it possible to

6

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 6

have another John Jones in the same table? If there is more than one John Jones, how does the
database tell them apart?

Relational Databases
Microsoft Access is a relational database development system. Access data is stored in related tables,
where data in one table (such as customers) is related to data in another table (such as orders). Access
maintains the relationships between related tables, making it easy to extract a customer and all of the
customer’s orders, without losing any data or pulling order records not owned by the customer.

Working with multiple tables
Multiple tables simplify data entry and reporting by decreasing the input of redundant data. By
defining two tables for an application that uses customer information, for example, you don’t need
to store the customer’s name and address every time the customer purchases an item.

After you’ve created the tables, they need to be related to each other. For example, if you have a
Contacts table and a Sales table, you must relate the Contacts table to the Sales table in order to see
all the sales records for a Contact. If you had only one table, you would have to repeat the Contact
name and address for each sale record. Two tables let you look up information in the Contact table
for each sale by using the related fields Contact ID (in Contacts) and Buyer ID (in Sales). This way,
when a customer changes address, for example, the address changes only in one record in the
Contact table; when the Sales information is on-screen, the correct contact address is always visible.

Separating data into multiple tables within a database makes the system easier to maintain because
all records of a given type are within the same table. By taking the time to segment data properly
into multiple tables, you experience a significant reduction in design and work time. This process
is known as normalization. (You can read about normalization in Chapter 2.)

Later in this chapter in the section titled “A Five-Step Design Method,” you have the opportunity to
work through a case study for the Access Auto Auctions that consists of five tables.

Knowing why you should create multiple tables
The prospect of creating multiple tables always intimidates beginning database users. Most often,
they want to create one huge table that contains all of the information they need — in this case, a
Customer table with all the sales performed by the customer and all the items sold or bought for
each customer.

So, they create a single table containing a lot of fields, including fields for customer information
(contact), sales information (date of sale, salesperson, amount paid, discounts, and so on), and the
product information (quantity sold, product description, individual prices, and so on) for each
sale. Such a table quickly grows to an unmanageable number of fields and continues growing as
new items are added.

7

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 7

As you can see, the table design begins to take on a life of its own. After you’ve created the single
table, it becomes even more difficult to maintain. You begin to realize that you have to input the
customer information for every sale a customer makes (repeating the information over and over).
The same is true for the items purchased for each sale, which is multiple items for each sale (thus,
duplicating information again). This makes the system more inefficient and prone to data-entry
mistakes. The information stored in the table becomes inefficiently maintained — many fields may
not be appropriate for each record, and the table ends up with a lot of empty fields.

It’s important to create tables that hold the minimum of information while still making the system
easy to use and flexible enough to grow. To accomplish this, you need to consider making more
than one table, with each table containing records with fields that are related only to the focus of
that table. Then, after you create the tables, you link them so that you’re able to glean useful infor-
mation from them. Although this process sounds extremely complex, the actual implementation is
relatively easy. Again, this process of creating multiple tables from a single table is known as nor-
malization (or normalizing your tables).

Access Database Objects and Views
If you’re new to databases (or even if you’re an experienced database user), you need to understand
some key concepts before starting to build Access databases. The Access database contains seven
types of top-level objects, which consist of the data and tools that you need to use Access:

n Table: Holds the actual data

n Query: Searches for, sorts, and retrieves specific data

n Form: Lets you enter and display data in a customized format

n Report: Displays and prints formatted data

n Pages: Publishes data to a corporate intranet

n Macro: Automates tasks without programming

n Module: Contains programs written in the Visual Basic for Applications (VBA) program-
ming language

Datasheets
Datasheets are one of the many ways by which you can view data in Access. Although not a
database object, a datasheet displays a list of records from a table in a format similar to an account-
ing spreadsheet or Excel worksheet. A datasheet displays data as a series of rows and columns
(comparable to an Excel spreadsheet). A datasheet displays a table’s information in its raw form.
The datasheet view is the default mode for displaying all fields for all records.

You scroll through the datasheet using the directional keys on your keyboard. You can also display
related records in other tables while in a datasheet. In addition, you can make changes to the dis-
played data.

8

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 8

Use caution when making changes or allowing a user to modify data in datasheet for-
mat. When a datasheet record is updated, the data in the underlying table is perma-

nently changed.

Queries
Queries extract information from a database. A query selects and defines a group of records that
fulfill a certain condition. Many forms and most reports are based on queries that pre-filter data
before it is displayed. Queries are often called from VBA procedures to change, add, or delete
database records.

An example of a query is when a person at the Auto Sales office tells the database, “Show me all
customers, in alphabetical order by name, who live in Massachusetts and bought something over
the past six months, and display them sorted by Customer name,” or “Show me all customers who
bought cars for a value of $35,000 or more for the past six months and display them sorted by cus-
tomer name and then by value of the car.”

Instead of asking the question in English words, the person uses the query by example (QBE)
method. When you enter instructions into the QBE Design window, the query translates the
instructions into Structured Query Language (SQL) and retrieves the desired data. Chapter 4
discusses the QBE Design window and building queries.

In the first example, the query first combines data from both the Sales and Contact tables, using
the related field Contact ID (the common link between the tables). Next, it retrieves the first name,
last name, and any other data you want to see. Access then filters the records, selecting only those
in which the value of the sales date is within six months of the current date. The query sorts the
resulting records first by contact’s last and first names. Finally, the records appear on-screen in a
datasheet.

A similar action takes place for the second example — using sales, contacts, invoice items, and
products and the criteria applied to the search is where the Description field has a car bought
whose value in the Price field is greater than or equal to $35,000.

After you run a query, the resulting set of records may be used in a form that is displayed on-screen
or printed on a report. In this way, user access is limited to the data that meets the criteria in the
returned records.

Data-entry and display forms
Data-entry forms help users get information into a database table quickly, easily, and accurately.
Data-entry and display forms provide a more structured view of the data than what a datasheet
provides. From this structured view, database records can be viewed, added, changed, or deleted.
Entering data through the data-entry forms is the most common way to get the data into the
database table.

CAUTION CAUTION

9

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 9

Data-entry forms restrict access to certain fields within the table. Forms also check the validity of
your data before it is added to the database table.

Most users prefer to enter information into data-entry forms rather than datasheet views of tables.
Data-entry forms often resemble familiar paper documents and can aid the user with data-entry
tasks. Forms make data entry self-explanatory by guiding the user through the fields of the table
being updated.

Display-only screens and forms are solely for inquiry purposes. These forms allow for the selective
display of certain fields within a given table. Displaying some fields and not others means that you
can limit a user’s access to sensitive data while allowing inquiry into other fields.

Reports
Reports present your data in printed format. Access supports several different types of reports. A
report may list all records in a given table (such as a customer table) or may list only the records
meeting a certain criterion, such as all customers living in the State of Washington. You do this by
basing the report on a query that selects only the records needed by the report.

Your reports can combine multiple tables to present complex relationships among different sets of
data. An example is printing an invoice. You access the customer table to obtain the customer’s
name and address (and other relevant data) and related records in the sales table to print the indi-
vidual line-item information for the products ordered. You then instruct Access to calculate the
totals and print them in a specific format on the form. Additionally, you can have Access output
records into an invoice report, a printed document that summarizes the invoice.

When you design your database tables, keep in mind all the types of information that
you want to print. Doing so ensures that the information you require in your various

reports is available from within your database tables.

Designing the system’s objects
To create database objects, such as tables, forms, and reports, you first complete a series of tasks
known as design. The better your design is, the better your application will be. The more you think
through your design, the faster you can complete any system. The design process is not some nec-
essary evil, nor is its intent to produce voluminous amounts of documentation. The sole intent of
designing an object is to produce a clear-cut path to follow as you implement it.

A Five-Step Design Method
Figure 1-2 is a version of the design method that is modified especially for use with Access. This is
a top-down approach, starting with the overall system design and ending with the forms design,
and it consists of five steps.

TIPTIP

10

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 10

FIGURE 1-2

The five-step design flowchart. This design methodology is particularly well-suited for Access databases.

These five design steps, along with the database system illustrated by the examples in this book,
teach a great deal about Access and provide a great foundation for creating database applications —
including tables, queries, forms, data pages, reports, macros, and simple VBA (Visual Basic for
Applications) modules.

The time you spend on each step depends entirely on the circumstances of the database you’re
building. For example, sometimes the users give you an example of a report they want printed
from their Access database, and the sources of data on the report are so obvious that designing the
report takes a few minutes. Other times, particularly when the users’ requirements are complex, or
the business processes supported by the application require a great deal of research, you may
spend many days on Step 1.

As you read through each step of the design process, always look at the design in terms of outputs
and inputs. Although you see actual components of the system (cars, buyers, sellers, and transac-
tions), remember that the focus of this chapter is how to design each step. As you watch the Access
Auto Auctions system being designed, pay attention to the design process, not the actual system.

Step 1: The overall design — from concept to reality
All software developers face similar problems, the first of which is determining how to meet the
needs of the end user. It’s important to understand the overall requirements before zeroing in on
the details.

Overall System Design

Report Design (Output)

Basic Data Design

Table Design

User Interface Design

11

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 11

The five-step design method shown in Figure 1-2 helps you to create the system that you need, at
an affordable price (measured in time or dollars). The Access Auto Auctions database, for example,
allows the client to sell items (vehicles and parts) to customers. The Access Auto Auctions database
automates the following tasks:

n Entering and maintaining contact information for customers and sellers (name, address,
and financial history)

n Entering and maintaining sales information (sales date; payment method; total amount,
including tax; buyer ID; and other fields)

n Entering and maintaining sales line item information (details of items actually purchased)

n Viewing information from all the tables (sales, contacts, sales line items purchased, and
payment information)

n Asking all types of questions about the information in the database

n Producing a current contacts directory

n Producing a monthly invoice report

n Producing a customer sales history

n Producing mailing labels and mail-merge reports

These nine tasks that the Access Auto Auctions automates have been expressed by the client. You
may need to consider other tasks as you start the design process.

Most of the information that is necessary to build the system comes from the eventual users. This
means that you need to sit down with them and learn how the existing process works. To accom-
plish this you need to do a thorough needs analysis of the existing system and how you might
automate it.

One way to accomplish this is to prepare a series of questions that give insight to the client’s busi-
ness and how the client uses his data. For example, when considering automating an auto auction
business, you may consider asking these questions:

n What reports and forms are currently used?

n How are sales, customer, contacts, and other records currently stored?

n How are billings processed?

As you ask these questions and others, the client will probably remember other things about his
business that you should know.

A walkthrough of the existing process is also necessary to get a “feel” for the business. Most likely,
you’ll have to go back several times to observe the existing process and how the employees work.

When you prepare to follow the remaining steps, keep the client involved — let him know what
you’re doing and ask for his input as to what you want to accomplish, making sure it is within the
scope of his needs.

12

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 12

Step 2: Report design
Although it may seem odd to start with reports, in many cases users are more interested in the
printed output from a database than they are in any other aspect of the application. Reports often
include virtually every bit of data managed by an application. Because reports tend to be compre-
hensive, reports are often the best way to gather important information about a database’s require-
ments. In the case of the Access Auto Auctions database, the printed reports contain detailed and
summarized versions of most all the data in the database.

After you’ve defined the Access Auto Auctions’ overall systems in terms of what must be accom-
plished, you can begin report design.

When you see the reports that you will create in this section, you may wonder, “Which comes first —
the chicken or the egg?” Does the report layout come first, or do you first determine the data items
and text that make up the report? Actually, these items are considered at the same time.

It isn’t important how you lay out the fields in a report. The more time you take now, however, the
easier it will be to construct the report. Some people go so far as to place gridlines on the report so
that they will know the exact location they want each bit of data to occupy. In this example, you
can just do it visually.

The reports in Figures 1-3 and 1-4 were created with two different purposes. The report in Figure
1-3 displays information about an individual contact (buyer, seller, or both). In contrast, the report
in Figure 1-4 is an invoice with billing and customer information. Both of these reports were based
on the type of information they use. The design and layout of each report is driven by the report’s
purpose and the data it contains.

FIGURE 1-3

A contact information report

13

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 13

FIGURE 1-4

A sales invoice report containing sales information

You can read more about the reports for the Access Auto Auctions system in Chapters 9
and 20.

Step 3: Data design: What fields are required?
The next step in the design phase is to take an inventory of all the information or data fields that
are needed by the reports. One of the best methods is to list the data items in each report. As you
do so, take careful note of items that are included in more than one report. Make sure that you
keep the same name for a data item that is in more than one report because the data item is really
the same item.

Another method is to see whether you can separate the data items into some logical arrangement.
Later, these data items are grouped into table structures and then mapped onto data-entry screens
(forms). You should enter customer data (buyers and sellers), for example, as part of a contact table
process, not as part of a sales entry.

Determining contact information
First, look at each report you have reviewed or attempted to make for the Access Auto Auctions
system. For this system, start with the customer data and list the data items, as shown in
Table 1-1.

CROSS-REFCROSS-REF

14

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 14

TABLE 1-1

Customer-Related Data Items Found in the Reports

Contacts Report Invoice Report

Customer Name Customer Name

Street Street

City City

State State

ZIP Code ZIP Code

Phone Numbers Phone Number

Type of Customer

E-Mail Address

Web Site Information

Contact Log Information (four fields)

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

Credit Information (four fields)

As you can see by comparing the type of contact (customer) information needed for each report,
there are many common fields. Most of the data fields pertaining to the customer are found in both
reports. Table 1-1 shows only some of the fields that are used in each report — those related to
customer information. Fields appearing on both reports appear on the same rows in the table,
which allows you to see more easily which items are in which reports. You can look across a row
instead of looking for the same names in both reports. Because the related row and the field names
are the same, you can easily make sure that you have all the data items. Although locating items
easily is not critical for this small database, it becomes very important when you have to deal with
large tables containing many fields.

Determining sales information
After extracting the customer data, you can move on to the sales data. In this case, you need to
analyze only the Invoice report for data items that are specific to the sales. Table 1-2 lists the fields
in the report that contain information about the sales.

15

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 15

TABLE 1-2

Sales Data Items Found in the Reports

Individual Invoice Report Line Item Data

Invoice Number

Sales Date

Invoice Date

Payment Method

Payment Salesperson

Discount (overall for sale)

Tax Location

Tax Rate

Product Purchased (multiple lines) Product Purchased

Quantity Purchased (multiple lines) Quantity Purchased

Description of Item Purchased (multiple lines) Description of Item Purchased

Price of Item (multiple lines) Price of Item

Discount for each item (multiple lines) Discount for Each Item

Taxable? (multiple lines) Taxable?

Payment Type (multiple lines)

Payment Date (multiple lines)

Payment Amount (multiple lines)

Credit Card Number (multiple lines)

Expiration Date (multiple lines)

As you can see when you examine the type of sales information needed for the report, a couple
of items (fields) are repeating (for example, the Product Purchased, Number of Items
Purchased, and Price of Item fields). Each invoice can have multiple items, and each of these
items needs the same type of information — number ordered and price per item. Each sales invoice
will probably have more than one item that is sold and being invoiced. Also, each invoice may
include partial payments, and it is possible that this payment information will have multiple lines
of payment information, so these repeating items can be put into their own grouping.

Determining line item information
You can take all the individual items that you found in the sales information group in the preced-
ing section and extract them to their own group for the invoice report. Table 1-2 shows the infor-
mation related to each line item.

16

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 16

Looking back at the report in Figure 1-4, you can see that the data from Table 1-2 doesn’t list the
calculated field amount, but you can re-create it easily in the report.

Unless a numeric field needs to be specifically stored in a table, simply recalculate it
when you run the report (or form). You should avoid creating fields in your tables that

can be created based on other fields — these calculation fields can be easily created and displayed in
a form or report. As you’ll read in Chapter 2, storing calculated values in database tables leads to
data maintenance problems.

Step 4: Table design
Now for the difficult part: You must determine what fields are needed for the tables that make up
the reports. When you examine the multitude of fields and calculations that make up the many
documents you have, you begin to see which fields belong to the various tables in the database.
(You already did much of the preliminary work by arranging the fields into logical groups.) For
now, include every field you extracted. You will need to add others later (for various reasons),
although certain fields won’t appear in any table.

It is important to understand that it isn’t necessary to add every little bit of data into the database’s
tables. For instance, users may express a desire to add vacation and other out-of-office days to the
database to make it easy to know which employees are available on a particular day. However, it is
very easy to burden an application’s initial design by incorporating too many ideas during the ini-
tial development phases. Because Access tables are so easy to modify later on, it is probably best to
put aside noncritical items until the initial design is complete. Generally speaking, it’s not difficult
to accommodate user requests after the database development project is under way.

After you’ve used each report to display all the data, it’s time to consolidate the data by purpose
(for example, grouped into logical groups) and then compare the data across those functions. To do
this step, first you look at the contact information and combine all of its different fields to create
one set of data items. Then you do the same thing for the sales information and the line item infor-
mation. Table 1-3 compares data items from these three groups of information.

TABLE 1-3

Comparing the Data Items from the Contact Information,
Sales Information, and Line Item Information

Contacts Data Invoice Data Line Items

Customer Name Invoice Number Product Purchased

Street Sales Date Quantity Purchased

City Invoice Date Description of Item Purchased

State Payment Method Price of Item

continued

TIPTIP

17

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 17

TABLE 1-3 (continued)

Contacts Data Invoice Data Line Items

ZIP Code Payment Salesperson Discount for Each Item

Phone Numbers (two fields) Discount (overall for this sale) Taxable?

Type of Customer Tax Location

E-Mail Address Tax Rate

Web Site Information Payment Type (multiple lines)

Contact Log Information (four fields) Payment Date (multiple lines)

Discount Rate Payment Amount (multiple lines)

Customer Since Credit Card Number (multiple lines)

Last Sales Date Expiration Date (multiple lines)

Sales Tax Rate

Credit Information (four fields)

Consolidating and comparing data is a good way to start creating the individual table definitions
for Access Auto Auctions, but you have much more to do.

As you learn more about how to perform a data design, you also learn that the contacts data must
be split into two groups. Some of these items are used only once for a contact while other items
may have multiple entries. An example is the Contact Log information. Each contact may have
multiple log items recorded in the database. This is also true for the Sales column — the payment
information can have multiple lines of information.

It is necessary to further break these types of information into their own columns, thus separating
all related types of items into their own columns — an example of the normalization part of the
design process. For example, one customer can have multiple contacts with the company. One
customer may make multiple payments toward a single sale. Of course, we’ve already broken the
data into three categories above: contacts, invoices, and sales line items.

Keep in mind that one customer may have multiple invoices, and each invoice may have multiple
line items on it. The contact category represents customer (buyer or seller) information, the invoice
category contains information about individual sales, and the line items category contains informa-
tion about each invoice. Notice that these three columns are all related; for example, one customer
can have multiple invoices and each invoice may require multiple detail lines (line items).

The relationships between tables can be different. For example, each sales invoice has one and only
one customer, while each customer may have multiple sales. A similar relationship exists between
the sales invoice and the line items of the invoice.

18

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 18

We cover creating and understanding relationships and the normalization process in
Chapter 2.

Assuming that the three groupings represent the main three tables of your system, less additional
fields, you need to link tables together. This step, of course, means adding table relationships to
the database design.

Database table relationships require a unique field in both tables involved in a relationship. Without
a unique identifier in each table, the database engine is unable to properly join and extract related
data.

None of the tables in our design has a unique identifier, which means that you need to add at least
one more field to each table to serve as the anchor for a relationship to other tables. For example,
you could add a ContactID field to the Contacts table, then add the same field to the Invoice
table, and establish a relationship between the tables through the ContactID field in each table.
(Creating relationships is explained in Chapter 3.) The database engine uses the relationship
between the Contacts and Invoices table to link customers with their invoices. Linking tables is
done through special fields, known as key fields.

With an understanding of the need for linking one group of fields to another group, you can add
the required key fields to each group. Table 1-4 shows two new groups and link fields created for
each group of fields. These linking fields, known as primary keys and foreign keys, are used to link
these tables together.

The field that uniquely identifies each row in a table is called the primary key. The corresponding
field in a related table is called the foreign key. In our example, the ContactID field in the
Contacts table is a primary key, while the ContactID field in the Invoices table is a foreign key.

Let’s assume a certain record in the Contacts table has 12 in its ContactID field. Any records in
the Invoices table with 12 in its ContactID field is “owned” by contact number 12. As you’ll see
in Chapters 2 and 3, special rules apply to choosing and managing primary and foreign keys. The
notion of primary and foreign keys is the single most important concept behind relational data-
bases. You can read much more about this important concept in Chapters 2 and 3.

TABLE 1-4

Main Tables with Keys

Contacts Data Invoice Data Line Items Data Contact Log Data Sales Payment Data

ContactID InvoiceID InvoiceID ContactLogID InvoiceID

Customer Name ContactID Line Number ContactID Payment Type

Street Invoice Number Product Purchased Contact Date Payment Date

City Sales Date Quantity Purchased Contact Notes Payment Amount

continued

CROSS-REFCROSS-REF

19

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 19

TABLE 1-4 (continued)

Contacts Data Invoice Data Line Items Data Contact Log Data Sales Payment Data

State Invoice Date Description of Item Credit Card
Purchased Follow Up? Number

ZIP Code Payment Price of Item Follow-Up Date Expiration Date
Method

Phone Numbers Payment Discount for
(two fields) Salesperson Each Item

Type of Customer Discount Taxable?
(overall for
this sale)

E-Mail Address Tax Location

Web Site Information Tax Rate

Discount Rate

Customer Since

Last Sales Date

Sales Tax Rate

With the key fields added to each table, you can now find a field in each table that links it to other
tables in the database. For example, Table 1-4 shows a ContactID field in both the Contacts table
(where it is the table’s primary key) and the Invoice table (where it is a foreign key).

You have identified the core of the three primary tables for your system, as reflected by the first
three columns in Table 1-4. This is the general, or first, cut toward the final table designs. You have
also created two additional tables (columns) from fields shown in Table 1-3.

Taking time to properly design your database and the tables contained within it is arguably the
most important step in developing a database-oriented application. By designing your database
efficiently, you maintain control of the data — eliminating costly data-entry mistakes and limiting
your data entry to essential fields.

Although this book is not geared toward teaching database theory and all of its nuances, this is a
good point to briefly describe the art of database normalization. You’ll read the details of normal-
ization in Chapter 3, but in the meantime you should know that normalization is the process of
breaking data down into constituent tables. Earlier in this chapter you read about how many
Access developers add dissimilar information, such as contacts, invoice data, and invoice line
items, into one large table. A large table containing dissimilar data quickly becomes unwieldy and
hard to keep updated. Because a contact’s phone number appears in every row containing that
customer’s data, multiple updates must be made when the contact’s phone number changes.

20

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 20

Normalization is the process of breaking data into smaller, more manageable tables. Each table
defines one and only one entity, such as a contact or an invoice, but not both. The contact and
invoice tables are related through a primary key (ContactID in the customers table) and a foreign
key (also named ContactID) in the invoices table.

There is much more involved in the normalization process, but, in the meantime, we’ll leave that
for Chapter 3.

Step 5: Form design: Input
After you’ve created the data and established table relationships, it’s time to design your forms.
Forms are made up of the fields that can be entered or viewed in Edit mode. If at all possible, your
screens should look much like the forms that you use in a manual system. This setup makes for the
most user-friendly system.

When you’re designing forms, you need to place three types of objects on-screen:

n Labels and text box data-entry fields (the fields on Access forms and reports are usually
called controls)

n Special controls (multiple-line text boxes, option buttons, list boxes, check boxes, busi-
ness graphs, and pictures)

n Graphical objects to visually enhance them (colors, lines, rectangles, and three-
dimensional effects)

When designing a form, place your fields (text boxes, check boxes, list boxes, and radio buttons)
just where you want them on the form. Ideally, if the form is being developed from an existing
printed form, the Access data-entry form should resemble the printed form. The fields should be in
the same relative place on the screen as they are in the printed counterpart.

Labels display messages, titles, or captions. Text boxes provide an area where you can type or dis-
play text or numbers that are contained in your database. Check boxes indicate a condition and are
either unchecked or checked (selected). Other types of controls available with Access include list
boxes, combo boxes, option buttons, toggle buttons, and option groups.

Chapter 7 covers the various types of controls available in Access.

In this book, you create several basic data-entry forms:

n Contact Log: A simple data-entry form

n Contacts: A slightly more complex data-entry form, containing several different types of
controls

n Sales: Combines data from multiple tables

n Products: Data-entry form for adding products to the Access Auto Auction database.

CROSS-REFCROSS-REF

21

An Introduction to Database Development 1

05_046732 ch01.qxp 11/21/06 8:44 AM Page 21

You’ll encounter each of these forms as you read through the following chapters. Although the
Access Auto Auction is but one type of database application built with Microsoft Access, the princi-
ples you learn building the Access Auto Auction tables, queries, forms, reports, and other database
objects are applicable to virtually any other Access project.

Summary
This chapter introduces the concepts and considerations driving database development. There is
no question that data is important to users. Most companies simply cannot operate without their
customer and product lists, accounts receivable and accounts payable, and payroll information.
Even very small companies must efficiently manage their business data.

Good database design means much more than sitting down and knocking together a few tables.
Very often, poor database design habits come back to haunt developers and users in the form of
missing or erroneous information on screens and printed reports. Users quickly tire of re-entering
the same information over and over again, and business managers and owners expect database
applications to save time and money, not contribute to a business’s overhead.

22

Access Building BlocksPart I

05_046732 ch01.qxp 11/21/06 8:44 AM Page 22

In this chapter, you learn how to create a new Access database and its
tables. You establish the database container to hold your tables, forms,
queries, reports, and code that you build as you learn Access. Finally,

you create the actual tables used by the Access Auto Auctions database.

Chapter 2 does not use the example CD. Instead, you create a
blank database and add tables to the new database.

Getting Started with Access 2007
As you open Access 2007, the default environment (see Figure 2-1) is revealed.
We’ll examine the Access environment in more detail later in this chapter, but
you should understand the major components of the user interface as you get
started using Access 2007. Even experienced Access developers are surprised
at how different Access 2007 looks from previous versions.

Each time you open Access, the welcome screen may or may not look differ-
ent, depending on whether you have elected to have Office Online periodi-
cally updated. In an effort to provide a high level of support for Microsoft
Office users, Microsoft has equipped each of the Office applications with the
ability to communicate directly with Microsoft’s Web servers and download
new content to the user’s desktop. Notice the Automatically Update This
Content from Office Online button in the Office Online box near the
bottom-center of this main screen. This button configures Microsoft Access
to look for new Office Online content each time you open Access. In fact,
your Access Welcome Screen will likely look quite different from Figure 2-1
because of the content continuously released by Microsoft Office Online.

NOTENOTE

23

IN THIS CHAPTER
Creating a new Access database

Creating a table

Navigating in the Table window

Entering field names and
descriptions

Selecting a field data type

Entering field properties

Changing a table design

Creating a primary key

Saving a table’s design

Renaming, copying, and deleting
tables

Creating Access Tables

06_046732 ch02.qxp 11/21/06 8:46 AM Page 23

FIGURE 2-1

The Access 2007 welcome screen provides a wealth of information.

The center of the screen is dominated by the Microsoft Office Online “templates,” which are
described in the next section. The right side of the screen contains a list of recently opened data-
bases, while the left side of the screen contains a navigation bar for templates.

The Templates section
When you start Microsoft Access, you see the initial welcome screen (refer to Figure 2-1). For
online users of Microsoft Access 2007, the content of the welcome screen changes from time to
time as Microsoft updates the online templates available on the Microsoft Web site.

We’ll take a look at creating a new database in the “Creating a Database” section of this chapter. In
the meantime, let’s take a look at the purpose of online templates. Microsoft has long been con-
cerned that building Access databases is too difficult for most people. Not everyone takes the time
to understand the rules governing database design, or to learn the intricacies of building tables,
queries, forms, and reports.

Microsoft established the online templates repository as a way to provide beginners and other busy
people the opportunity to download partially or completely built Access applications. The template
databases cover many common business requirements such as inventory control and sales manage-
ment. You may want to take a moment to explore the online templates, but they aren’t covered in
this book.

24

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 24

The File menu
Our main interest at the moment is the large round button in the upper-left corner of the main
Access screen. This button opens the File menu (see Figure 2-2), which is the gateway to a large
number of options for creating, opening, or configuring Access databases. Notice that a list of
recently opened databases appears to the right of the buttons in the File menu.

FIGURE 2-2

The File menu contains many important commands.

Rather than discuss each of these commands at the moment, we’ll cover each command in detail as
we work through the Access user interface. For the moment, notice the New command at the very
top of the File menu. We’ll use this button to create a new Access database in the next section.

Some confusion exists over the name of the large, round button you see in the upper-left
corner of the main Access window. Most users call this button the File button and the

drop-down that appears as this button is clicked the File menu. However, Microsoft refers to the
round button as the Microsoft Office Button and its drop-down as the Office menu. You’ll see both
expressions used in this book, but in all cases we’re referring to the large, round button in the upper
left corner of the main Access 2007 screen.

NOTENOTE

25

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 25

Creating a Database
There are many ways to create a new database file. You may have noticed the Blank Database but-
ton in the upper-left corner of the Office Online area in the main Access screen. This button and
the New button in the File menu both reveal the Blank Database area in the right section of the
main screen. Clicking either of these buttons transforms the main screen, as shown in Figure 2-3.
The Blank Database area replaces the list of recently opened databases on the main screen.

FIGURE 2-3

Enter the name of the new database in the File Name box in the Blank Database area.

Enter the name of the new database in the File Name box in the Blank Database area. By default,
Access creates the new database file in whichever Windows folder you most recently opened from
within Access. If you want to use a different folder, use the folder icon to the right of the File Name
box to browse to the location you want to use.

Access provides a default name of Database1.accdb for new databases. Be sure to provide a
name that you’ll recognize. In Figure 2-4, the new database is named MyAccessAuto
Auctions.accdb. (Entering the extension .accdb is optional because Access automatically
supplies it if you do not.)

When the new database is created, Access automatically opens it for you.

26

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 26

FIGURE 2-4

The new MyAccessAutoAuctions database is created.

Access 2007 recognizes all previous versions of Access database files. By default, the
2007 format (with the .accdb extension) is used, but you can specify either Access

2000, 2002–2003, or Access 2007 as the default format. Choose File ➪ Access Options ➪
Personalize, select the Default File Format option, and choose whichever format you prefer. For
instance, if much of your Access 2007 work is performed on Access 2000 databases, you should
choose the 2000 format to preserve backward compatibility. Users still working with Access 2000
are not able to open Access files created in the .accdb format.

This book uses a mix of Access file formats for its examples. All of the Access Auto Auctions files
on your disc are in Access 2007 format, but other examples may be in Access 2000 or 2002–2003
formats.

Access 2007 works directly with Access 2000, 2002–2003, and 2007 databases. Earlier Access
database files (such as Access 97 or 95) must be converted to 2000, 2002–2003, or 2007 before
they can be used in Access 2007. Access examines the database file you’re opening and, if it deter-
mines the file must be converted, presents you with the Database Enhancement dialog box shown
in Figure 2-5.

NOTENOTE

27

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 27

FIGURE 2-5

Opening an obsolete Access data file invokes the Database Enhancement dialog box.

28

Access Building BlocksPart I

Understanding How Access Works with Data

There are many ways that Microsoft Access works with data. For simplicity, most of the examples
in this book use data stored in local tables. A local table is contained within the Access .accdb

file that is open in front of you. This is how you’ve seen examples so far.

In many professionally developed Microsoft Access applications, the actual tables are kept in a data-
base (usually called the back end) separate from the other interface objects (forms, reports, queries,
pages, macros, and modules). The back-end data file stays on a file server on the network, and each
user has a copy of the front-end database (containing the forms and reports) on his computer. This is
done to make the application more maintainable. By separating the data and their tables into
another database, maintenance work (building new indexes, repairing the tables, and so on) is more
easily done without affecting the remainder of the system.

For example, you may be working with a multiuser system and find a problem with a form or report
in the database. If all the data and interface objects are in the same database, you have to shut down
the system while repairing the broken form or report — other users could not work with the applica-
tion while you repair the form or report.

By separating data from other objects, you can fix the erring object while others are still working
with the data. After you’ve fixed the problem, you deliver the new changes to the others, and they
import the form or report into their local databases.

In addition, there is a more critical reason to separate your data from the interface objects: security.
By maintaining the data in its own database, you maintain better control over the information. The
back-end database is physically separated from users, and it is unlikely a user can accidentally or
intentionally delete or modify the back-end database files. Also, the back-end database is easily
backed up and maintained without affecting users.

While you may want to first develop your application with the tables within the .accdb database,
later you can use the Database Splitter wizard to automatically move the tables in your .accdb file
to a separate Access .accdb file. This process is explained in Chapter 16.

06_046732 ch02.qxp 11/21/06 8:46 AM Page 28

Responding Yes to the Database Enhancement dialog box opens a second dialog box (not shown)
asking for the name of the converted database. Selecting No opens the obsolete database in read-
only mode, enabling you to view, but not modify, objects in the database. This process is some-
times referred to as enabling the obsolete database.

Choosing to enable an obsolete database is sometimes necessary when you must understand the
design of an old database, but if users are still working with the old database and it cannot be
upgraded to Access 2007 format.

If you’re following the examples in this book, note that we have chosen MyAccessAuto
Auctions.accdb as the name of the database file you create as you complete this chapter. This
database is for our hypothetical business, Access Auto Auctions. After you enter the filename,
Access creates the empty database.

The CD-ROM that comes with this book contains multiple database files. The completed
file containing all the data is named AccessAutoAuctionsData.accdb, and the Access

2007 database file containing the completed objects (forms, queries, reports, macros, and modules) is
AccessAutoAuctions.accdb.

The CD-ROM contains a single example database file for most chapters in this book. The example file
for a chapter is named ChapterXX.accdb (and, sometimes ChapterXX.mdb), where xx is a
chapter number. If a chapter uses files where the data is split from the other objects, the names are
ChapterXXFrontEnd.accdb and ChapterXXBackEnd.accdb. This chapter describes building a single
database file named MyAccessAutoAuctions.accdb.

The Access 2007 Environment
The initial Access screen, after creating a new database, is shown in Figure 2-6. Along the top of
the screen is the Access ribbon, which replaces the toolbars and menus seen in previous versions of
Access. The ribbon is divided into a number of groups. We’ll be looking at each of the groups and
the controls in each group as we work our way through the next several chapters.

At the left side of the screen is the Navigation Pane containing the names of all of the different types
of objects in the Access database. In Figure 2-6, the Navigation Pane displays the names of tables
in the database, but could just as easily show queries, forms, reports, and other Access object
types. The Navigation Pane can even display a combination of different types of objects.

The right side of the screen shows a blank table, ready to be filled in with the details necessary for
the table to be used in the new Access database.

ON the CD-ROMON the CD-ROM

29

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 29

FIGURE 2-6

The main Access interface when working with a new database

The Navigation Pane
The Navigation Pane, at the left of the screen, is your primary navigation aid when working with
Access. By default, the list is filled with the names of tables in the current database but can also dis-
play other types of objects by clicking on the drop-down list in the Navigation Pane’s title bar to
reveal the navigation options (see Figure 2-7).

30

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 30

FIGURE 2-7

Choosing an alternate display for the Navigation pane

The navigation options are:

n Custom: The Custom option creates a new tab in the Navigation pane. This new tab is
titled Custom Group 1 by default and contains objects that you drag and drop into the
tab’s area. Items added to a custom group still appear in their respective “object type”
view, as described next.

n Object Type: The Object Type setting is most similar to previous versions of Access.
When selected, Object Type transforms the selection list to display the usual Access
object types: tables, queries, forms, reports, and so on.

n Tables and Related Views: The Tables and Related Views setting requires a bit of
explanation. Access 2007 tries very hard to keep the developer informed of the hidden
connections between objects in the database. For instance, a particular table may be used
in a number of queries, or referenced from a form or report. In previous versions of
Access, these relationships were very difficult to determine, and, before Access 2007, no
effective tool was built into Access to help you understand these relationships.

Figure 2-8 shows how the Tables and Related Views works. The Shippers table has
been expanded to show that it is related to six other objects in the Northwind Traders
database. This information helps a developer to understand that changing the Shippers
table affects a number of other objects in the database.

31

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 31

FIGURE 2-8

The Tables and Related Views setting is a powerful tool for analyzing an Access
database.

n Created Date, Modified Date: These options group the database objects by either the
created date or the modified date. These settings are useful when you need to know when
an object was either created or last modified.

n Filter By Group: The Filter By Group option filters the selected object type (tables,
forms, and so on) by a number of grouping options. The grouping option is determined
by the navigation category chosen in Navigate To Category selected at the top of the
Navigation pane. For instance, selecting Created Date changes the options under the
Filter By Group to the following options: Today, Yesterday, Last Week, Two
Weeks Ago, and so on.

The Filter By Group option is really only helpful when you have a fairly large number
of objects in your Access database. If you have an Access database containing several
hundred different forms, you’ll find it very useful to filter by forms that were modified
within the last week or so. But when there are only a few objects in a database, the Filter
By Group option has little effect.

n Unrelated Objects, All Tables: These options appear in Figure 2-7 because the Tables
and Related Views is selected as the primary navigation option. The Unrelated
Objects is the opposite of the Tables and Related Views. When selected, the
Unrelated Objects option shows you all of the objects that are not related to the
selected table, query, or other Access object.

The All Tables setting is the default when choosing to view tables in the database.

The ribbon
The Access ribbon occupies the top portion of the main access screen. The ribbon replaces the
menus and toolbars seen in previous versions of Access. The ribbon’s appearance changes depend-
ing on what task you’re working on in the Access environment. Figure 2-9 shows the Datasheet
ribbon seen when you’re working with Access tables. A very different ribbon appears when work-
ing with forms or reports.

32

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 32

FIGURE 2-9

The Access 2007 ribbon

The ribbon is divided into a number of groups, each containing any number of controls. In Figure
2-9, the Data Type and Formatting group is selected. The Data Type and Formatting
group includes options for selecting how a datasheet appears on the screen, while the Fields
and Columns group contains commands for modifying and specifying the fields within the table.

The other groups on the Datasheet tab (Views, Fields and Columns, and Relationships)
contain controls that perform other tasks commonly associated with Access datasheets. For
instance, The View control in the Views group changes the datasheet view of the table to design
view, making it easy to update the table’s design.

Instead of explaining each of the groups and controls within groups on the ribbon, we will study
each relevant ribbon command in the proper context in this chapter and chapters that follow.

Other relevant features of the Access environment
The Access environment includes a number of other important features. In the far-right lower cor-
ner are two buttons that enable you to quickly change the selected objects in the middle of the
screen from Design view to the object’s Normal view. For instance, in the case of an Access table,
the Normal view is to display the table as a datasheet, while a report’s Normal view is to display the
report in Print Preview.

Figure 2-10 illustrates one of the more interesting changes for Access 2007. A common complaint
among some developers with earlier versions of Access was the fact that, when multiple objects
were simultaneously opened in the Access environment, the objects would often overlap and
obscure each other, making it more difficult to navigate between the objects. For instance, in
Access 2000 you might have a form open in Design view and a table open in Datasheet view at the
same time. Invariably, one of these objects would overlap the other and, depending on how large
the object was, might completely obscure the other object.

Microsoft has added a tabbed user interface to Access, preventing objects from obscuring other
objects that are open at the same time. In Figure 2-10, the contacts (tblContacts) table is currently
in use. Two other database objects (frmIndexTest and tblZipCodesIndexed) are also opened in the
Access work area. Clicking on a tab associated with an object, such as frmIndexTest, instantly
brings that object to the top.

33

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 33

FIGURE 2-10

The tabbed interface is a welcome addition to Access 2007.

When an object such as tblContacts is put into Design view (by clicking to the last word, right-
clicking the tab, and selecting Design View) the data sheet is replaced with the Table Designer
(see Figure 2-11). The Access 2007 environment is highly adaptable to whichever tasks you are
currently performing in your database.

If you decide you don’t care for the tabbed interface, select the Office button, and click
the Access Options button in the lower-right corner of the Office menu. Then, select the

Current Database tab, and change the Document Window Options from Tabbed Documents to
Overlapping Windows.

TIPTIP

34

Access Building BlocksPart I

06_046732 ch02.qxp 11/27/06 4:17 PM Page 34

FIGURE 2-11

The Access environment adapts to your workflow.

Creating a New Table
Creating database tables is as much art as it is science. A good working knowledge of the user’s
requirements is a primary requirement for any new database project. Chapter 3 covers the details
of applying database design rules to the creation of Access tables. In the meantime, let’s take a look
at the steps required to create basic Access tables. In the following sections, you’ll study the process
of adding tables to an Access database, including the relatively complex subject of choosing the
proper data type to assign to each field in a table.

It is always a good idea to plan tables on paper first, before sitting down at Access and using the
Access tools to add tables to the database. Many tables, especially small ones, really don’t require a
lot of forethought before adding them to the database. After all, not much planning is required to
design a table holding lookup information such as the names of cities and states. However, more
complex entities such as customers and products usually require considerable thought and effort to
properly implement.

35

Creating Access Tables 2

06_046732 ch02.qxp 11/27/06 4:17 PM Page 35

Although you can create the table interactively without any forethought, carefully planning a data-
base system is a good idea. You can make any changes later, but doing so wastes time; generally,
the result is a system that is harder to maintain than one that is well planned from the beginning.
Before you get started, you should understand the table design process.

In the following sections, we’ll be exploring the new, blank table added by Access as the new data-
base was created. It’s important to understand the steps required to add new tables to an Access
database. Because the steps required to add tables have changed so dramatically from earlier ver-
sions of Access, even experienced Access developers will want to read the following sections.

The importance of naming conventions
As your databases grow in size and complexity, the need to establish a naming convention for the
objects in your databases increases. As you already know, changes to the name of an object are not
propagated throughout the database. Even with the Name AutoCorrect option turned on (Office
button ➪ Access Options ➪ Current Database ➪ Name AutoCorrect Options), Access only cor-
rects the most obvious name changes. Changing the name of a table breaks virtually every query,
form, and report that uses the information from that table. Your best defense is to adopt reasonable
object names and use a naming convention early on as you begin building Access databases and to
stick with the naming convention throughout the project.

Access imposes very few restrictions on the names assigned to database objects. Therefore, it is
entirely possible to have two distinctly different objects (for instance, a form and a report, or a
table and a macro) with the same name. (You can’t, however, have a table and a query with the
same name, because tables and queries occupy the same namespace in the database.)

Although simple names like Contacts and Orders are adequate, as a database grows in size and
complexity you may become confused about which object a particular name refers to. For instance,
later in this book, you’ll read about manipulating database objects through code and macros.
When working with Visual Basic for Applications (VBA), the programming language built into
Access 2007, there must be no ambiguity or confusion between referenced objects. Having both a
form and a report named Contacts might be confusing to you or your code.

The simplest naming convention is to prefix object names with a three- or four-character string
indicating the type of object carrying the name. Using this convention, tables are prefixed with
tbl and queries with qry. The prefix for forms, reports, macros, and modules are frm, rpt, mcr,
and bas or mod, respectively.

In this book, most compound object names appear in mixed case: tblBookOrders,
tblBookOrderDetails, and so on. Most people find mixed-case names easier to read and
remember than names that appear in all-uppercase or all-lowercase characters (such as
TBLBOOKORDERS or tblbookorderdetails).

Also, at times, we’ll use informal references for database objects. For instance, the formal name of
the table containing contact information in the previous examples is tblContacts. An informal
reference to this table might be “the contacts table.”

36

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 36

In most instances, your users never see the formal names of database objects. One of your chal-
lenges as an application developer is to provide a seamless user interface that hides all data-
management and data-storage entities that support the user interface. You can easily control the
text that appears in the title bars and surfaces of the forms, reports, and other user interface com-
ponents to hide the actual names of the data structures and interface constituents.

Take advantage of the long object names that Access permits to give your tables, queries, forms,
and reports descriptive, informative names. There is no reason why you should confine a table
name to ConInfo when ContactInformation is handled just as easily and is much easier to
understand.

Descriptive names can be carried to an extreme, of course. There’s no point in naming a form
frmUpdateContactInformation if frmUpdateInfo does just as well. Long names are more
easily misspelled or misread than shorter names, so use your judgment.

Finally, although Access lets you use spaces in database object names, you should avoid spaces at
all costs. Spaces do not add to readability and can cause major headaches, particularly when upsiz-
ing to client-server environments or using OLE automation with other applications. Even if you
don’t anticipate extending your Access applications to client-server or incorporating OLE or DDE
automation into your applications, get into the habit of not using spaces in object names.

The table design process
Creating a table design is a multistep process. By following the steps in order, your table design can
be created readily and with minimal effort:

1. Create a new table.

2. Enter field names, data types, and (optionally) descriptions.

3. Enter properties for the fields.

4. Set the table’s primary key.

5. Create indexes for necessary fields.

6. Save the table’s design.

Generally speaking, some tables are never really finished. As users’ needs change, or the business
rules governing the application change, you may find it necessary to open an existing table in
Design view. This book, like most books on Access, describes the process of creating tables as if
every table you ever work on is brand new. The truth is, however, that most of the work that you
do on an Access application is performed on existing objects in the database. Some of those objects
you have added yourself, while other objects may have been added by another developer at some
time in the past. However, the process of maintaining an existing database component is exactly
the same as creating the same object from scratch.

37

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 37

Just a quick note about modifying tables once they’re built: Adding a new field to a table
almost never causes problems. Existing queries, forms, and reports, and even VBA code,

will continue using the table as before. After all, these object won’t reference the new field because
the field was added after their creation. Therefore, you can add a new field and incorporate the field
where needed in your application, and everything works as expected.

The trouble comes from removing or renaming a field in a table. Even with AutoCorrect turned on,
Access will not update field name references in VBA code, in control properties, and in expressions
throughout the database. Changing an existing field (or any other database object, for that matter) is
always a bad idea. You should always strive to provide your tables, fields, and other database objects
with good, strong, descriptive names at the time you add them to the database, rather than planning
to go back later and fix them.

Adding a new table to the database
Begin by selecting the Create tab on the ribbon at the top of the Access screen. The Create tab (see
Figure 2-12) contains all of the tools necessary to create not only tables, but also forms, reports,
and other database objects. The following examples use the Chapter02.accdb database found
on this book’s CD.

FIGURE 2-12

The Create tab contains tools necessary for adding new objects to your Access database.

There are two main ways to add new tables to an Access database, both of which are invoked from
the Tables group on the Create tab:

n Clicking on the Table button: Adds a complete new table to the database.

n Clicking on the Table Design button: Adds a table in Design view to the database.

For our example, we’ll be using the Table Design button, but first, let’s take a look at the Table
button.

Begin by clicking on the Table button to add a new table to the Access environment. The new
table appears in Datasheet view in the tabbed region of the Access screen. A portion of the new
table is shown in Figure 2-13. Notice that the new table appears in Datasheet view, with an ID col-
umn already inserted, and an Add New Field column to the right of the ID field.

TIPTIP

38

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 38

FIGURE 2-13

A portion of the new table in Datasheet view in the Access environment

The Add New Field column is intended to permit users to quickly add tables to an Access data-
base. All that is needed is to simply begin entering data into the Add New Field column. You
assign the field a name by right-clicking the field’s heading, selecting Rename Column, and enter-
ing a name for the field. In other words, building an Access table can be very much like creating a
spreadsheet in Microsoft Excel. This approach was usually referred to as “creating a table in
Datasheet view” in previous versions of Microsoft Access.

Although it is entirely possible to build an access table without ever switching to Design view, we
believe that this is a terrible idea. Building tables by entering data and casually providing names
for the table’s fields circumvents one of the most critical steps in building in the serious database
system.

Relational database systems such as Access are constructed by breaking data into constituent enti-
ties, and then building a table for each entity. The tables in an Access database should carefully and
accurately reflect the entities they describe. Seemingly small issues, such as deciding which data
type to assign to a field, has a dramatic impact on the utility, performance, and integrity of the
database and its data.

Each table added to an Access database, and each field added to every table, should have a purpose
in the overall database design. Even when adding tables using the Table button, it is far too easy to
add tables that do not conform to the rules described in Chapter 3, and which do not fit well into
the database’s design.

The second approach to add new tables is to use the Table Design button, located on the right side
of the Tables grouping on the Create tab. Access opens a new table in Design view, as shown in
Figure 2-14.

39

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 39

FIGURE 2-14

A new table added in Design view

The table designer is quite easy to understand, and each column is clearly labeled. At the far left is
the Field Name column, where you input the names of fields you add to the table. You assign a
data type to each field in the table, and (optionally) provide a description for the field.

For this exercise, we’ll create the Contacts table for the Access Auto Auctions application. The basic
design of this table is outlined in Table 2-1.

TABLE 2-1

The Access Auto Auctions Contacts Table Design

Field Name Data Type Description

ContactID AutoNumber Primary key

ContactType Text 50 Type of contact (Wholesaler, dealer, parts store, other)

FirstName Text 50 Contact’s first name

LastName Text 50 Contact’s last name

Company Text 50 The Contact’s employer or other affiliation

Address Text 50 Contact’s address

City Text 50 Contact’s city

State Text 50 Contact’s state

40

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 40

Field Name Data Type Description

ZipCode Text 50 Contact’s zip code

Phone Text 50 Contact’s phone

Fax Text 50 Contact’s fax

E-Mail Text 100 Contact’s e-mail address

WebSite Text 100 Contact’s Web address

OrigCustDate DateTime The date the contact first purchased something from Access
Auto Auctions

TaxLocation Text 50 Used to determine the applicable sales tax

CreditLimit Currency Customer’s credit limit in dollars

CurrentBalance Currency Customer’s current balance in dollars

CreditStatus Text A description of the customer’s credit status

LastSalesDate DateTime The most recent date the customer purchased something from
Access Auto Auctions

DiscountPercent Double The customary discount provided to the customer

Notes Memo Notes and observations regarding this customer

Active Yes/No A yes/no value, indicating whether the customer is still buying
or selling to Access Auto Auctions

Some of the fields in the preceding table are rather generous in the amount of space allocated for
the field’s data. For instance, it is unlikely that anyone’s name occupies 50 characters, but there is
no harm in providing for very long names. Access only stores as many characters as are actually
entered into a text field. Therefore, allocating 50 characters does not actually use 50 characters for
every name in the database.

The design spelled out in Table 2-1 is a good starting point for the Contacts table.

Looking once again at Figure 2-14, you see that the Table Design window consists of two areas:

n The field entry area (top): Use the field entry area to enter each field’s name and data
type. You can also enter an optional description.

n The field properties area (bottom): The property area at the bottom of the window is
for entering more different specifications, called properties, for each field. These properties
include field size, format, input mask, and default value, among others. The actual prop-
erties displayed in the properties area depend upon the data type of the field. You learn
much more about these properties later in this book.

You can switch between the upper and lower areas of the table designer by clicking the
mouse when the pointer is in the desired pane or by pressing F6.TIPTIP

41

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 41

Using the Design ribbon tab
The Design tab on the Access ribbon, shown in Figure 2-15, contains many controls that assist in
creating a new table definition.

FIGURE 2-15

The Design tab of the ribbon

We will only mention a few of these buttons at this time. You’ll learn much more about the other
buttons later in this chapter and in subsequent chapters of this book.

Primary Key
Use this button to designate which of the fields in the table you want to use as the table’s primary
key. By tradition, the primary key appears at the top of the list of fields in the table. Moving a field
is easy: Simply left-click on the gray selector to the left of the field’s name to highlight the field in
the Table Designer, and drag the field to its new position.

Insert Rows
Although it makes very little difference to the database engine, many developers are fussy about the
sequence of fields in a table. Also, particularly when assigning an index or composite index to a
table, you want the fields to be next to each other in the table’s field list (composite keys, consisting
of multiple fields combined as a single key, are discussed in detail in Chapter 3). The Insert Row
button inserts a blank row just above the position occupied by the mouse cursor. For instance, if
the cursor is currently in the second row of the Table Designer, clicking the Insert Row button
inserts an empty row in the second position, moving the existing second row to the third position.

Delete Rows
Conversely, the Delete Rows button removes a row from the table’s design. Be careful, however,
because Access does not ask you to confirm the deletion before actually removing the row.

Property Sheet
The Property Sheet button opens the Properties window (see Figure 2-16) for the table. These
properties enable you to specify important table characteristics such as a validation rule to apply to
the entire table, or an alternate sort order for the table’s data.

42

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 42

FIGURE 2-16

The Table properties window

Indexes
Indexes are discussed in much more detail later in this chapter. Clicking the Indexes button opens
the Indexes dialog box (shown in Figure 2-25 in the “Multiple-field indexes” section, later in this
chapter), enabling you to specify the details of indexes on the fields in your table.

Working with fields
Fields are created by entering a field name and a field data type in each row of the field entry area
of the Table Design window. The field description is an option to identify the field’s purpose. The
description appears in the status bar at the bottom of the screen during data entry. After entering
each field’s name and data type, you can further specify how each field is used by entering proper-
ties in the property area.

Naming a field
A field name should be descriptive enough to identify the field to you as the developer, to the user
of the system, and to Access. Field names should be long enough to quickly identify the purpose of
the field, but not overly long. (Later, as you enter validation rules or use the field name in a calcu-
lation, you’ll want to save yourself from typing long field names.)

To enter a field name, position the pointer in the first row of the Table Design window under the
Field Name column. Then type a valid field name, observing these rules:

n Field names can be from 1 to 64 characters.

n Field names can include letters, numbers, and many special characters.

n Field names cannot include a period (.), exclamation point (!), brackets ([]), or accent
grave (`).

43

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 43

n You can’t use low-order ASCII characters, for example Ctrl+J or Ctrl+L (ASCII values 0
to 31).

n You can’t start with a blank space.

n You can’t use a double quotation mark (“) in the name of a Microsoft Access project file.

You can enter field names in upper-, lower-, or mixed case. If you make a mistake while typing the
field name, position the cursor where you want to make a correction and type the change. You can
change a field name at any time — even if it’s in a table and the field contains data — for any reason.

Access is not case sensitive, so the database itself doesn’t care whether you name a
table tblContacts or TblContacts. The selection of upper-, lower-, or mixed case

is entirely your decision and should be aimed at making your table names descriptive and easy to
read.

After your table is saved, if you change a field name that is also used in queries, forms,
or reports, you have to change it in those objects as well. One of the leading causes of

errors in Access applications stems from changing the names of fundamental database objects such
as tables and fields, but neglecting to make all of the changes required throughout the database.
Overlooking a field name reference in the control source of a control on the form or report, or deeply
embedded in VBA code somewhere in the application, is far too easy.

Specifying a data type
The next step is to actually create your tables and define your fields for those tables. You must also
decide what type of data each of your fields will hold. In Access, you can choose any of several
data types (these data types are detailed later in this chapter):

n Text: Alphanumeric characters, up to 255 characters

n Memo: Alphanumeric characters, very long strings up to 65,538 (64K) characters

n Number: Numeric values of many types and formats

n Date/Time: Date and time data

n Currency: Monetary data

n AutoNumber: Automatically incremented numeric counter

n Yes/No: Logical values, Yes/No, True/False

n OLE Object: Pictures, graphs, sound, video, word processing, and spreadsheet files

n Hyperlink: A field that links to a picture, graph, sound, video, and word processing and
spreadsheet files

CAUTION CAUTION

NOTENOTE

44

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 44

One of these data types must be assigned to each of your fields. You must also specify the length of
the Text fields, or accept the default of 50 characters for Text fields.

Designing data-entry rules
The last major design decision concerns data validation, which becomes important as users enter
data. You want to make sure that only good data (data that passes certain defined tests) gets into
your system. You have to deal with several types of data validation. You can test for known individ-
ual items, stipulating that the Gender field can accept only the values Male, Female, or
Unknown, for example. Or you can test for ranges, specifying that the value of Weight must be
between 0 and 1,500 pounds.

Designing lookup tables
Sometimes you need to design entire tables to perform data validation or just to make it easier to
create your system; these are called lookup tables. For example, because Access Auto Auctions needs
a field to determine the customer’s tax rate, you may decide to use a lookup table that contains the
tax location, and tax rate. Another example is when a customer pays an invoice using some specific
method — cash, credit card, money order, and on and on.

Because the tax rate can change, storing tax rates makes much more sense than hard-coding tax
rates into the application. Using lookup tables, Access looks up the current tax rate in
tblTaxRates whenever an invoice is created. The tax rate applied to an invoice is stored along
with the other invoice data in the Invoice/Sales table because it is time-dependent data, and the
value stored in tblTaxRates may be different in the future.

Another purpose of a lookup table is to limit data entry in a field to a specific value. For example,
you can use a table containing payment types (cash, check, MasterCard, and so on). The payment
types table (tblPaymentTypes) can be used as a lookup table to ensure only approved payment
methods can be entered in the Invoice table.

When you create a field in a table, you can use the data type Lookup Wizard. It is not
an actual data type, but is instead a way of storing a field one way and displaying it

another way.

Although you can create a field on a data-entry form that limits the entry of valid contact types to
seller, buyer, or both, you create a table with only one field — ContactType — and use the
ContactType field in tblContacts to link to this field in the ContactType lookup table.

You create a lookup table in exactly the same way as you create any other table, and it
behaves in the same way. The only difference is in the way you use the table’s data.NOTENOTE

TIPTIP

45

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 45

Several lookup tables are included in the Access Auto Auctions application: tblPaymentType,
tblTaxRates, and tblCategories.

Assigning field data types
After you name a field, you must decide what type of data the field holds. Before you begin enter-
ing data, you should have a good grasp of the data types that your system will use. Ten basic types
of data are shown in Table 2-2; some data types (such as numbers) have several options.

TABLE 2-2

Data Types Available in Microsoft Access

Data Type Type of Data Stored Storage Size

Text Alphanumeric characters 0–255 characters

Memo Alphanumeric characters 0–65,536 characters

Number Numeric values 1, 2, 4, or 8 bytes, 16 bytes for Replication ID
(GUID)

Date/Time Date and time data 8 bytes

Currency Monetary data 8 bytes

AutoNumber Automatic number increments 4 bytes, 16 bytes for Replication ID (GUID)

Yes/No Logical values: Yes/No, True/False 1 bit (0 or –1)

OLE Object Pictures, graphs, sound, video Up to 1GB (disk space limitation)

Hyperlink Link to an Internet resource 0–64,000 characters

Attachment A special field (new in Access 2007) Varies by attachment
that enables you to attach external
files to an Access database

Lookup Wizard Displays data from another table Generally 4 bytes

Figure 2-17 shows the Data Type drop-down list used to select the data type for the field you just
created.

46

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 46

FIGURE 2-17

The Data Type drop-down list

Here are the basic rules to consider when choosing the data type for new fields in your tables:

n The data type should reflect the data stored in the field. For instance, you should
select one of the numeric data types to store numbers like quantities and prices. Do not
store data like phone numbers or Social Security numbers in numeric fields, however.
Your application will not be performing numeric operations like addition or multiplica-
tion on phone numbers, and this data should not be stored in numeric fields. Instead, use
text fields for common data such as Social Security numbers and phone numbers.

Also, numeric fields never store leading zeros. Putting a zip code such as 02173 into a
numeric field means only the last four digits (2173) are actually stored.

n Consider the storage requirements of the data type you’ve selected. Although you
can use a long integer data type in place of a simple integer or byte value, the storage
requirements of a long integer (4 bytes) is twice that of a simple integer. This means that
twice as much memory is required to use and manipulate the number and twice as much
disk space is required to store its value. Whenever possible, use byte or integer data types
for simple numeric data.

n Will you want to sort or index the field? Because of their binary nature, memo and
OLE object fields cannot be sorted or indexed. Use memo fields sparingly. The overhead
required to store and work with memo fields is considerable.

47

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 47

n Consider the impact of data type on sorting requirements. Numeric data sort differ-
ently than text data. Using the numeric data type, a sequence of numbers will sort as
expected: 1, 2, 3, 4, 5, 10, 100. The same sequence stored as text data will sort like this:
1, 10, 100, 2, 3, 4, 5. If it’s important to sort text data in a numeric sequence, you’ll have
to first apply a conversion function to the data before sorting.

If it’s important to have text data representing numbers to sort in the proper order, you
may want to prefix the numerals with zeros (001, 002, and so on). Then the text values

will sort in the expected order: 001, 002, 003, 004, 005, 010, 100.

n Is the data text or date data? When working with dates, you’re almost always better off
storing the data in a Date/Time field than as a Text field. Text values sort differently
than date data (dates are stored internally as numeric values), which can upset reports
and other output that rely on chronological order.

n Keep in mind the reports that will be needed. You won’t be able to sort or group
memo or OLE data on a report. If it’s important to prepare a report based on memo or
OLE data, add a Tag field like a date or sequence number, which can be used to provide
a sorting key, to the table.

Text data type
Any type of data that is simply characters (letters, numbers, punctuation). Names, addresses, and
descriptions are all text data, as are numeric data that are not used in a calculation (such as tele-
phone numbers, Social Security numbers, and zip codes).

Although you specify the size of each Text field in the property area, you can enter no more than
255 characters of data in any Text field. Access uses variable length fields to store text data. If you
designate a field to be 25 characters wide and you use only 5 characters for each record, then only
enough room to store 5 characters is used in your database.

You will find that the .accdb database file may quickly grow quite large, but text fields are not
the usual cause. However, it is good practice to limit text field widths to the maximum you believe
they will be used for. Names are tricky because some cultures have long names. However, it is a
safe bet that a postal code might be less than 12 characters wide while a U.S. state abbreviation is
always 2 characters wide. By limiting the size of the text width, you also limit the number of char-
acters that users can enter when the field is used in a form.

Memo data type
The Memo data type holds a variable amount of data from 0 to 65,536 characters for each record.
Therefore, if one record uses 100 characters, another requires only 10, and yet another needs
3,000, you use only as much space as each record requires.

Notice that you did not specify a field size for the Memo data type. Access allocates as much space
is necessary for the memo data.

NOTENOTE

48

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 48

Number data type
The Number data type enables you to enter numeric data; that is, numbers that will be used in
mathematical calculations. (If you have data that will be used in monetary calculations, you should
use the Currency data type, which performs calculations without rounding errors.)

The exact type of numeric data stored in a number field is determined by the Field Size prop-
erty. Table 2-3 lists the various numeric data types, their maximum and minimum ranges, the deci-
mal points supported by each numeric data type, and the storage (bytes) required by each numeric
data type.

TABLE 2-3

Numeric Field Settings

Field Size Setting Range Decimal Places Storage Size

Byte 0 to 255 None 1 byte

Integer –32,768 to 32,767 None 2 bytes

Long Integer –2,147,483,648 to 2,147,483,647 None 4 bytes

Double –1.797 × 10308 to 1.797 × 10308 15 8 bytes

Single –3.4 × 1038 to 3.4 × 1038 7 4 bytes

Replication ID N/A N/A 16 bytes

Decimal 1–28 precision 15 8 bytes

Many errors are caused by choosing the wrong numeric type for number fields. For instance,
notice that the maximum value for the Integer data type is 32,767. We once saw a database that
ran perfectly for several years and then started crashing with overflow errors. It turned out that the
overflow was caused by a particular field being set to the Integer data type, and when the company
occasionally processed very large orders, the 32,767 maximum was exceeded.

It is best to design your tables very conservatively and allow for larger values than you ever expect
to see in your database. This is not to say that it is a good idea to use the Double data type for all
numeric fields. The Double data type is very large (8 bytes) and is quite slow when used in calcu-
lations for another numeric operation. Instead, the Single data type is probably best for most
floating-point calculations, and the Long Integer is best for most data where decimal points are
irrelevant.

Date/Time data type
The Date/Time data type is a specialized number field for holding dates or times (or dates and
times). When dates are stored in a Date/Time field, it is easy to calculate days between dates and
other calendar operations. Date data stored in Date/Time fields sort and filter properly as well.

49

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 49

Currency
The Currency data type is another specialized number field. Currency numbers are not
rounded during calculations and preserve 15 digits of precision to the left of the decimal point and
4 digits to the right. Because the Currency data type uses a fixed-decimal-point position, they are
faster in numeric calculations than doubles.

AutoNumber
The AutoNumber field is another specialized Number data type. When an AutoNumber field is
added to a table, Access automatically assigns an integer value to the field (beginning at 1) and
increments the value each time a record is added to the table. Alternatively (determined by the New
Values property), the value of the AutoNumber field is a random integer that is automatically
inserted into new records.

Only one AutoNumber field can appear in a table. Once assigned to a record, the value of an
AutoNumber field cannot be changed programmatically or by the user. AutoNumber fields are
equivalent to the Long Integer data type and occupy 4 bytes, but display only positive values.
The range of possible values for AutoNumber fields, then, range from 1 to 4,294,967,296 — more
than adequate to use as the primary key for most tables.

Yes/No
Yes/No fields accept only one of two possible values. Internally stored as a 1 or 0 bit, the Yes/No
field is used to indicate yes/no, on/off, or true/false. A Yes/No field occupies a single bit of storage.

OLE Object
The OLE Object field stores OLE data, highly specialized binary objects such as Microsoft Word
documents, Excel worksheets, sound or video clips, and images. The OLE object is created by an
OLE server application and can be linked to the parent application or embedded in the Access
table. OLE objects can only be displayed in bound object frames in Access forms and reports. OLE
objects can be as large as 1GB or more in size. OLE fields cannot be indexed.

Attachment
The Attachment data type is new for Access 2007. In fact, the Attachment data type is one of
the reasons Microsoft changed the format of the Access data file. The older MDB format is unable
to accommodate attachments.

The Attachment data type is relatively complex, compared to the other type of Access fields. Please
see the section titled “Understanding the Attachment Data Type” later in this chapter for details on
this interesting type of field.

Hyperlink data type
The Hyperlink data type field holds combinations of text and numbers stored as text and used
as a hyperlink address. It can have up to three parts:

50

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 50

n The visual text that appears in a field (usually underlined).

n The Internet address — the path to a file (UNC, or Universal Naming Convention, path)
or page (URL or Uniform Resource Locator).

n Any sub-address within the file or page. An example of a sub-address is the name of an
Access 2000 form or report. Each part is separated by the pound symbol (#).

Lookup Wizard
The Lookup Wizard data type inserts a field that enables the end user to choose a value from
another table or from the results of an SQL statement. The values may also be presented as a
combo box or list box. At design time, the Lookup Wizard leads the developer through the
process of defining the lookup characteristics when this data is assigned to a field.

Dragging a field created by the Lookup Wizard from the field list as you design a form, a combo
box or list box is automatically created on the form. The list box or combo box also appears on a
query datasheet that contains the field.

Entering a field description
The field description is completely optional; you use it only to help you remember a field’s uses or
to let another developer understand the field’s purpose. Often you don’t use the description col-
umn at all, or you use it only for fields whose purpose is not obvious. If you enter a field descrip-
tion, it appears in the status bar whenever you use that field in Access — in the datasheet or in a
form. The field description can help clarify a field whose purpose is ambiguous or give the user a
fuller explanation of the values valid for the field during data entry.

Creating tblContacts
Working with the different data types (plus the Lookup Wizard), you should be ready to create the
final working copy of tblContacts. When creating the table, you must add a field that is used
to link this table to two other tables (tblSales and tblContactLog) in the Access Auto
Auctions application.

AutoNumber fields and Access
Access gives special considerations to AutoNumber fields and assigning values to AutoNumber
fields. You cannot change a previously defined field from another type to AutoNumber. If you try
to change an existing field in a table to the AutoNumber field type, Access displays a Control
can’t be edited: It’s bound to AutoNumber field “ContactID” error in the status
bar (the exact error you see will differ, of course, depending on which field is designated as the
AutoNumber).

51

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 51

Completing tblContacts
With tblContacts in Design view, you’re now ready to create or modify all the fields of
tblContacts. Table 2-1, earlier in this chapter, shows the completed field definitions for
tblContacts. If you’re following the examples, you should be able to complete the table design.
Enter the field names and data types exactly as shown. You may also need to rearrange some of the
fields. The next few pages explain how to change existing fields (which includes rearranging the
field order, changing a field name, and deleting a field).

Here are the steps for adding fields to a table structure:

1. Place the cursor in the Field Name column in the row where you want the field to
appear.

2. Enter the field name and press Enter or Tab.

3. In the Data Type column, click the down arrow and select the data type.

4. Place the pointer in the Description column and type a description (optional).

Repeat each of these steps to create each of the data entry fields for tblContacts. You can press
the down-arrow (↓) key to move between rows, or simply use the mouse and click on any row.
Remember that F6 moves you from the top to the bottom of the Table Design window and back.

Changing a Table Design
As you create your table, you should be following a well-planned design. Yet changes are some-
times necessary, even with a plan. You may find that you want to add another field, remove a field,
change a field name or data type, or simply rearrange the order of the field names. You can make
these changes to your table at any time. After you enter data into your table, however, things get a
bit more complicated. You have to make sure that any changes made don’t affect the data entered
previously.

In previous versions of Access, changing a field name usually meant that any queries,
forms, reports, macros, or modules that referenced that field name would no longer

work and had to be manually found and changed. Since Access 2002, the AutoCorrect feature auto-
matically seeks out most occurrences of the name and changes it for you.

Inserting a new field
To insert a new field, in the Table Design window, place your cursor on an existing field and
choose Insert ➪ Rows or click the Insert Rows button in the toolbar. A new row is added to the
table, and existing fields are pushed down. You can then enter a new field definition. Inserting a
field does not disturb other fields or existing data. If you have queries, forms, or reports that use
the table, you may need to add the field to those objects as well.

NEW FEATURENEW FEATURE

52

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 52

Deleting a field
There are three ways to delete a field. While the table is in Design View:

n Select the field by clicking the row selector and pressing the Delete key.

n Right-click on the selected field and choose Delete Rows from the shortcut menu.

n Select the field and click the Delete Rows button from the Tools group on the ribbon’s
Design tab.

When you delete a field containing data, you’ll see a warning that you will lose data in the table for
the selected field. If the table is empty, you won’t care. If your table contains data, however, make
sure that you want to eliminate the data for that field (column). You will also have to delete the
same field from queries, forms, reports, macros, and VBA code that use the field name.

When you delete a field, you can immediately select the Undo button and return the
field to the table. But you must do this step before you save the changed table’s defini-

tion or make any other changes to the table’s design.

If you attempt to delete a field that is part of a relationship (primary or secondary key
field), Access informs you that you cannot delete it until you delete the reference in the

Relationships window.

If you delete a field, you must also delete all references to that field throughout Access. Because
you can use a field name in forms, queries, reports, and even table-data validation, you must exam-
ine your system carefully to find any instances where you may have used the specific field name.

Changing a field location
One of the easiest changes to make is to move a field’s location. The order of your fields, as entered
in the table’s Design View, determines the initial display sequence in the datasheet that displays
your data. If you decide that your fields should be rearranged, click on a field selector and use the
mouse to drag the field to its new location.

Changing a field name
You change a field’s name by selecting an existing field name in the Table Design screen and enter-
ing a new name; Access updates the table design automatically. As long as you are creating a new
table, this process is easy.

If you used the field name in any forms, queries, or reports, however, you must also
change the field’s name in each object that references the field. (Remember that you

can also use a field name in validation rules and calculated fields in queries, as well as in macros and
module expressions — all of which must be changed.) Even with AutoCorrect turned on, Access only
catches the most obvious references to the changed field names, and fails to update references in val-
idation rules, expressions, ControlSource properties, and many other places. As you can see, it’s a
good idea not to change a field name because it creates more work.

CAUTION CAUTION

TIPTIP

TIPTIP

53

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 53

Changing a field size
Making a field size larger is simple in a table design. However, only text and number fields can be
increased in size. You simply increase the Field Size property for text fields or specify a different
field size for number fields. You must pay attention to the decimal-point property in number fields
to make sure that you don’t select a new size that supports fewer decimal places than you currently
have.

When you want to make a field size smaller, make sure that none of the data in the table is larger
than the new field width. (If it is, the existing data will be truncated.) Text data types should be
made as small as practical to limit the amount of data entered by the user.

Remember that each text field uses only the number of characters actually entered in
the field. You should still try to make your fields only as large as the largest value so that

Access can stop someone from entering a value that may not fit on a form or report.

Data conversion issues
If, in spite of your best efforts, it becomes necessary to change the data type of a field containing
data, you may suffer data loss as the data-type conversion occurs. You should be aware of the
effects of a data-type conversion on existing data:

n Any data type to AutoNumber: Can’t be done. The AutoNumber field type must be cre-
ated fresh in a new field.

n Text to Number, Currency, Date/Time, or Yes/No: In most cases, the conversion will be
made without damaging the data. Inappropriate values are automatically deleted. For
instance, a text field containing “January 28, 2007” will be faithfully converted to a
Date/Time field. If, however, you change a field containing “January 28, 2007” to a
Yes/No data type, its value will be deleted.

n Memo to Text: A straightforward conversion with no loss or corruption of data. Any text
longer than the field size specified for the Text field is truncated and lost.

n Number to Text: No loss of information. The number value is converted to text using the
General Number format.

n Number to Currency: Because the Currency data type uses a fixed decimal point, some
precision may be lost as the number is truncated.

n Date/Time to Text: No loss of information. Date and time data are converted to text with
the General Date format.

n Currency to Text: No loss of information. The currency value is converted to text with-
out the currency symbol.

n Currency to Number: Simple, straightforward conversion. Some data may be lost as
the currency value is converted to fit the new number field. For instance, when convert-
ing Currency to Long Integer, the decimal portion is truncated (cut off).

TIPTIP

54

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 54

n AutoNumber to Text: Conversion occurs without loss of data, except in a case where the
width of the text field is inadequate to hold the entire AutoNumber value. In this case,
the number is truncated.

n AutoNumber to Number: Simple, straightforward conversion. Some data may be lost as
the AutoNumber value is converted to fit the new number field. For instance, an
AutoNumber larger than 32,767 will be truncated if it is converted to an Integer field.

n Yes/No to Text: Simple conversion of Yes/No value to text. No loss of information.

n OLE Data Type: Cannot be converted to any other type of data.

Assigning field properties
The field properties built into Access tables are powerful allies that can help you manage the data
in your tables. In most cases, the field property is enforced by the database engine, which means
the property is consistently applied throughout the application. For instance, if you’ve set the
Default Value property in the table design, the default value is available in the table’s Datasheet
view, on forms, and in queries.

Each field data type has its own set of properties. For instance, numeric fields have a Decimal
Places property, and Text fields have a Text Align property. Although many data types share a num-
ber of properties (such as Name) in common, there are enough different field properties to make it
easy to become confused or to improperly use the properties. The following sections discuss some
of the more important and frequently used field properties.

The following sections include many references to properties, and property settings in
the Access table designer. The formal name for a property (such as DefaultValue)

never contains a space, while the property’s expression in the table designer usually contains a space
for readabilty (Default Value). These relative minor differences become important when referencing
properties in expressions, VBA code, and macros. When making a formal reference to a property in
code or a macro, always use the “spaceless” version of the property’s name, not the property refer-
ence you see in the Access user interface.

Common properties
Here is a list of all the general properties (note that they may not all be displayed, depending on
which data type you chose):

n Field Size: When applied to Text fields, limits size of the field to the specified number of
characters (1–255). The default is 50.

n New Values: Applies to AutoNumber fields. Allows specification of increment or random
type.

n Format: Changes the way data appears after you enter it (uppercase, dates, and so on).
There are many different types of formats that may be applied to Access data. Many of
these differences are explained later in this chapter.

NOTENOTE

55

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 55

n Input Mask: Used for data entry into a predefined format (phone numbers, zip codes,
Social Security numbers, dates, customer IDs). Applicable to both numeric and text data
types.

n Decimal Places: Specifies number of decimal places for Numeric and Currency data
types.

n Caption: Optional label for form and report fields. Access uses the Caption property
instead of the field name in these situations.

n Default Value: The value automatically provided for new data entry into the field. This
value can be any value appropriate for the field’s data type. A default is no more than an
initial value; you can change it during data entry. To specify a default value, simply enter
the desired value into the Default Value property setting. A default value can be an
expression, as well as a number or a text string.

Because the Default Value for Number and Currency data types is set to 0 (zero), by
default, these fields are set automatically to 0 when you add a new record. In many situ-

ations, such as medical test results and many financial applications, zero is not an appropriate default
value for numeric fields. Be sure to verify that zero is an appropriate default value in your Access
applications.

n Validation Rule: Ensures that data entered into the field conforms to some business rule,
such as “greater than zero,” “date must occur after January 1, 2000,” and so on.

n Validation Text: Displays a message when data fails validation.

n Required: Specifies whether you must enter a value into a field.

n Allow Zero Length: Determines whether you may enter an empty string (“”) into a text
field type to distinguish it from a null value.

n Indexed: Speeds up data access and (if desired) limits data to unique values. Indexing is
explained in greater detail later in this chapter.

n Unicode Compression: Used for multilanguage applications. Requires about twice the
data storage but enables Office documents including Access reports to be displayed cor-
rectly no matter what language or symbols are used. Generally speaking, Unicode is of no
value unless the application is likely to be used in Asian environments.

n IME Mode: Also known as the Kanji Conversion Mode property, this mode is used to
show whether the Kanji mode is maintained when the control is lost. The setting has no
relevance in English or European-language applications.

n IME Sentence Mode: Used to determine the Sequence mode of fields of a table or con-
trols of a form that switch when the focus moves in or out of the field. The setting has no
relevance in English or European-language applications.

n Smart Tags: Used to assign a specific action to obtain data in this field. For example, the
Financial Symbol Smart Tag obtains recent stock quotes on MSN Money Central.

NOTENOTE

56

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 56

IME Mode and IME Sequence Mode are available only if international support for
Simplified Chinese, Traditional Chinese, or Japanese is enabled through Microsoft Office

Language Settings. IME stands for Input Method Editor.

Format
The Format property specifies how the data contained in table fields appears whenever the data is
displayed or printed. When set at the table level, the format is in effect throughout the application.
There are different format specifiers for each data type.

Access provides built-in format specifiers for most field data types. The exact format used to dis-
play field values is influenced by the Regional Settings in the Windows Control Panel.

The Format property affects only the way a value is displayed and not the value itself or how the
value is stored in the database.

If you elect to build a custom format, construct a string in the field’s Format property box. There
are a number of different symbols you use for each data type. Access provides global format specifi-
cations to use in any custom format specifier:

n (space): Display spaces as characters.

n “SomeText”: Display the text between the quotes as literal text.

n ! (exclamation mark): Left-aligns the display.

n * (asterisk): Fills empty space with the next character.

n \ (backslash): Displays the next character as literal text. Use the backslash to display
characters that otherwise have special meaning to Access.

n [color]: Displays the output in the color (black, blue, green, cyan, red, magenta, yellow,
white) indicated between the brackets.

The Format property takes precedence when both a format specifier and input mask have been
defined.

Number and Currency field formats
There is a wide variety of valid formats for Number and Currency fields. You can use one of the
built-in formats or construct a custom format of your own:

n General Number: The number is displayed in the format in which it was entered (this is
the default format for numeric data fields).

n Currency: Add a thousands separator (usually a comma), use a decimal point with two
digits to the right of the decimal, and enclose negative numbers in parentheses.

n Fixed: Always display at least one digit with two digits to the right of the decimal point.

n Standard: Use the thousands separator with two digits to the right of the decimal point.

n Percent: The number value is multiplied by 100 and a percent sign is added to the right.
Percent values are displayed with two decimal places to the right of the decimal point.

NOTENOTE

57

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 57

n Scientific: Scientific notation is used to display the number.

n Euro: Prepends the Euro currency symbol to the number and uses spaces instead of com-
mas as the thousands delimiter.

The built-in numeric formats are summarized in Table 2-4.

TABLE 2-4

Numeric Format Examples

Format Type Number as Entered Number as Displayed Format Defined

General 987654.321 987654.3 ######.#

Currency 987654.321 $987,654.32 $###,##0.00

Euro 987654.321 €987,654.32 €###,##0.00

Fixed 987654.321 987654.32 ######.##

Standard 987654.321 987,654.32 ###,###.##

Percent .987 98.7% ###.##%

Scientific 987654.321 9.88E+05 ###E+00

All the formats above are the default formats based on setting the Decimal places property to
AUTO.

Custom numeric formats
Custom formats are created by combining a number of symbols to form a format specifier. The
symbols used with Number and Currency fields are listed below:

n . (period): Specifies where the decimal point should appear.

n , (comma): The thousands separator.

n 0 (zero): A placeholder for zero or a digit.

n # (pound sign): A placeholder for nothing or a digit.

n $ (dollar sign): Display the dollar sign character.

n % (percent sign): Multiply the value by 100 and add a percent sign.

n E– or e–: Use scientific notation to display the number. Use a minus sign to indicate a
negative exponent and no sign for positive exponents.

n E+ or e+: Same as previous, but use a plus sign to indicate positive exponents.

You create custom formats by composing a string made up of one to four sections separated by
semicolons. Each section has a different meaning to Access:

n First section: The format specifier for positive values.

58

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 58

n Second section: The format specifier for negative values.

n Third section: The format specifier for zero (0) values.

n Fourth section: The format specifier for null values.

Each section is a combination of a numeric formatting string and an optional color specification.
Here’s an example of a custom format:

0,000.00[Green];(0,000.00)[Red];”Zero”;” — ”

This format specifies showing the number with zeros in all positions (even if the number is less
than 1,000), using the comma thousands separator, enclosing negative numbers in parentheses,
using three pound signs to indicate a zero value, and using three dashes for null values.

Date/Time field formats
Access includes a wide variety of built-in and custom formats applicable to Date/Time fields. You
are able to create a custom format to display date and time data in virtually any format imaginable.

Built-in Date/Time formats
The following are the built-in Date/Time formats:

n General Date: If the value contains a date only, do not display a time value and vice
versa. Dates are displayed in the built-in Short Date format, while time data is displayed
in the Long Time format.

n Long Date: Sunday, May 13, 2007

n Medium Date: 13-May-07

n Short Date: 5/13/07

n Long Time: 9:21:17 AM

n Medium Time: 09:21 AM

n Short Time: 9:21:17

Date and time formats are influenced by the Regional Settings in the Windows Control Panel.

Custom Date/Time formats
Custom formats are created by constructing the specifier as a string containing the following
symbols:

n : (colon): Separates time elements (hours, minutes, seconds).

n / (forward slash): Separates date elements (days, months, years).

n c (lowercase c): Instructs Access to use the built-in General Date format.

n d (lowercase d): Displays the day of the month as one or two digits, as necessary.

n dd: Displays the day of the month using two digits (“9” displays as “09”).

59

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 59

n ddd: Displays the first three letters of the day of the week (Sun, Mon, Tue, Wed, Thu, Fri,
Sat).

n dddd: Uses the full name of the day of the week (Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday).

n ddddd: Uses the built-in Short Date format.

n dddddd: Uses the built-in Long Date format.

n w: Uses a number to indicate the day of the week.

n ww: Shows the week of the year (1 to 53).

n m: Displays the month of the year using one or two digits.

n mm: Displays the month of the year using two digits (with leading zero if necessary).

n mmm: Uses the first three characters of the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec).

n mmmm: Displays the full name of the month (for example, January).

n q: Displays the date as the quarter of the year.

n y: Displays the day of the year (1 through 366).

n yy: Uses the last two digits of the year (for example, 07).

n yyyy: Uses the full four-digit year (2007).

n h: Displays the hour using one or two digits.

n hh: Displays the hour using two digits.

n n: Displays the minutes using one or two digits.

n nn: Displays the minutes using two digits.

n s: Displays the seconds using one or two digits.

n ss: Displays the seconds using two digits.

n tttt: Uses the built-in Long Time format.

n AM/PM: Uses a 12-hour format with uppercase AM or PM.

n am/pm: Uses a 12-hour format with lowercase am or pm.

n A/P: Uses a 12-hour format with uppercase A or P.

n a/p: Uses a 12-hour format with lowercase a or p.

n AMPM: 12-hour format using the morning or after designator specified in the Regional
Settings in the Windows Control Panel.

You must enclose a comma or other separator or text in quotation marks as part of the format
specifier.

60

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 60

Text and Memo field formats
When applied to text fields, format specifiers clarify the data contained within the fields.
tblContacts uses several formats. The State text field has a > in the Format property to display
the data entry in uppercase. The OrigCustDate field has an mmm dd yyyy format to display the
date of birth as the short month name, a space, the day and a four-digit year (May 13 2007). The
Active field has a format of Yes/No with lookup Display Control property set to Text Box.

Text and Memo fields are displayed as plain text by default. If a particular format is to be applied to
Text or Memo field data, use the following symbols to construct the format specifier:

n @ (at sign): A character or space is required.

n & (ampersand): A character is optional (not required).

n < (less than symbol): Force all characters to their lowercase equivalents.

n > (greater than symbol): Force all characters to their uppercase equivalents.

The custom format specifier may contain as many as three different sections, separated by semi-
colons:

n First section: Specifier for fields containing text

n Second section: Format for fields containing zero-length strings

n Third section: Format for fields containing Null values

If only two sections are given, the second section applies to both zero-length strings and null val-
ues. For example, the following specifier displays “None” when no string data is contained in the
field, “Unknown” when a null value exists in the field. Otherwise, the simple text contained in the
field is displayed:

@;”None”;”Unknown”

Several examples of custom text formats are presented in Table 2-5.

TABLE 2-5

Format Examples

Format Specified Data as Entered Formatted Data as Displayed

> Adam Smith ADAM SMITH

#,##0;(#,##0);”-0-”;”None” 15 -15 0 No Data 15 (15) -0- None

Currency 12345.67 $12,345.67

“Acct No.” 0000 3271 Acct No. 3271

mmm yy 9/17/08 Sep 08

Long Date 9/17/08 Thursday, September 17, 2008

61

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 61

Yes/No field formats
A Yes/No field displays the words “Yes,” “No,” “True,” “False,” “On,” or “Off,” depending on the
value stored in the field and the setting of the Format property for the field. Access predefines
these rather obvious format specifications for the Yes/No field type:

n Yes/No: Displays “Yes” or “No”

n True/False: Displays “True” or “False”

n On/Off: Displays “On” or “Off”

Yes, True, and On all indicate the same “positive” value, while No, False, and Off indicate the
opposite (“negative”) value.

Access stores Yes/No data in a manner different from what you might expect. The Yes data is stored
as –1, whereas No data is stored as 0. You’d expect it to be stored as 0 for No and 1 for Yes, but
this isn’t the case. Without a format setting, you must enter –1 or 0, and it will be stored and dis-
played that way.

You are also able to specify a custom format for Yes/No fields. For instance, assume you’ve got a
table with a field that indicates whether the employee has attended an orientation meeting.
Although a Yes or No answer is appropriate, maybe you want to get a little fancy with the field’s
display. By default, a check box is used to indicate the value of the Yes/No field (checked means
Yes). To customize the appearance of the Yes/No field, set its Format property according to the fol-
lowing pattern:

;”Text for Yes values”;”Text for No values”

Notice the placeholder semicolon at the front of this string. Also notice that each text element must
be surrounded by quotes. In the case of the employee table, you might use the following Format
property specifier:

;”Attendance OK”;”Must attend orientation”

You must also set the Yes/No field’s Display Control property to Text Box in order to change the
default check box display to text.

There are two problems when changing the table-level format property of a logical,
Yes/No field. First, if you enter a custom format like in the preceding example, you need

to also change the default Lookup Display Control property from check box to text box to see the
new format. Second, after the format is assigned and the text box is the display method, the user will
only be able to enter a 0 for –1. The format property affects only how the value is displayed, not how
it is entered into the table.

CAUTION CAUTION

62

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 62

Hyperlink data-type format
Access also displays and stores Hyperlink data in a manner different from what you would expect.
The format of this type is composed of up to three parts:

n Display Text: The text that is displayed as a hyperlink in the field or control

n Address: The path to a file (UNC) or page (URL) on the Internet

n Sub-Address: A specific location within a file or page

The parts are separated by pound signs. The Display Text is visible in the field or control, while
the address and sub-address are hidden. For example, Microsoft Net Home Page#http://
www.msn.com.

Input Mask
The Input Mask property makes it easier for users to enter the data in the correct format. An input
mask limits the way the user inputs data into the table or a form. For instance, you can confine the
user to only entering digits into phone number, Social Security number, and employee ID fields.
An input mask for a Social Security number might look like “000-00-0000.” This mask requires
input into every space, restricts entry to digits only, and does not permit characters or spaces.

An input mask specified as part of the field’s properties is used anywhere the field appears (query,
form, report).

The Input Mask property value is a string containing as many as three sections, each section sepa-
rated by a semicolon.

n First section: Contains the mask itself, composed of the symbols shown below.

n Second section: Tells Access whether to store the literal characters included in the mask
along with the rest of the data. For instance, the mask might include dashes to separate
the parts of the Social Security number while a phone number may include parentheses
and dashes. Using a 0 (zero) tells Access to store the literal characters as part of the data;
a 1 tells Access to store only the data itself.

n Third section: Defines the “placeholder” character that tells the user how many charac-
ters are expected in the input area. Many input masks use pound signs (#) or asterisks (*)
as placeholders.

The following characters are used to compose the input mask string:

n 0: A digit is required, and plus (+) and (–) minus signs are not permitted.

n 9: A digit is optional, and plus (+) and (–) minus signs are not permitted.

n #: Optional digit or space. Spaces are removed when the data is saved in the table. Plus
and minus signs are allowed.

n L: A letter from A to Z is required.

n ?: A letter from A to Z is optional.

63

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 63

n A: A character or digit is required.

n a: A character or digit is optional.

n &: Permits any character or space (required).

n C: Permits any character or space (optional).

n . (period): Decimal placeholder.

n , (comma): Thousands separator.

n : (colon): Date and time separator.

n ; (semicolon): Separator character.

n - (dash): Separator character.

n / (forward slash): Separator character.

n < (less-than sign): Convert all characters to lowercase.

n > (greater-than sign): Convert all characters to uppercase.

n ! (exclamation mark): Display the input mask from right to left. Characters fill the mask
from right to left.

n \ (back slash): Display the next character as a literal.

The same specifiers are used on a field’s property sheet in a query or form.

Input masks are ignored when importing data or adding data to a table with an action query.

An input mask is overridden by the Format property assigned to a field. In this case, the input
mask is in effect only as data is entered and reformatted according to the format specifier when
entry is complete.

The Input Mask Wizard
Although you can manually enter an input mask, you can easily create an input mask for Text or
Date/Time type fields with the Input Mask Wizard. When you click the Input Mask property, the
builder button (three periods) appears. Click the Build button to start the Wizard. Figure 2-18
shows the first screen of the Input Mask Wizard.

64

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 64

FIGURE 2-18

The Input Mask Wizard for creating input masks for Text and Date field types

The Input Mask Wizard shows not only the name of each predefined input mask, but also an
example for each name. You can choose from the list of predefined masks. Click in the Try It text
box and enter a test value to see how data entry will look. After you choose an input mask, the
next wizard screen enables you to refine the mask and specify the placeholder symbol (perhaps a
pound sign [#] or “at” sign [@]). Another wizard screen enables you to decide whether to store
special characters (such as the dashes in a Social Security number) with the data. When you com-
plete the wizard, Access adds the input mask characters in the field’s property sheet.

You can create your own input masks for Text and Date/Time fields by simply clicking
the Edit List button and entering a descriptive name, input mask, a placeholder charac-

ter, and a sample data content. Once created, the new mask will be available the next time you use
the Input Mask Wizard.

Enter as many custom masks as you need. You can also determine the international settings so that
you can work with multiple country masks.

Caption
The Caption property determines what appears in the default label attached to a control created by
dragging the field from the field list onto a form or report. The caption also appears as the column
heading in Datasheet views (table or query) that include the field.

Be careful using the Caption property. Because the caption text appears as the column heading in
Datasheet view, you may be misled by a column heading in a query’s Datasheet view. When the
field appears in a query, you do not have immediate access to the field’s properties, so you must be
aware that the column heading is actually determined by the Caption property. To be even more
confusing, the caption assigned in the table’s Design view and the caption assigned in a field’s prop-
erty sheet in the Query Design view are different properties and can contain different text.

TIPTIP

65

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 65

Captions can be as long as 2,048 characters, more than adequate for all but the most verbose
descriptions.

ValidationRule
The Validation Rule property establishes requirements for input into the field. Enforced by the
Jet database engine, the validation rule ensures that data entered into the table conforms to the
requirements of the application.

The Validation Rule property does not apply to check boxes, option buttons, or toggle buttons
within an option group on a form. The option group itself has a Validation Rule property that
applies to all of the controls within the group.

The value of the Validation Rule property is a string containing an expression that is used to test
the user’s input. The expression used as a field’s Validation Rule property cannot contain user-
defined functions or any of the Access domain or aggregate functions (DCount, DSum, and so on).
A field’s validation rule cannot reference forms, queries, or other tables in the application. (These
restrictions do not apply to validation rules applied to controls on a form, however.) Field valida-
tion rules cannot reference other fields in the table, although a validation rule applied to a record
in a table can reference fields in the same table (a record-level validation rule is set in the table’s
property sheet, rather than on an individual field).

In the “Understanding tblContacts Field Properties” section, later in this chapter, you’ll see that a
validation rule has been applied to the CreditLimit field. This validation rule (< 250000) causes
an error message to appear (as shown in Figure 2-19) whenever a value greater than 250,000 is
entered into the credit limit text box.

FIGURE 2-19

A data-validation warning box. This appears when the user enters a value in the field that does not match
the rule specified in the design of the table.

Validation rules are often used to ensure that certain dates fall after other dates (for instance, an
employee’s retirement date must fall after his starting date), to ensure nonnegative numbers are
entered for values such as inventory quantities, and that entries are restricted to different ranges of
numbers or text.

66

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 66

Dates are surrounded, or delimited, by pound signs (#) when used in Access expressions. If you
want to limit the LastSalesDate data entry to dates between January 1, 2007, and December 31,
2008, enter Between #1/1/07# and #12/31/08#.

If you want to limit the upper end to the current date, you can enter a different set of
dates, such as Between #1/1/00# and Date(). Date() is a built-in VBA function that

returns the current date, and is completely acceptable as part of a validation rule or other expression.

When a field containing a validation rule is dragged onto a form, the new control’s Validation Rule
property is not set to the field’s table-level validation rule value in the control’s property sheet.
Unless you enter a new validation rule value in the control’s property sheet, the value in the prop-
erty sheet is empty. Instead, the Access database engine enforces the field’s validation rule behind
the scenes, based on the value of the Validation Rule property for the field at the table level.

Field and control validation rules are enforced when the focus leaves the table field or form control.
Record-level validation rules are enforced when moving to another record. Validation rules applied
to both a table field and a form control bound to the field are enforced for both entities. The table-
level rule is applied as data is edited on the bound control and as focus leaves the control.

You cannot create table-level validation rules for linked “foreign” tables, such as FoxPro, Paradox,
or dBASE. Apply validation rules to controls bound to fields in linked foreign tables.

Validation Text
The Validation Text property contains a string that is displayed in a message box when the
user’s input does not satisfy the requirements of the Validation Rule property. The maximum
length of the Validation Text property value is 255 characters.

When using the Validation Rule property, you should always specify a validation text value to
avoid triggering the generic message box Access displays when the validation rule is violated. Use
the Validation Text property to provide users with a helpful message that explains acceptable
values for the field.

Required
The Required property directs Access to require input into the field. When set to Yes, input is
required into the field within a table or into a control on a form bound to the field. The value of a
required field cannot be Null.

The Required property is invalid for AutoNumber fields. By default, all AutoNumber fields are
assigned a value as new records are created.

The Access database engine enforces the Required property. An error message is generated if the
user tries to leave a text box control bound to a field with its Required property set to Yes.

The Required property can be used in conjunction with theAllow Zero Length property to
determine when the value of a field is unknown or doesn’t exist.

TIPTIP

67

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 67

AllowZeroLength
The Allow Zero Length property specifies whether or not you want a zero-length string (“”) to
be a valid entry for a Text or Memo field. Allow Zero Length accepts the following values:

n Yes: A zero-length string is a valid entry.

n No: The table will not accept zero-length strings, and instead, inserts a Null value into
the field when no valid text data is supplied.

n Using Visual Basic: AllowZeroLength (with no spaces!) can be set from Visual Basic
for Applications (VBA). Use the Allow Zero Length property of the TableDef object
to determine its setting or change its value.

Appropriate combination of the Allow Zero Length and Required properties enables you to
differentiate between data that doesn’t exist (which you’ll probably want to represent as a zero-
length string) and data that is unknown (which you’ll want to store as a null value). VBA deter-
mines the difference between null and zero-length string values and takes appropriate action based
on this information. In some cases you’ll want to store the proper value in the Text or Memo field.

An example of data that doesn’t exist is the case of a customer who doesn’t have an e-mail address.
The e-mail address field should be set to an empty (zero-length) string indicating that no address
exists. Another customer who you are sure is an e-mail user but who hasn’t supplied an e-mail
address should have a null value in the e-mail address field, indicating that we don’t know whether
the person has an e-mail address.

An input mask can help your application’s users distinguish when a field contains a null value. For
instance, the input mask could be set to display “None” when the field contains a zero-length
string.

The Required property determines whether a null value is accepted by the field, while the
Allow Zero Length property permits zero-length strings in the field. Together, these independ-
ent properties provide the means to determine whether a value is unknown or absent for the field.

The interaction between Required and Allow Zero Length can be quite complicated. Table
2-6 summarizes how these two properties combine to force the user to input a value, or to insert
either a Null or zero-length string into a field.

TABLE 2-6

Required and Allow Zero Length Property Combinations

Allow Zero Length Required Data Entered by User Value Stored in Table

No No Null Null

No No Space Null

No No Zero-length string Disallowed

68

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 68

Allow Zero Length Required Data Entered by User Value Stored in Table

Yes No Null Null

Yes No Space Null

Yes No Zero-length string Zero-length string

No Yes Null Disallowed

No Yes Space Disallowed

No Yes Zero-length string Disallowed

Yes Yes Null Disallowed

Yes Yes Space Zero-length string

Yes Yes Zero-length string Zero-length string

Indexed
The Indexed property tells Access you want to use a field as an index in the table. Indexed fields
are internally organized to speed up queries, sorting, and grouping operations. If you intend to fre-
quently include a certain field in queries (for instance, the employee ID or Social Security number),
or if the field is frequently sorted or grouped on reports, you should set its Indexed property.

The valid settings for the Indexed property are as follows:

n No: The field is not indexed (default).

n Yes (Duplicates OK): The field is indexed and Access permits duplicate values in the
column. This is the appropriate setting for values such as names, where it is likely that
names like “Smith” will appear more than once in the table.

n Yes (No Duplicates): The field is indexed and no duplicates are permitted in the col-
umn. Use this setting for data that should be unique within the table, such as Social
Security numbers, employee IDs, and customer numbers.

Indexes are discussed in more detail later in this chapter.

In addition to the primary key, you are able to index as many fields as necessary to provide opti-
mum performance. Access accepts as many as 32 indexes per table. Keep in mind that each index
extracts a small performance hit as new records are added to the table. Access dynamically updates
the indexing information each time a new record is added. If a table includes an excessive number
of indexes, a noticeable delay may occur as each new record is added.

The Indexed property is set in the field’s property sheet or on the table’s property sheet. Using the
table index’s property sheet is discussed in the earlier section on assigning primary keys. You must
use the table’s property sheet to set multi-field indexes.

69

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 69

AutoIndex Option
The Access Options dialog box (File ➪ Access Options ➪ Object Designers) contains an entry
(AutoIndex on Import/Create) that directs Access to automatically index certain fields as they are
added to a table’s design. By default, fields that begin or end with ID, key, code, or num (for
instance, Employee ID or Task Code) are automatically indexed as the field is created. Every
time a new record is added to the table, the field’s data is incorporated into the field’s index. If there
are other fields you’d like Access to automatically index as they are created, add new values to the
Auto Index on Import/Create check box on the Object Designers tab in the Access Options
dialog box (see Figure 2-20).

FIGURE 2-20

The Table Design area in the Options dialog box contains options for setting the AutoIndex on
Import/Create specifier.

When to Index
Generally speaking, you should index fields that are frequently searched or sorted. Remember that
indexes slow down certain operations such as inserting records and some action queries.

Memo and OLE Object fields cannot be indexed. It would be impossible for Access to maintain an
index on these complete data types.

An index should not be used if a field contains very few unique values. For instance, you will not
see a significant benefit from indexing a field containing a person’s sex or state, or Yes/No fields.
Because there is a limited domain of values in such fields, Access easily sorts the data in these
fields.

Use a multiple-field index in situations where sorts are often simultaneously performed on multi-
ple fields (for instance, first and last names). Access will have a much easier time sorting such a
table.

70

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 70

Understanding tblContacts
Field Properties
After you enter the field names, data types, and field descriptions, you may want to go back and
further define each field. Every field has properties, and these are different for each data type. In
tblContacts, you must enter properties for several data types. Figure 2-21 shows the property
area for the field named CreditLimit; ten options are available in the General section of the
property area. Notice that there are two tabs on the property box — General and Lookup.
Lookup is discussed later in this chapter.

FIGURE 2-21

Property area for the Currency field named CreditLimit

Figure 2-21 shows 11 properties available for the CreditLimit Currency field. Other
types, such as Number and Date/Time, Text, or Yes/No, show more or fewer

options.

Pressing F6 switches between the field entry pane and the property pane. You can also move
between panes by clicking the desired pane. Some properties display a list of possible values, along
with a downward-pointing arrow, when you move the pointer into the field. When you click the
arrow, the values appear in a drop-down list.

Understanding the Lookup Property window
The Field Properties pane of the Table Design window has a second tab: the Lookup tab. After
clicking this tab, you may see a single property, the Display Control property. This property is used
for Text, Number, and Yes/No fields.

Figure 2-22 shows the Lookup Property window for the Active Yes/No field where Display
Control is the only property. This property has three choices: Check Box, Text Box, and Combo
Box. Choosing one of these determines which control type is used when a particular field is added
to a form. Generally, all controls are created as text boxes except Yes/No fields, which are created

TIPTIP

71

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 71

as check boxes by default. For Yes/No data types, however, you may want to use the Text Box set-
ting to display Yes/No, True/False, or another choice that you specifically put in the format prop-
erty box.

If you are working with text fields instead of a Yes/No field and know a certain text field can only
be one of a few combinations, select the combo box choice for the display control. When you
select the Combo Box control type as a default, the properties change so that you can define a
combo box.

You learn about combo boxes in Chapter 7 and again in Chapter 19.

FIGURE 2-22

The Lookup property Display Control for a Yes/No field.

The properties for a Lookup field are different for each data type. The Yes/No data type
fields differ from text fields or numeric fields. Because a Lookup field is really a combo

box (you learn more about these later), the standard properties for a combo box are displayed when
you select a Lookup field data type.

Setting the Primary Key
Every table should have a primary key — one or more fields with a unique value for each record.
(This principle is called entity integrity in the world of database management.) In tblContacts,
the ContactID field is the primary key. Each contact has a different ContactID value so that
you can identify one from the other. ContactID 17 refers to one and only one record in the
Contacts table. If you don’t specify a primary key (unique value field), Access can create one
for you.

NOTENOTE

CROSS-REFCROSS-REF

72

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 72

Understanding unique values
Without the ContactID field, you’d have to rely on another field or combination of fields for
uniqueness. You couldn’t use the LastName field because two customers could easily have the
same last name. In fact, you couldn’t even use the FirstName and LastName fields together
(multi-field key), for the same reason — two people could be named James Smith. You need to
come up with a field that makes every record unique. Looking at the table, you may think that you
could use a combination of the LastName, FirstName, and Company fields, but theoretically,
it’s possible that two people working at the same company have the same name.

The easiest way to solve this problem is to add an AutoNumber field for the express purpose of
using it as the table’s primary key. This is exactly the situation with the Contacts table. The pri-
mary key of this table is ContactID, an AutoNumber field.

If you don’t designate a field as a primary key, Access can add an AutoNumber field and designate
it as the table’s primary key. This field contains a unique number for each record in the table, and
Access maintains it automatically.

Generally speaking, you may want to create and maintain your own primary key, even if you
always use AutoNumber fields as primary keys:

n A primary key is always an index.

n An index maintains a presorted order of one or more fields that greatly speeds up queries,
searches, and sort requests.

n When you add new records to your table, Access checks for duplicate data and doesn’t
allow any duplicates for the primary key field.

n By default, Access displays a table’s data in the order of its primary key.

By designating a field such as ContactID as the unique primary key, you can see your data in a
meaningful order. In our example, because the ContactID field is an AutoNumber, its value is
assigned automatically by Access in the order that a record is put into the system.

Choosing a primary key
Although all of the tables in the Access Auto Auctions application use AutoNumber fields as their
primary keys, you should be aware of the reasons why AutoNumbers make such excellent pri-
mary keys. The characteristics of primary keys include the following:

n The primary key must uniquely identify each record.

n The primary key cannot be null.

n The primary key must exist when the record is created.

n The primary key definition must remain stable — you should never change a primary key
value once it is established.

n The primary key must be compact and contain as few attributes as possible.

73

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 73

The ideal primary key is, then, a single field that is immutable and guaranteed to be unique within
the table. For these reasons, the Access Auto Auctions database uses the AutoNumber field exclu-
sively as the primary key for all tables.

Creating the primary key
The primary key can be created in any of three ways. With a table open in Design View:

n Select the field to be used as the primary key and select the Primary Key button (the key
icon) in the Tools group in the ribbon’s Design tab.

n Right-click on the field to display the shortcut menu and select Primary Key.

n Save the table without creating a primary key, and allow Access to automatically create an
AutoNumber field.

After you designate the primary key, a key icon appears in the gray selector area to the left of the
field’s name to indicate that the primary key has been created.

Creating composite primary keys
Although rarely done these days, it is possible to designate a combination of fields to be used as a
table’s primary key. Such keys are often referred to as composite primary keys. As indicated in
Figure 2-23, select the fields that you want to include in the composite primary key, then click the
key icon in the Tools ribbon tab. It helps, of course, if the fields lie right next to each other in the
table’s design.

FIGURE 2-23

Creating a composite primary key

74

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 74

Composite primary keys are primarily used when the developer strongly feels that a primary key
should be comprised of data that occurs naturally in the database. There was a time when all
developers were taught that every table should have a natural primary key.

The reason that composite primary keys are seldom used these days is because developers have
come to realize that data is highly unpredictable. Even if your users promise that a combination of
certain fields will never be duplicated in the table, things have a way of turning out differently than
planned. Using a surrogate primary key, such as an AutoNumber, separates the table’s design from
the table’s data. The problem with natural primary keys (meaning, data that occurs naturally in the
table) is that, eventually, given a large enough data set, the values of fields chosen as the table’s pri-
mary key are likely to be duplicated.

Furthermore, when using composite keys, maintaining relationships between tables becomes more
complicated because the fields must be duplicated in all the tables containing related data. Using
composite keys simply adds to the complexity of the database without adding stability, integrity, or
other desirable features.

Indexing Access Tables
Data is rarely, if ever, entered into tables in a meaningful order. Usually records are added to tables
in totally random order (with the exception of time-ordered data). For instance, a busy order entry
system will gather information on a number of different customer orders in a single day. Most often
this data will be used to report orders for a single customer for billing purposes or for extracting
order quantities for inventory management. The records in the Orders table, however, are in
chronological order, which is not necessarily helpful when preparing reports detailing customer
orders. In that case, you’d rather have data entered in customer ID order.

To further illustrate this concept, consider the Rolodex card file many people use to store names,
addresses, and phone numbers. Assume for a moment that the cards in the file were fixed in place.
You could add new cards, but only to the end of the card file. This limitation would mean that
“Jones” might follow “Smith,” and in turn be followed by “Baker.” In other words, there is no par-
ticular order to the data stored in this file.

An unsorted Rolodex like this would be very difficult to use. You’d have to search each and every
card looking for a particular person, a painful and time-consuming process. Of course, this is not
how we use address card files. When we add a card to the file, we insert it into the Rolodex at the
location where it logically belongs. Most often, this means inserting the card in alphabetical order,
by last name, into the Rolodex.

Records are added to Access tables as described in the “fixed” card file example earlier. New
records are always added to the end of the table, rather than in the middle of the table where they
may logically belong. However, in an order entry system you’d probably want new records inserted
next to other records on the same customer. Unfortunately, this isn’t how Access tables work.
The natural order of a table is the order in which records were added to the table. This order is

75

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 75

sometimes referred to as entry order or physical order to emphasize that the records in the table
appear in the order in which they were added to the table.

Using tables in natural order is not necessarily a bad thing. Natural order makes perfect sense if the
data is rarely searched or if the table is very small. Also, there are situations where the data being
added to the table is highly ordered to start with. If the table is used to gather sequential data (like
readings from an electric meter) and the data will be used in the same sequential order, there is no
need to impose an index on the data.

But for situations where natural order does not suffice, Microsoft Access provides indexing to help
you find and sort records faster. You specify the logical order for the records in a table by creating
an index on that table. Access uses the index to maintain one or more internal sort orders for the
data in the table. For instance, you may choose to index the LastName field that will frequently
be included in queries and sorting routines.

Microsoft Access uses indexes in a table as you use an index in a book: To find data, Access looks
up the location of the data in the index. Most often, your tables will include one or more simple
indexes. A simple index is one that involves a single field in the table. Simple indexes may arrange
the table’s records in ascending or descending order. Simple indexes are created by setting the
field’s Indexed property to one of the following values:

n Yes (Duplicates OK)

n Yes (No Duplicates)

By default, Access fields are not indexed. However, it is hard to imagine a table that does not
require some kind of index. The next section discusses why indexing is important to use in Access
tables. Once you’ve read the following section, we’re sure you’ll agree that it’s difficult to imagine
an Access table that would not benefit from an index or two.

The importance of indexes
Microsoft’s data indicates that more than half of all tables in Access databases contain no indexes.
This number doesn’t include the tables that are improperly indexed — it includes only those tables
that have no indexes at all. It appears that a lot of people don’t appreciate the importance of index-
ing the tables in an Access database.

As a demonstration of the power and value of indexes, the sample database for this chapter
(Chapter02.accdb) contains two tables, each holding 46,796 records of identical data.
tblZipCodesIndexed is indexed on the City field while tblZipCodesNotIndexed con-
tains no indexes at all. The data in these tables is input in zip code order, not city order.

Chapter02.accdb also contains two queries and a form (frmIndexTest, shown in Figure
2-24) that provides a user interface to the two queries and underlying tables. The queries pull data
from the indexed and non-indexed Zip Code tables. qryFindCityIndexed searches for a city in
tblZipCodesIndexed while qryFindCityNotIndexed uses the unindexed

76

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 76

tblZipCodesNotIndexed table. The results are displayed in the subform in the middle of
frmIndexTest.

FIGURE 2-24

frmIndexTest provides a quick and easy way to verify the importance of indexes.

The query against the indexed table completes a search for “Boise” in less than 1 second while
qryFindCityNotIndexed requires almost 5 seconds to perform the same search. It goes with-
out saying that the actual time required to run a query depends very much on the computer’s hard-
ware, but performance enhancements of 500 percent and more are not at all uncommon when
adding an index to a field.

Because an index means that Access maintains an internal sort order on the data contained in the
indexed field, you can see why performance is enhanced by an index. You should index virtually
every field that is frequently involved in queries or is frequently sorted on forms or reports.

Without an index, Access must search each and every record in the database looking for matches.
This process is called a table scan and is analogous to searching through each and every card in
Rolodex file to find all of the people who work for a certain company. Until you reach the end of
the deck, you can’t be sure you’ve found every relevant card in the file. Similarly Access much
search every record in tblZipCodesNotIndexed to be sure it’s found all of the cities matching
“Boise.”

It is interesting to note that the result set returned by a search for “Iowa City,” which yields only 6
records takes just as long on the non-indexed table as the query for “Boise” (which returns 88
records) against the same table. This is because Access has to search the unindexed table from top
to bottom, regardless of how many records are actually found during the search. Composing the
view you see in Figure 2-24 takes almost no time at all and doesn’t contribute to the overall time
required to run the query.

77

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 77

As mentioned earlier in this chapter, a table’s primary key field is always indexed. This is because
the primary key is used to locate records in the table. Indexing the primary key makes it much
easier for Access to find the required tables in either the current table or a foreign table related to
the current table. Without an index, Access would have to search all of the records in the foreign
table to make sure it has located all of the related records.

The performance losses due to unindexed tables can have a devastating effect on the overall per-
formance of an Access application. Any time you hear a complaint about the performance of an
application, consider indexing as a possible solution.

Multiple-field indexes
Multiple-field indexes (also called composite indexes) are easy to create. In Design view, click on the
Indexes toolbar button or select the Indexes command on the View menu. The Indexes dialog box
(see Figure 2-25) opens, allowing you to specify the fields to include in the index.

FIGURE 2-25

Multi-field (composite) indexes can enhance performance.

Enter a name for the index (SalesIndex in Figure 2-26) and tab to the Field Name column. Use
the drop-down list to select the fields to include in the index. In this example InvoiceNumber
and OrderDate are combined as a single index. Access considers both these fields when creating
the sort order on this table, speeding queries and sorting operations that include both the
InvoiceNumber and OrderDate fields.

As many as ten fields can be included in a composite index. As long as the composite index is not
used as the table’s primary key, any of the fields in the composite index can be empty.

Figure 2-26 shows how to set the properties of a composite index. The cursor is placed in the row
in the Indexes dialog box containing the name of the index. Any row appearing immediately below
this row that does not contain an index name is part of the composite index. Notice the three prop-
erties appearing below the index information in the top half of the Indexes dialog box.

78

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 78

FIGURE 2-26

It’s easy to set the properties of a composite index.

The index properties are quite easy to understand:

n Primary: When set to Yes, Access uses this index as the table’s primary key. More than
one field can be designated as the primary key, but keep the rules governing primary keys
in mind, particularly those requiring each primary key value to be unique and that no field
in a composite primary key can be empty. The default for the Primary property is No.

n Unique: When set to Yes, the index must be unique within a table. When applied to
composite keys, the combination of field values must be unique — each field within the
composite key can duplicate fields found within the table. A Social Security number field
is a good candidate for a unique index, but a last name field should not be uniquely
indexed.

n Ignore Nulls: If a record’s index field contains a null value (which happens in a com-
posite index only if all fields in the composite index are null) the record’s index won’t
contribute anything to the overall indexing. In other words, unless a record’s index
contains some kind of value, Access doesn’t know where to insert the record in the table’s
internal index sort lists. Therefore, you may want to instruct Access to ignore a record if
the index value is null. By default, the Ignore Nulls property is set to No, which
means Access inserts records with a null index values into the indexing scheme along
with any other records containing null index values.

You should test the impact of the index properties on your Access tables and use the properties
that best suit the data handled by your databases.

A field can be both the primary key for a table and part of a composite index. You
should index your tables as necessary to yield the highest possible performance without

worrying about over-indexing or violating some arcane indexing rules.

NOTENOTE

79

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 79

When to index tables
Depending on the number of records in a table, the extra overhead of maintaining an index may
not justify creating an index beyond the table’s primary key. Though data retrieval is somewhat
faster than without an index, Access must update index information whenever you enter or change
records in the table. In contrast, changes to nonindexed fields do not require extra file activity. You
can retrieve data from nonindexed fields as easily (although not as quickly) as from indexed fields.

Generally speaking, it is best to add secondary indexes when tables are quite large, and indexing
on fields other than the primary key speeds up searches. Even with large tables, however, indexing
can slow performance if the records in tables will be changed often or new records will be added
frequently. Each time a record is changed or added, Access must update all indexes in the table.

Given all the advantages of indexes, why not index everything in the table? What are the draw-
backs of indexing too many fields? Is it possible to over-index tables?

First of all, indexes increase the size of the .mdb file somewhat. Unnecessarily indexing a table that
doesn’t really require an index eats up a bit of disk space for each record in the table. More impor-
tant, indexes extract a performance hit for each index on the table every time a record is added to
the table. Because Access automatically updates indexes each time a record is added (or removed),
the internal indexing must be adjusted for each new record. If you have ten indexes on a table,
Access makes ten adjustments to the indexes each time a new record is added or an existing record
is deleted, causing a noticeable delay on large tables (particularly on slow computers).

Sometimes changes to the data in records causes adjustments to the indexing scheme. This is true
if the change causes the record to change its position in sorting or query activities. Therefore, if you
are working with large, constantly changing data sets that are rarely searched, you may choose not
to index the fields in the table, or to minimally index by indexing only those few fields that are
likely to be searched.

As you begin working with Access tables, it is likely you’ll start with the simplest one-field indexes
and migrate to more complex ones as your familiarity with the process grows. Do keep in mind,
however, the tradeoffs between greater search efficiency and the overhead incurred by maintaining
a large number of indexes on your tables.

It’s also important to keep in mind that indexing does not modify the physical arrangement of
records in the table. The natural order of the records (the order in which the records were added to
the table) is maintained after the index is established.

Indexing tblContacts
You use the Indexes window to determine the specific characteristics of the indexes in a table.
Notice that the Indexes window shown in Figure 2-27 contains four indexes. The first of these
(on the ContactID field) is the table’s Primary Key (you’ll recall from the discussion above that
Primary Keys are always uniquely indexed). The other indexes are built on single fields (ZipCode,
CustomerType, and TaxLocation) and in ascending order.

80

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 80

FIGURE 2-27

The Indexes window that shows all the indexes built for tblContacts. You can add more indexes
directly into this window.

Printing a Table Design
You can print a table design by choosing the Analyze Table button in the Analyze group on the rib-
bon’s Database Tools tab. The Analyze group contains a number of tools that makes it easy to docu-
ment your database objects. When you select the Analyze Table button, Access shows you a dialog
box that lets you select objects to print. In Figure 2-28, there is only one object (tblContacts)
under the Tables tab. Select it by clicking the check box next to the table name.

You can also set various options for printing. When you click the Options button, a dialog box
appears that enables you to select which information from the Table Design to print. You can print
the various field names, all of their properties, the indexes, and even network permissions.

FIGURE 2-28

The Access Documenter dialog box

After you select which data you want to view, Access generates a report; you can view it in a Print
Preview window or send the output to a printer.

81

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 81

The Database Documenter creates a table of all the objects and object properties you
specify. You can use this utility to document such database objects as forms, queries,

reports, macros, and modules.

Saving the Completed Table
You can save the completed table design by choosing File ➪ Save or by clicking the Save button
in the upper-left corner of the Access environment. If you are saving the table for the first time,
Access asks for the name of the table. Table names can be up to 64 characters long and follow stan-
dard Access object-naming conventions.

If you have saved this table before and want to save it with a different name, choose File ➪ Save As
and enter a different table name. This action creates a new table design and leaves the original table
with its original name untouched. If you want to delete the old table, select it in the Navigation
pane and press the Delete key. You can also save the table when you close it.

Manipulating Tables in a Database Window
As you create many tables in your database, you may want to use them in other databases or copy
them for use as a history file. You may want to copy only the table structure. You can perform
many operations on tables in the Navigation pane, including

n Renaming tables

n Deleting tables

n Copying tables in a database

n Copying a table from another database

You perform these tasks by direct manipulation or by using menu items.

Renaming tables
Rename a table with these steps:

1. Select the table name in the Database window.

2. Click once on the table name, and press F2.

3. Type the new name of the table and press Enter.

TIPTIP

82

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 82

You can also rename the table by right-clicking on its name in the Navigation pane, and selecting
Rename from the shortcut menu. After you change the table name, it appears in the Tables list,
which re-sorts the tables in alphabetical order.

If you rename a table, you must change the table name in any objects where it was pre-
viously referenced, including queries, forms, and reports.

Deleting tables
Delete a table by selecting the table in the Navigation pane and pressing the Delete key. Another
method is by right-clicking a table and selecting Delete from the shortcut menu. Like most delete
operations, you have to confirm the delete by selecting Yes in a confirmation dialog box.

Copying tables in a database
The copy and paste options in the Clipboard group on the Home tab allow you to copy any table
in the database. When you paste the table back into the database, you choose from three option
buttons:

n Structure Only

n Structure and Data

n Append Data to Existing Table

Selecting the Structure Only button creates a new table, empty table with the same design as
the copied table. This option is typically used to create a temporary table or an archive table to
which you can copy old records.

When you select Structure and Data, a complete copy of the table design and all of its data is
created.

Selecting the Append Data to Existing Table button adds the data of the selected table to
the bottom of another. This option is useful for combining tables, such as when you want to add
data from a monthly transaction table to a yearly history table.

Follow these steps to copy a table:

1. Right-click the table name in the Navigation pane.

2. Choose Copy from the shortcut menu, or choose the Copy button in the Clipboard
group on the Home tab.

3. Choose Paste from the shortcut menu, or choose the Paste button in the Clipboard
group on the Home tab.

4. Provide the name of the new table.

5. Choose one of the Paste options (Structure Only, Structure and Data, or
Append Data to Existing Table).

CAUTION CAUTION

83

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 83

6. Click OK to complete the operation.

Figure 2-29 shows the Paste Table As dialog box, where you make these decisions. To paste the
data, you have to select the type of paste operation and type the name of the new table. When you
are appending data to an existing table, you must type the name of an existing table.

FIGURE 2-29

Pasting a table activates this dialog box. You can paste only the structure, the data and structure, or the data
to an existing table.

Copying a table to another database
Just as you can copy a table within a database, you can copy a table to another database. There are
many reasons why you may want to do this. Possibly you share a common table among multiple
systems, or you may need to create a backup copy of your important tables within the system.

When you copy tables to another database, the relationships between tables are not copied; Access
copies only the table design and the data. The method for copying a table to another database is
essentially the same as for copying a table within a database. To copy a table to another database,
follow these steps:

1. Right-click the table name in the Navigation pane.

2. Choose Copy from the shortcut menu, or choose the Copy button in the Clipboard
group on the Home tab.

3. Open the other Access database.

4. Choose Edit Paste from the shortcut menu, or choose the Copy button in the
Clipboard group on the Home tab.

5. Provide the name of the new table.

6. Choose one of the Paste options (Structure Only, Structure and Data, or
Append Data to Existing Table).

7. Click OK to complete the operation.

84

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 84

Adding Records to a Database Table
So far you have only created one table in the MyAccessAutoAuctions database: tblContacts.

Adding records is as simple as selecting the table name in the database container and clicking on
its name to bring up the table in Datasheet view. Once opened, you can type in values for each
field. Figure 2-30 shows adding records in datasheet mode to the table.

You can enter information into all fields except the Contact ID field (ContactID). AutoNumber
fields automatically provide a number for you.

FIGURE 2-30

Adding records to a table using Datasheet view

Although you can add records directly into the table through the Datasheet view, it is not the most
efficient way. Adding records using forms is better.

Understanding the Attachment Data Type
Microsoft recognizes that database developers must deal with many different types of data. Although
the traditional Access data types (Text, Currency, OLE Object, and so on) are able to handle many
different types of data, until Access 2007 there was no way to accommodate complete files as Access
data without performing some transformation on the file (such as conversion to OLE data).

Access 2007 adds the Attachment data type, enabling you to bring entire files into your Access
database as “attachments” to a field in a table. When you click on an attachment field, Access
opens a small dialog box (shown in Figure 2-31) enabling you to locate files to attach to the table.
An attached file is actually incorporated into your Access database, but it’s not transformed into
one of the native Access data types.

85

Creating Access Tables 2

06_046732 ch02.qxp 11/21/06 8:46 AM Page 85

FIGURE 2-31

Managing attachments in an Attachment field

The Add button in Figure 2-31 opens the familiar Windows Choose File dialog box, enabling you
to search for a file to attach to the field. The selected file is added to the list you see in Figure 2-21.
Notice also that the Attachments dialog box includes buttons for removing attachments from the
field and for saving attachments back to the computer’s disk.

The significant thing to keep in mind about the Attachment data type is that a single attachment
field in a table can contain multiple files. Obviously, because the attached data is incorporated into
the database, the .accdb file will quickly grow if many attachments are added. You should use the
Attachment data type only when its benefits outweigh the burden it places on an Access application.

Summary
This chapter has covered the important topics of creating new Access databases, and adding tables
to Access databases. Although this chapter covered these topics from the perspective of creating
brand-new databases and tables, the operations you performed in this chapter are identical to the
maintenance procedures you perform on existing databases and tables.

The next chapter drills into the very important topics of data normalization, referential integrity,
creating relationships, and other operations and procedures required to protect the integrity and
reliability of data in your Access databases. Unless you have a very firm understanding of these
important issues, you should take the time to review Chapter 3 and understand how Access sup-
ports professional database design.

86

Access Building BlocksPart I

06_046732 ch02.qxp 11/21/06 8:46 AM Page 86

We’ve already looked at one of the most basic assumptions about
relational database systems — that is, that data are spread across
a number of tables that are related through primary and foreign

keys (see Chapter 1 for a review). Although this basic principle is easy to
understand, it can be much more difficult to understand why and when data
should be broken into separate tables.

Because the data managed by a relational database such as Access exist in a
number of different tables, there must be some way to connect the data. The
more efficiently the database performs these connections, the better and
more flexible the database application as a whole will function.

Although databases are meant to model real-world situations or at least man-
age the data involved in real-world situations, even the most complex situa-
tion is reduced to a number of relationships between pairs of tables. As the
data managed by the database become more complex, you may need to add
more tables to the design. For instance, a database to manage employee
affairs for a company will include tables for employee information (name,
Social Security number, address, hire date, and so on), payroll information,
benefits programs the employee belongs to, and so on.

When working with the actual data, however, you concentrate on the rela-
tionship between two tables at a time. You might create the employees and
payroll tables first, connecting these tables with a relationship to make it easy
to find all of the payroll information for an employee.

This chapter uses the database named Chapter03.mdb. If
you haven’t already copied it onto your machine from the

CD, you’ll need to do so now. If you’re following the examples, you can use the
tables in this database or create the tables yourself in another database.

ON the CD-ROMON the CD-ROM

87

IN THIS CHAPTER
Understanding relational
database theory

Normalizing database data

Identifying data anomalies from
unnormalized data

Looking at common table
relationships

Understanding primary and
foreign keys

Establishing a primary key

Viewing relationships in an
Access database

Creating table relationships

Choosing a join type for table
relationships

Knowing the rules of referential
integrity

Enforcing referential integrity in
Access databases

Designing Bulletproof
Databases

07_046732 ch03.qxp 11/21/06 8:46 AM Page 87

In Chapters 1 and 2 you saw examples of common relationships found in many Access databases.
By far the most common type of table relationship is the one-to-many. The Access Auto Auction
application has many such relationships: Each record in the Contacts table is related to one or
more records in the Sales table (each contact may have purchased more than one item through
Access Auto Auctions). (We cover one-to-many relationships in detail later in this chapter.) You
can easily imagine an arrangement that would permit the data contained in the Contacts and Sales
tables to be combined within a single table. All that’s needed is a separate row for each order placed
by each of the contacts. As new orders come in, new rows containing the contact and order infor-
mation are added to the table.

The Access table shown in Figure 3-1 is an example of such an arrangement. In this figure, the
OrderID column contains the order number placed by the contact (the data in this table have
been sorted by CustomerID to show how many orders have been placed by each contact). The
table in Figure 3-1 was created by combining data from the Contacts and Orders tables in the
Northwind Traders sample database and is included in the RelationshipsExamples.accdb
database file on this book’s CD.

FIGURE 3-1

An Access table containing contact and orders data

Notice the OrderID column to the right of the CompanyName column. Each contact (like Alfreds
Futterkiste) has placed a number of orders. Columns to the far right in this table (beyond the right
edge of the figure) contain more information about each contact, including address and phone
numbers, while columns beyond the company information contain the specific order information.
In all, this table contains 24 different fields.

The design shown in Figure 3-1 is what happens when a spreadsheet application such as Excel is
used for database purposes. Because Excel is entirely spreadsheet oriented, there is no provision
for breaking up data into separate tables, encouraging users to keep everything in one massive
spreadsheet.

88

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 88

Such an arrangement has a couple of problems:

n The table quickly becomes unmanageably large. The Northwind Traders Contacts
table contains 11 different fields, while the Orders table contains 14 more. One field —
OrderID— overlaps both tables. Each time an order is placed, all 24 data fields in the
combined table would be added for each record added to the table.

n Data are difficult to maintain and update. Making simple changes to the data in the
large table — for instance, changing a contact’s phone or fax number — would involve
searching through all records in the table, changing every occurrence of the phone num-
ber. It would be easy to make an erroneous entry or miss one or more instances. The
fewer records needing changes, the better off the user will be.

n A monolithic table design is wasteful of disk space and other resources. Because the
combined table would contain a huge amount of redundant data (for instance, a contact’s
address), a large amount of hard-drive space would be consumed by the redundant infor-
mation. In addition to wasted disk space, network traffic, computer memory, and other
resources would be poorly utilized.

A much better design — the relational design — moves the repeated data into a separate table, leav-
ing a field in the first table to serve as a reference to the data in the second table. The additional
field required by the relational model is a small price to pay for the efficiencies gained by moving
redundant data out of the table.

Data Normalization
The process of splitting data across multiple tables is called normalizing the data. There are several
stages of normalization; the first through the third stages are the easiest to understand and imple-
ment and are generally sufficient for the majority of applications. Although higher levels of normal-
ization are possible, they’re usually ignored by all but the most experienced and fastidious
developers.

To illustrate the normalization process, we’ll use a little database that a book wholesaler might use
to track book orders placed by small bookstores in the local area. This database must handle the
following information:

n Book title

n ISBN

n Author

n Publisher

n Publisher address

n Publisher city

n Publisher state

89

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 89

n Publisher zip code

n Publisher phone number

n Publisher fax

n Customer name

n Customer address

n Customer city

n Customer state

n Customer zip code

n Customer phone number

Although this data set is very simple, it’s typical of the type of data you might manage with an
Access database application, and it provides us with a valid demonstration of normalizing a set of
data.

First normal form
The initial stage of normalization, called first normal form, requires that the table conform to the
following rule:

Each cell of a table must contain only a single value and the table must not contain repeat-
ing groups of data.

A table is meant to be a two-dimensional storage object, and storing multiple values within a field
or permitting repeating groups within the table implies a third dimension to the data. Figure 3-2
shows the first attempt (tblBookOrders1) at building a table to manage bookstore orders.
Notice that some bookstores have ordered more than one book. A value like 7 Cookie Magic in
the BookTitles field means that the contact has ordered seven copies of the cookbook titled
Cookie Magic.

FIGURE 3-2

An unnormalized tblBookOrders table

90

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 90

The table in Figure 3-2 is typical of a flat-file approach to building a database. Data in a flat-file
database are stored in two dimensions (rows and columns) and neglects the third dimension
(related tables) possible in a relational database system such as Microsoft Access.

Notice how the table in Figure 3-2 violates the first rule of normalization. Many of the records in
this table contain multiple values in the BookTitle field. For instance, the book titled Smokin’
Hams appears in records 7 and 8. There is no way for the database to handle this data easily. For
instance, if you want to cross-reference the books ordered by the bookstores, you’d have to parse
the data contained in the BookTitle field to determine which books have been ordered by which
contacts.

A slightly better design is shown in Figure 3-3 (tblBookOrders2). The books’ quantities and
titles have been separated into individual columns. This arrangement makes it somewhat easier to
retrieve quantity and title information, but the repeating groups for quantity and title continue to
violate the first rule of normalization. (The row height in Figure 3-3 has been adjusted to make it
easier for you to see the table’s arrangement.)

FIGURE 3-3

Only a slight improvement over the previous design

The design in Figure 3-3 is still clumsy and difficult to work with. The columns to hold the book
quantities and titles are permanent features of the table. The developer must add enough columns
to accommodate the maximum number of books that could be purchased by a bookstore. For
instance, let’s assume the developer anticipates no bookstore will ever order more than 50 books
at a time. This means that 100 columns would have to be added to the table (two columns —
Quantity and Title — are required for each book title ordered). If a bookstore orders a single book,
98 columns would sit empty in the table, a very wasteful and inefficient situation.

Figure 3-4 shows tblBookOrders, a table in first normal form (abbreviated 1NF). Instead of
stacking multiple book orders within a single record, a second table is produced in which each
record contains a single book ordered by a contact. More records are required, but the data are
handled much more easily. First normal form is much more efficient because the table contains no
unused fields. Every field is meaningful to the table’s purpose.

91

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 91

FIGURE 3-4

First normal form at last!

The table shown in Figure 3-4 contains the same data as shown in Figure 3-2 and Figure 3-3. The
new arrangement, however, makes it much easier to work with the data. For instance, queries are
easily constructed to return the total number of a particular book ordered by contacts, or to deter-
mine which titles have been ordered by a particular bookstore.

Your tables should always be in first normal form. Make sure each cell of the table contains a single
value, and don’t mix values within a cell.

The table design optimization is not complete at this point, however. Much remains to be done
with the BookOrders data and the other tables in this application. In particular, the table shown
in Figure 3-4 contains a lot of redundant information. The book titles are repeated each time cus-
tomers order the same book, and the order number and order date are repeated for each row con-
taining information about an order.

A more subtle error is the fact that the OrderID can no longer be used as the table’s primary key.
Because the Order ID is duplicated for each book title in an order, it cannot be used to identify
each record in the table. Instead, the OrderID field is now just a key field for the table and can be
used to locate all of the records relevant to a particular order. The next step of optimization cor-
rects this situation.

Second normal form
A more efficient design results from splitting the data in tblBookOrders into two different tables
to achieve second normal form (2NF). The first table contains the order information (for instance,
the OrderID, OrderDate and Customer) while the second table contains the order details
(Quantity and Title). This process is based on the second rule of normalization:

Data not directly dependent on the table’s primary key is moved into another table.

This rule means that a table should contain data that represents a single entity. The table in Figure
3-4 violates this rule of normalization because the individual book titles do not depend on the
table’s key field, the OrderID. Each record is a mix of book and order information. (For the

92

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 92

meantime, we’re ignoring the fact that this table does not contain a primary key. We’ll be adding
primary keys in a moment.)

At first glance, it may appear as though the book titles are indeed dependent on the Order ID.
After all, the reason the book titles are in the table is because they’re part of the order. However, a
moment’s thought will clarify the violation of second normal form. The title of a book is completely
independent of the book order in which it is included. The same book title appears in multiple
book orders; therefore, the Order ID has nothing to do with how a book is named. Given an arbi-
trary Order ID, you cannot tell anything about the books contained in the order other than looking
at the Orders table.

The Order Date, however, is completely dependent on the Order ID. For each Order ID there is one
and only one Order Date. Therefore, any Order Date is dependent on its associated Order ID.
Order Dates may be duplicated in the table, of course, because multiple orders may be received on
the same day. For each Order ID, however, there is one and only one valid Order Date value.

Second normal form often means breaking up a monolithic table into constituent tables, each of
which contains fewer fields than the original table. In this example, second normal form is achieved
by breaking the books and orders table into separate Orders and OrderDetails tables.

The order-specific information (such as the order date, customer, payment, and shipping informa-
tion) goes into the Orders table, while the details of each order item (book, quantity, selling price,
and so on) are contained by the OrderDetails table (not all of this data are shown in our example
tables).

The new tables are shown in Figure 3-5. The OrderID is the primary key for the
tblBookOrders4 table. The OrderID field in the tblBookOrderDetails is a foreign key that
references the OrderID primary key field in tblBookOrders4. Each field in tblBookOrders4
(OrderDate and Customer) is said to be dependent on the table’s primary key.

FIGURE 3-5

Second normal form: The OrderID field connects these tables together in a one-to-many relationship.

93

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 93

The tblBookOrders4 and tblBookOrderDetails are joined in a one-to-many relationship.
tblBookOrderDetails contains as many records for each order as are necessary to fulfill the
requirements of the order. The OrderID field in tblBookOrders4 is now a true primary key.
Each field in tblBookOrders4 is dependent on the OrderID field and appears only once for
each order that is placed. The OrderID field in tblBookOrderDetails does not serve as the
primary key for tblBookOrderDetails. In fact, tblBookOrderDetails does not even have
a primary key, but one could be easily added.

The data in tblBookOrders4 and tblBookOrderDetails can be easily updated. If a
bookstore cancels a particular book title in an order, the corresponding record is deleted from
tblBookOrderDetails. If, on the other hand, a bookstore adds to an order, a new record can
be added to tblBookOrderDetails to accommodate an additional title, or the Quantity field
can be modified to increase or decrease the number of books ordered.

Breaking a table into individual tables that each describes some aspect of the data is called decom-
position, a very important part of the normalization process. Even though the tables appear smaller
than the original table (shown in Figure 3-2), the data contained within the tables are the same as
before.

It’s easy to carry decomposition too far — create only as many tables as are required to fully
describe the dataset managed by the database. When decomposing tables, be careful not to lose
data. For instance, if the tblBookOrders4 table contained a SellingPrice field, you’d want
to make sure that field was moved into tblBookOrderDetails.

Later, you’ll be able to use queries to recombine the data in tblBookOrders4 and
tblBookOrderDetails in new and interesting ways. You’ll be able to determine how many books
of each type have been ordered by the different customers, or how many times a particular book has
been ordered. When coupled with a table containing information such as book unit cost, book selling
price, and so on, the important financial status of the book wholesaler becomes clear.

Notice also that the number of records in tblBookOrders4 has been reduced. This is one of sev-
eral advantages to using a relational database. Each table contains only as much data as is necessary
to represent the entity (in this case, a book order) described by the table. This is far more efficient
than adding duplicate field values (refer to Figure 3-2) for each new record added to a table.

Further optimization: Adding tables to the scheme
The design shown in Figure 3-5 is actually pretty good. Yet, we could still do more to optimize this
design. Consider the fact that the entire name of each customer is stored in tblBookOrders4.
Therefore, a customer’s name appears each time the customer has placed an order. Notice that
Uptown Books has placed two orders during the period covered by tblBookOrders4. If the
Uptown Books bookstore changed its name to Uptown Books and Periodicals, you’d have to go
back to this table and update every instance of Uptown Books to reflect the new name.

Overlooking an instance of the customer’s name during this process is called an update anomaly
and results in records that are inconsistent with the other records in the database. From the data-
base’s perspective, Uptown Books and Uptown Books and Periodicals are two completely different

94

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 94

organizations, even if we know that they’re the same store. A query to retrieve all of the orders
placed by Uptown Books and Periodicals will miss any records that still have Uptown Books in the
Customer field because of the update anomaly.

Also, the table lacks specific information about the customers. No addresses, phone numbers, or
other customer contact information are contained in tblBookOrders4. Although you could use
a query to extract this information from a table named tblBookStores containing the addresses,
phone numbers, and other information about the bookstore customers, using the customer name
(a text field) as the search key is much slower than using a numeric key in the query.

Figure 3-6 shows the results of a refinement of the database design: tblBookOrders5
contains a foreign key named CustomerID that relates to the CustID primary key field in the
tblBookStores table. This arrangement uses tblBookStores as a lookup table to provide
information to a form or report.

FIGURE 3-6

The numeric CustomerID field results in faster retrievals from tblCustomers.

Part of the speed improvement is due to the fact that the CustomerID field in tblBookOrders5
is a long integer (4-byte) value instead of a text field. This means that Access has to manipulate
only 4 bytes of memory when searching tblBookOrders5. The Customer field in
tblBookOrders4 was a text field with a width of 50 characters. This means that Access might
have to manipulate as many as 50 bytes of memory when searching for matching records in
tblCustomers.

A second advantage of removing the customer name from the orders table is that the name now
exists in only one location in the database. If Uptown Books changes its name to Uptown Books
and Periodicals, we now only have to change its entry in the tblBookStores table. This single
change is reflected throughout the database, including all forms and reports that use the customer
name information.

95

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 95

Breaking the rules
From time to time, you may find it necessary to break the rules. For instance, let’s assume the
bookstores are entitled to discounts based on the volume of purchases over the last year. Strictly
following the rules of normalization, the discount percentage should be included in the
tblCustomers table. After all, the discount is dependent on the customer, not on the order.

But maybe the discount applied to each order is somewhat arbitrary. Maybe the book wholesaler
permits the salespeople to cut special deals for valued customers. In this case, you might want to
include a Discount column in the book orders table, even if it contains duplicate information in
many records. You could store the traditional discount as part of the customer’s record in
tblCustomers, and use it as the default value for the Discount column but permit the salesper-
son to override the discount value when a special arrangement has been made with the customer.

Third normal form
The last step of normalization, called third normal form (3NF), requires removing all fields that
can be derived from data contained in other fields in the table or other tables in the database. For
instance, assume the sales manager insists that you add a field to contain the total value of a book
order in the orders table. This information, of course, would be calculated from the book quantity
field in tblOrderDetails and the book unit price from the book information table.

There’s no reason why you should add the new OrderTotal field to the Orders table. Access
easily calculates this value from data that are immediately available in the database. The only
advantage of storing order totals as part of the database is to save the few milliseconds required for
Access to retrieve and calculate the information when the calculated data are needed by a form or
report.

Removing calculated data has little to do with maintaining the database. The main benefit is saving
disk space and memory, and reducing network traffic. Depending on the applications you build,
you may find good reasons to store calculated data in tables, particularly if performing the calcula-
tions is a lengthy process, or if the stored value is necessary as an audit check on the calculated
value printed on reports. It may be more efficient to perform the calculations during data entry
(when data are being handled one record at a time) rather than when printing reports (when many
thousands of records are manipulated to produce a single report).

Although higher levels of normalization are possible, you’ll find that for most database applica-
tions, third normal form is more than adequate. At the very least, you should always strive for first
normal form in your tables by moving redundant or repeating data to another table.

More on anomalies
This business about update anomalies is important to keep in mind. The whole purpose of normal-
izing the tables in your databases is to achieve maximum performance with minimum maintenance
effort.

96

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 96

Three types of errors can occur from an unnormalized database design. Following the rules out-
lined in this chapter will help you avoid the following pitfalls:

n Insertion anomaly: An error occurs in a related table when a new record is added to
another table. For instance, let’s say you’ve added the OrderTotal field described in the
previous section. After the order has been processed, the customer calls and changes the
number of books ordered or adds a new book title to the same order. Unless you’ve care-
fully designed the database to automatically update the calculated OrderTotal field,
the data in that field will be in error as the new data are inserted into the table.

n Deletion anomaly: A deletion anomaly causes the accidental loss of data when a record
is deleted from a table. Let’s assume that the tblBookOrders table contains the name,
address, and other contact information for each bookstore. Deleting the last remaining
record containing a particular customer’s order causes the customer’s contact information
to be unintentionally lost. Keeping the customer contact information in a separate table
preserves and protects that data from accidental loss. Avoiding deletion anomalies is one
good reason not to use cascading deletes in your tables (see “Table Relationships,” later in
this chapter, for more on cascading deletes).

n Update anomaly: Storing data that are not dependent on the table’s primary key causes
you to have to update multiple rows anytime the independent information changes.
Keeping the independent data (such as the bookstore information) in its own table means
that only a single instance of the information needs to be updated. (For more on update
anomalies, see “Further optimization: Adding tables to the scheme” earlier in this chapter.)

Denormalization
After hammering you with all the reasons why normalizing your databases is a good idea, let’s con-
sider when you might deliberately choose to denormalize tables or use unnormalized tables.

Generally speaking, you normalize data in an attempt to improve the performance of your data-
base. For instance, in spite of all your efforts, some lookups will be time-consuming. Even when
using carefully indexed and normalized tables, some lookups require quite a bit of time, especially
when the data being looked up are complicated or there’s a large amount of it.

Similarly, some calculated values may take a long time to evaluate. You may find it more expedient
to simply store a calculated value than to evaluate the expression on the fly. This is particularly true
when the user base is working on older, memory-constrained, or slow computers.

Be aware that most steps to denormalize a database schema result in additional programming time
required to protect the data and user from the problems caused by an unnormalized design. For
instance, in the case of the calculated Order Total field, you must insert code that calculates and
updates this field whenever the data in the fields underlying this value change. This extra program-
ming, of course, takes time to implement and time to process at runtime.

97

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 97

You must be careful, of course, to see that denormalizing the design does not cause other prob-
lems. If you know you’ve deliberately denormalized a database design and are having trouble mak-
ing everything work (particularly if you begin to encounter any of the anomalies discussed in the
previous section), look for workarounds that permit you to work with a fully normalized design.

Finally, always document whatever you’ve done to denormalize the design. It’s entirely possible
that you or someone else will be called in to provide maintenance or to add new features to the
application. If you’ve left design elements that seem to violate the rules of normalization, your care-
fully considered work may be undone by another developer in an effort to “optimize” the design.
The developer doing the maintenance, of course, has the best of intentions, but he may inadver-
tently reestablish a performance problem that was resolved through subtle denormalization.

Table Relationships
Many people start out using a spreadsheet application like Excel or Lotus 1-2-3 to build a data-
base. Unfortunately, a spreadsheet stores data as a two-dimensional worksheet (rows and columns)
with no easy way to connect individual worksheets together. You must manually connect each cell
of the worksheet to the corresponding cells in other worksheets — a tedious process at best.

Two-dimensional storage objects like worksheets are called flat-file databases because they lack the
three-dimensional quality of relational databases. Figure 3-7 shows an Excel worksheet used as a
flat-file database.

FIGURE 3-7

An Excel worksheet used as a flat-file database

The problems with flat-file databases should be immediately apparent from viewing Figure 3-7.
Notice that the customer information is duplicated in multiple rows of the worksheet. Each time a
customer places an order, a new row is added to the worksheet. In this particular instance, only the
order number is recorded as part of the worksheet, although the entire order could be included in
the worksheet, including the order details. Obviously, this worksheet would rapidly become
unmanageably large and unwieldy.

98

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 98

Consider the amount of work required to make relatively simple changes to the data in Figure 3-7.
For instance, changing a customer’s address would require searching through numerous records
and editing the data contained within individual cells, creating many opportunities for errors.

Through clever programming in the Excel VBA language, it would be possible to link the data in
the worksheet shown in Figure 3-7 with another worksheet containing the order detail informa-
tion. It would also be possible to programmatically change data in individual rows. But such
Herculean efforts are needless when you harness the power of a relational database system such as
Microsoft Access.

Connecting the data
Recall that a table’s primary key uniquely identifies the records in a table. Example primary keys
for a table of employee data include the employee’s Social Security number, a combination of first
and last names, or an employee ID. Let’s assume the employee ID is selected as the primary key for
the employees table. When the relationship to the payroll table is formed, the EmployeeID field
is used to connect the tables together. Figure 3-8 shows this sort of arrangement (see the “One-to-
many” section, later in this chapter).

FIGURE 3-8

The relationship between the tblEmployees and tblPayroll tables is an example of a typical one-to-
many relationship.

Although you can’t see the relationship in Figure 3-8, Access knows it’s there and is able to
instantly retrieve all of the records from tblPayroll for any employee in tblEmployees.

The relationship example shown in Figure 3-8, in which each record of tblEmployees is related
to several records in tblPayroll, is the most common type found in relational database systems
but is by no means the only way that data in tables are related. This book, and most books on rela-
tional databases such as Access, discuss the three basic types of relationships between tables:

n One-to-one

n One-to-many

n Many-to-many

99

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 99

Figure 3-9 shows the relationships in the completed Access Auto Auctions database.

FIGURE 3-9

The Access Auto Auctions tables relationships

Notice that there are three one-to-many relationships between the primary tables (tblSales-
to-tblSalesPayments, tblSales-to-tblSalesLineItems, and tblContacts-
to-tblContactsLog), two one-to-many relationship between the primary tables
(tblSalesLineItems-to-tblProducts and tblSales-to-tblContacts), and five one-to-
many relations between the five lookup tables and the primary tables. The relationship that you spec-
ify between tables is important. It tells Access how to find and display information from fields in two
or more tables. The program needs to know whether to look for only one record in a table or look for
several records on the basis of the relationship. The tblSales table, for example, is related to the
tblContacts table as a many-to-one relationship. This is because the focus of the Access Auto
Auctions system is the sales. This means that there will always be only one contact (buyer) related to
every sales record; that is, many sales can be associated with a single buyer (contact). In this case, the
Access Auto Auctions system is actually using tblContacts as a lookup table.

Relationships can be very confusing; it all depends upon the focus of the system. For
instance, when working with the tblContacts and tblSales tables, you can always

create a query that has a one-to-many relationship to the tblSales table, from the tblContacts.
Although the system is concerned with sales (invoices), there are times that you will want to produce
reports or views that are buyer-related instead of invoice-related. Because one buyer can have more
than one sale, there will always be one record in the tblContacts table for at least one record in
the tblSales table; there could be many related records in the tblSales table. So Access knows
to find only one record in the customer table and to look for any records in the sales table (one or
more) that have the same customer number.

NOTENOTE

100

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 100

One-to-one
A one-to-one relationship between tables means that for every record in the first table, one and
only one record exists in the second table. Figure 3-10 illustrates this concept.

FIGURE 3-10

A one-to-one relationship

Pure one-to-one relationships are not common in relational databases. In most cases, the data con-
tained in the second table are most often included in the first table. As a matter of fact, one-to-one
relationships are generally avoided because they violate the rules of normalization. Following the
rules of normalization, data should not be split into multiple tables if the data describe a single
entity. Because a person has one and only one birth date, the birth date should be included in the
table containing a person’s other data.

There are times, however, when it’s not advisable to store certain data along with other data in the
table. For instance, consider the situation illustrated in Figure 3-10. The data contained in
tblSecurity are confidential. Normally, you wouldn’t want anyone with access to the public
customer information (name, address, and so on) to have access to the confidential security code
that the customer uses for purchasing or billing purposes. If necessary, the tblSecurity table
could be located on a different disk somewhere on the network, or even maintained on removable
media to protect it from unauthorized access.

Another instance of a one-to-one relationship is a situation where the data in a table exceed the
255-field limit imposed by Access. Although they’re rare, there could be cases where you may have
too many fields to be contained within a single table. The easiest solution is simply to split the data
into multiple tables and connect the tables through the primary key (using the same key value, of
course, in each table).

101

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 101

Yet another situation is where data are being transferred or shared between databases. Perhaps the
shipping clerk in an organization doesn’t need to see all of a customer’s data. Instead of including
irrelevant information such as job titles, birth dates, alternate phone numbers, and e-mail
addresses, the shipping clerk’s database contains only the customer’s name, address, and other
shipping information. A record in the customer table in the shipping clerk’s database has a one-to-
one relationship with the corresponding record in the master customer table located on the central
computer somewhere within the organization. Although the data are contained within separate
.accdb files, the links between the tables can be live, meaning that changes to the master record
are immediately reflected in the shipping clerk’s .mdb file.

Tables joined in a one-to-one relationship will almost always have the same primary key — for
instance, OrderID or EmployeeNumber. There are very few reasons you would create a separate
key field for the second table in a one-to-one relationship.

One-to-many
A far more common relationship between tables in a relational database is the one-to-many. In one-
to-many relationships, each record in the first table (the parent) is related to one or more records in
the second table (the child). Each record in the second table is related to one and only one record
in the first table. Without a doubt, one-to-many relationships are the most common type encoun-
tered in relational database systems. Examples of one-to-many situations abound:

n Customers and orders: Each customer (the “one” side) has placed several orders (the
“many” side), but each order is sent to a single customer.

n Teacher and student: Each teacher has many students, but each student has a single
teacher (within a particular class, of course).

n Employees and paychecks: Each employee has received several paychecks, but each
paycheck is given to one and only one employee.

n Patients and treatments: Each patient receives zero or more treatments for a disease.

As we discuss in the “Creating relationships and enforcing referential integrity” section, later in this
chapter, Access makes it very easy to establish one-to-many relationships between tables. A one-to-
many relationship is illustrated in Figure 3-11. This figure, using tables from the Northwind
Traders database, clearly demonstrates how each record in the Customers table is related to sev-
eral different records in the Orders table. An order can be sent to only a single customer, so all
requirements of one-to-many relationships are fulfilled by this arrangement.

102

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 102

FIGURE 3-11

The Northwind Traders database contains many examples of one-to-many relationships.

Although the records on the “many” side of the relationship illustrated in Figure 3-11 are sorted by
the CustomerID field in alphabetical order, there is no requirement that the records in the many
table be arranged in any particular order.

Although parent-child is the most common expression used to explain the relationship between
tables related in a one-to-many relationship, you may hear other expressions used, such as master-
detail applied to this design. The important thing to keep in mind is that the intent of referential
integrity is to prevent lost records on the “many” side of the relationship. Referential integrity guar-
antees that there will never be an orphan, a child record without a matching parent record. As
you’ll soon see, it is important to keep in mind which table is on the “one” side and which is on the
“many” side.

Notice how difficult it would be to record all of the orders for a customer if a separate table were
not used to store the order’s information. The flat-file alternative discussed in the “Table
Relationships” section, earlier in this chapter, requires much more updating than the one-to-many
arrangement shown in Figure 3-11. Each time a customer places an order with Northwind Traders
a new record is added to the Orders table. Only the CustomerID (for instance, CACTU) is
added to the Orders table as the foreign key back to the Customers table. Keeping the customer
information is relatively trivial because each customer record appears only once in the Customers
table.

103

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 103

Many-to-many
You’ll come across many-to-many situations from time to time. In a many-to-many arrangement,
each record in both tables can be related to zero, one, or many records in the other table. An exam-
ple is shown in Figure 3-12. Each student in tblStudents can belong to more than one club,
while each club in tblClubs has more than one member.

FIGURE 3-12

A database of students and the clubs they belong to is an example of a many-to-many relationship.

As indicated in Figure 3-12, many-to-many relationships are somewhat more difficult to under-
stand because they cannot be directly modeled in relational database systems like Access. Instead,
the many-to-many relationship is broken into two separate one-to-many relationships, joined
through a linking, or join, table. The join table has one-to-many relationships with both of the
tables involved in the many-to-many relationship. This principle can be a bit confusing at first, but
close examination of Figure 3-12 soon reveals the beauty of this arrangement.

In Figure 3-12, you can easily see that student ID 2 (Michael Barde) belongs to the music club,
while student ID 12 (Jeffrey Wilson) is a member of the horticulture club. Both Michael Barde and
Jeffrey Wilson belong to the photography club. Each student belongs to multiple clubs, and each
club contains multiple members.

104

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 104

Because of the additional complication of the join table, many-to-many relationships are often con-
sidered more difficult to establish and maintain. Fortunately, Access makes such relationships quite
easy to establish, once a few rules are followed. These rules are explained in various places in this
book. For instance, in order to update either side of a many-to-many relationship (for example, to
change club membership for a student), the join table must contain the primary keys of both tables
joined by the relationship.

Many-to-many relationships are quite common in business environments:

n Lawyers to clients (or doctors to patients): Each lawyer may be involved in several
cases, while each client may be represented by more than one lawyer on each case.

n Patients and insurance coverage: Many people are covered by more than one insurance
policy. For instance, if you and your spouse are both provided medical insurance by your
employers, you have multiple coverage.

n Video rentals and customers: Over a year’s time, each video is rented by several people,
while each customer rents several videos during the year.

n Magazine subscriptions: Most magazines have circulations measured in the thousands
or millions. Most people subscribe to more than one magazine at a time.

The Access Auto Auctions database has a many-to-many relationship between tblContacts and
tblSalesPayments, linked through tblSales. Each customer may have purchased more than
one item, and each item may be paid for through multiple payments. In addition to joining con-
tacts and sales payments, tblSales contains other information, such as the sale date and invoice
number. The join table in a many-to-many relationship often contains information regarding the
joined data.

Given how complicated many-to-many joins can be to construct, it is fortunate that many-to-many
relationships are quite a bit less common than straightforward one-to-many situations.

Although Figure 3-12 shows a join table with just two fields (StudentID and ClubID),
there is no reason that the join table cannot contain other information. For instance, the
tblStudentToClubJoin table might include fields to indicate membership dues collected from
the student for each club.

Pass-through
The last type of relationship we’ll explore involves more than one table. Much as a many-to-many
relationship involves an intermediate table, a pass-through relationship (which is sometimes called
a grandparent-grandchild relationship) is necessary in some situations. In this type of
relationship, the data in the grandparent table are related to records in a grandchild table through a
third table. An example taken from Northwind Traders is diagrammed in Figure 3-13.

105

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 105

FIGURE 3-13

The order details information is related to the Customers table through the Orders table.

There is no direct connection between the Customers table (the grandparent) and the Order
Details table (the grandchild). The Order Details table contains all of the information on
the specific items included in a particular order. As indicated by Figure 3-13, you must use the
Orders table (the parent table) to determine how many of a particular item have been purchased
by a customer.

The only way to get information from the OrderDetails grandchild table is to first use the
CustomerID field to reference all of the associated records in the Orders table. Then use the
OrderID field to find all of its related items in the OrderDetails table.

From time to time, you’ll find yourself building Access queries to extract just this kind of informa-
tion. When you build these queries, you’re actually constructing a pass-through relationship
between the tables involved in the query.

The relationship between any two of the tables involved in the pass-through relationship
(Customers to Orders or Orders to OrderDetails) is a one-to-many relationship.

Integrity Rules
Access permits you to apply referential integrity rules that protect data from loss or corruption. The
relational model defines several rules meant to enforce the referential integrity requirements of rela-
tional databases. In addition, Access contains its own set of referential integrity rules that are
enforced by the Jet database engine. Referential integrity means that the relationships between
tables are preserved during updates, deletions, and other record operations.

Imagine a payroll application that contained no rules regulating how data in the database are used.
It’d be possible to issue payroll checks that are not linked to an employee, or to have an employee
who had never been issued a paycheck. From a business perspective, issuing paychecks to

Customers Table

CustomerID
CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
. . .

Orders Table

OrderID
CustomerID
OrderDate
RequiredDate
EmployeeID
ShippedDate
. . .

Order Details Table

OrderID
ProductID
UnitPrice
Quantity
Discount

106

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 106

“phantom” employees is much more serious than having an employee who’s never been paid! After
all, the unpaid employee will soon complain about the situation, but paychecks issued to phantom
employees raise no alarms. At least, that is, until the auditors step in and notify management of the
discrepancy.

A database system must have rules that specify certain conditions between tables — rules to
enforce the integrity of relationships between the tables. These rules are known as referential
integrity; they keep the relationships between tables intact in a relational database management sys-
tem. Referential integrity prohibits you from changing your data in ways that invalidate the rela-
tionships between tables.

Referential integrity operates strictly on the basis of the tables’ key fields; it checks each time a key
field, whether primary or foreign, is added, changed, or deleted. If a change to a value in a key
field creates an invalid relationship, it is said to violate referential integrity. Tables can be set up so
that referential integrity is enforced automatically.

Figure 3-14 illustrates one of several relationships in the Access Auto Auctions database. The
Products table is related to the SalesLinesItem table through the ProductID field. The
ProductID field in tblProducts is that table’s primary key, while the ProductID field in
tblSalesLineItems is a foreign key. The relationship connects each product with a line item
on a sales invoice. In this relationship, tblProducts is the parent table, while
tblSalesLineItems is the child table.

FIGURE 3-14

A typical database relationship

107

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 107

Orphaned records are very bad in database applications. Because payroll information is almost
always reported as which paychecks were issued to which employees, a paycheck that is not linked
to an employee will not be discovered under most circumstances. It’s easy to know which pay-
checks were issued to John Doe, but given an arbitrary paycheck record, it may not be easy to
know that there is no legitimate employee matching the paycheck.

Because the referential integrity rules are enforced by the Access database engine, data integrity is
ensured wherever the data appear in the database: in tables, queries, or forms. Once you’ve estab-
lished the integrity requirements of your applications, you don’t have to be afraid that data in
related tables will become lost or disorganized.

We can’t overemphasize the need for referential integrity in database applications. Many developers
feel that they can use VBA code or user interface design to prevent orphaned records. The truth is
that, in most databases, the data stored in a particular table may be used in many different places
within the application. Also, given the fact that many database projects extend over many years,
and among any number of developers, it’s not always possible to recall how data should be pro-
tected. By far, the best approach to ensuring the integrity of data stored in any database system is
by utilizing the power of the database engine to enforce referential integrity.

The general relational model referential integrity rules ensure that records contained in relational
tables are not lost or confused. For obvious reasons, it is important that the primary keys connect-
ing tables be protected and preserved. Also, changes in a table that affect other tables (for instance,
deleting a record on the “one” side of a one-to-many relationship) should be rippled to the other
tables connected to the first table. Otherwise, the data in the two tables will quickly become
unsynchronized.

The first referential integrity rule states that no primary key can contain a null value. A null value is
one that simply does not exist. The value of a field that has never been assigned a value (even a
default value) is null. No row in a database table can have null in its primary key field because
the primary purpose of the primary key is to guarantee uniqueness of the row. Obviously, null
values cannot be unique and the relational model would not work if primary keys could be null.

Access automatically enforces the first referential integrity rule. As you add data to tables, you can’t
leave the primary key field empty without generating a warning (one reason the AutoNumber
field works so well as a primary key). Once you’ve designated a field in an Access table as the pri-
mary key, Access will not let you delete the data in the field, nor will it allow you to change the
value in the field so that it duplicates a value in another record.

When using a composite primary key made up of several fields, all of the fields in the composite
key must contain values. None of the fields are allowed to be empty. The combination of values in
the composite primary key must be unique.

The second referential integrity rule says that all foreign key values must be matched by correspon-
ding primary keys. This means that every record in a table on the “many” side of a one-to-many
relationship must have a corresponding record in the table on the “one” side of the relationship.

108

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 108

A record on the “many” side of a relationship without a corresponding record on the “one” side is
said to be orphaned and is effectively removed from the database schema. Identifying orphaned
records in a database can be very difficult, so you’re better off avoiding the situation in the first
place.

The second rule means that the following situations must be handled by the Jet engine:

n Rows cannot be added to a “many” side table (the child) if a corresponding record
does not exist on the “one” side (the parent). If a child record contains a ParentID
field, the ParentID value must match an existing record in the parent table.

n The primary key value in a parent table cannot be changed if the change would cre-
ate orphaned child records.

n Deleting a row on the “one” side must not orphan corresponding records on the
“many” side.

For instance, in our payroll example, the foreign key in each record in the tblPayChecks table
(the “many” side) must match a primary key in tblEmployees. You cannot delete a record in
tblEmployees (the “one” side) without deleting the corresponding records in tblPayChecks.

One of the curious results of the rules of referential integrity is that it is entirely possible to have a
parent record that is not matched by any child records. Intuitively, this makes sense. A company
may certainly have employees who haven’t yet been issued paychecks. Or, the Access Auto
Auctions company may recruit a new seller who doesn’t have any cars for sale at the moment.
Eventually, of course, most parent records are matched by one or more child records, but this con-
dition is not a requirement of relational databases.

A somewhat less obvious outcome of these rules is that it is possible to have a child record that is
not matched by a parent record, as long as the parent foreign key field does not contain a value. As
you will recall, referential integrity requires that any value in a child table’s foreign key field must
be matched by the same value in the parent table. However, if the foreign key field in a child
record is completely empty, there is no violation of referential integrity between the tables.

In practical terms, this situation is quite rare in Access applications. Virtually all database fields
have some default value, such as zero, or an empty string (“”). In the case of a numeric foreign
key, by default, Access inserts zero into the field as new records are added to the table. Unless zero
appears somewhere in the parent table, a referential integrity violation exists, and the new record
will not be added. The only way around this situation is to delete the default value of zero for the
foreign key field, or to ensure that the foreign key value is set to a valid ParentID value before
adding the new record to the child table.

As you’ll see in the next section, Access makes it easy to specify the integrity rules you want to
employ in your applications. You should be aware, however, that not using the referential integrity
rules means that you might end up with orphaned records and other data integrity problems.

109

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 109

Understanding Keys
When you create database tables, like those created in Chapter 2, you should assign each table a
primary key. This key is a way to make sure that the table records contain only one unique value;
for example, you may have several contacts named Michael Heinrich, and you may even have more
than one Michael Heinrich (for instance, father and son) living at the same address. So in a case
like this, you have to decide on how you can create a record in the Customer database that will
let you identify each Michael Heinrich separately.

Uniquely identifying each record in a table is precisely what a primary key field does. For example,
using the Access Auto Auction as an example, the ContactID field (a unique number that
you assign to each customer or seller that comes into your office) is the primary key in the
tblContacts table — each record in the table has a different ContactID number. (No two
records have the same number.) This is important for several reasons:

n You do not want to have two records in your database for the same customer, because
this can make updating the customer’s record virtually impossible.

n You want assurance that each record in the table is accurate, thus the information
extracted from the table is accurate.

n You do not want to make the table (and its records) any larger than necessary.

The ability to assign a single, unique value to each record makes the table clean and reliable. This
is known as entity integrity. By having a different primary key value in each record (such as the
ContactID in the tblContacts table), you can tell two records (in this case, customers) apart,
even if all other fields in the records are the same. This is important because you can easily have
two individual customers with a common name, such as Fred Smith, in your table.

Theoretically, you could use the customer name and the customer’s address, but two people named
Fred D. Smith could live in the same town and state, or a father and son (Fred David Smith and
Fred Daniel Smith) could live at the same address. The goal of setting primary keys is to create
individual records in a table that guarantees uniqueness.

If you don’t specify a primary key when creating Access tables, Access asks whether you want one.
If you say yes, Access uses the AutoNumber data type to create a primary key for the table. An
AutoNumber field automatically updates each time a record is added to the table, and cannot be
changed once its value has been established. Furthermore, once an AutoNumber value has
appeared in a table, the value will never be reused, even if the record containing the value is
deleted and the value no longer appears in the table.

Deciding on a primary key
As you learned previously, a table normally has a unique field (or combination of fields) — the pri-
mary key for that table — which makes each record unique. The primary key is an identifier that is
often a text or AutoNumber data type. To determine the contents of this ID field, you specify a
method for creating a unique value for the field. Your method can be as simple as letting Access

110

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 110

automatically assign a value or using the first letter of the real value you are tracking along with a
sequence number (such as A001, A002, A003, B001, B002, and so on). The method may rely on a
random set of letters and numbers for the field content (as long as each field has a unique value) or
a complicated calculation based on information from several fields in the table.

Table 3-1 lists the Access Auto Auctions tables and describes one possible plan for deriving the pri-
mary key values in each table. As this table shows, it doesn’t take a great deal of work (or even
much imagination) to derive a plan for key values. Any rudimentary scheme with a good sequence
number always works. Access automatically tells you when you try to enter a duplicate key value.
To avoid duplication, you can simply add the value of 1 to the sequence number.

TABLE 3-1

Deriving the Primary Key

Table Possible Derivation of Primary Key Value

tblContacts Individuals: AutoNumber field assigned by Access

tblSales Invoice Number: AutoNumber field assigned by Access.

tblSalesLineItems Invoice Number (from Sales) and an AutoNumber field set by Access

tblProducts Product Number, entered by the person putting in a new product

tblSalesPayments Invoice Number (from Sales) and an AutoNumber field set by Access

tblContactLog Contact ID (from Contacts) and an AutoNumber field set by Access

tblPaymentType Type of Payment: Visa, MasterCard, cash, and so on, used as lookup

tblCustomerTypes Type of Customer: Dealer, Auctioneer, Parts, and so on, used as lookup

tblSlaesperson Sales Person ID: AutoNumber field assigned by Access

tblTaxRates Tax Location: Entered by the person putting in a new record

tblCategories Category of Items: Entered by the person putting in a new record

Even though it is not difficult to use logic (implemented, perhaps, though VBA code) to generate
unique values for a primary key field, by far the simplest and easiest approach is to use
AutoNumber fields for the primary keys in your tables. The special characteristics of the
AutoNumber field (automatic generation, uniqueness, the fact that it cannot be changed, and so
on) make it the ideal candidate fore primary keys. Furthermore, an AutoNumber value is nothing
more than a 4-byte integer value, making it very fast and easy for the database engine to manage.
For all of these reasons, the Access Auto Auction exclusively uses AutoNumber fields as primary
keys in its tables.

You may be thinking that all these sequence numbers make it hard to look up information in your
tables. Just remember that, in most case, you never look up information by an ID field. Generally,
you look up information according to the purpose of the table. In the tblContacts table, for

111

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 111

example, you would look up information by customer name — last name, first name, or both.
Even when the same name appears in multiple records, you can look at other fields in the table
(zip code, phone number) to find the correct customer. Unless you just happen to know the con-
tact ID number, you’ll probably never use it in a search for information.

Recognizing the benefits of a primary key
Have you ever placed an order with a company for the first time and then decided the next day to
increase your order? You call the people at the order desk. They may ask you for your customer
number. You tell them that you don’t know your customer number. Next, they ask you for some
other information — generally, your zip code or telephone area code. Then, as they narrow down
the list of customers, they ask your name. Once they’ve located you in their database, they can tell
you your customer number. Some businesses use phone numbers or e-mail addresses as unique
starting points.

Database systems usually have more than one table, and these tend to be related in some manner.
For example, in the Access Auto Auctions database tblContacts and tblSales are related
to each other via a link field named Buyer in tblSales and ContactID in tblContacts.
The tblContacts table always has one record for each customer (buyer or seller), and the
tblSales table has a record for the sales invoice that the customer makes (every time he pur-
chases something). Because each customer is one physical person, you only need one record for the
customer in the tblContacts table.

Each customer can make many purchases, however, which means you need to set up another table
to hold information about each sale — thus, the tblSales table. Again, each invoice is one physi-
cal sale (on a specific day at a specific time). Each sale has one record in the tblSales table. Of
course, you need to have some way to relate the buyer to the sales that the buyer makes in the
tblSales table. This is accomplished by using a common field that is in both tables — in this
case, the Buyer field in tblSales and ContactID in tblContacts (which has the identical
type of information in both tables).

When linking tables, you link the primary key field from one table (the ContactID in the
tblContacts table) to a foreign key field in the second table that has the same structure and
type of data in it (the Buyer field in the tblSales table).

Besides being a common link field between tables, the primary key field in an Access database
table has these advantages:

n Primary key fields are always indexed, greatly speeding up queries, searches, and
sorts that involve the primary key field.

n Access forces you to enter a value (or automatically provides a value, in the case of
AutoNumber fields) every time you add a record to the table. You’re guaranteed that
your database tables conform to the rules of referential integrity.

n As you add new records to a table, Access checks for duplicate primary key values
and prevents duplicates entries, thus maintaining data integrity.

n By default, Access displays your data in primary key order.

112

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 112

An index is a special internal file that is created to put the records in a table in some
specific order. For instance, the primary key field in the tblContacts table is an index

that puts the records in order by ContactID field. Using an indexed table, Access uses the index to
quickly find records within the table.

Designating a primary key
From the preceding sections, you’re probably very well aware that choosing a table’s primary key is
an important step towards bulletproofing a database’s design. When properly implemented, pri-
mary keys help stabilize and protect the data stored in your Access databases. As you read the fol-
lowing sections, keep in mind that the cardinal rule governing primary keys is that the values
assigned to the primary key field within a table must be unique. Furthermore, the ideal primary
key is stable.

Single field versus composite primary keys
Sometimes, when an ideal primary key does not exist within a table as a single value, you may be
able to combine fields to create a composite primary key. For instance, it is unlikely that a first name
or last name alone is enough to serve as a primary key, but by combining first and last names with
birth dates, you may be able to come up with a unique combination of values to serve as the pri-
mary key. As you’ll see in the “Creating relationships and ensuring referential integrity” section,
later in this chapter, Access makes it very easy to combine fields as composite primary keys.

The rules governing composite keys are quite simple:

n None of the fields in a composite key can be null.

n Sometimes composing a composite key from data naturally occurring within the
table can be difficult. Sometimes records within a table differ by one or two fields, even
when many other fields may be duplicated within the table.

n Each of the fields can be duplicated within the table, but the combination of com-
posite key fields cannot be duplicated.

However, as with so many other issues in database design, composite keys carry a number of issues
with them. First of all, composite keys tend to complicate a database’s design. If you use three
fields in a parent table to define the table’s primary key, the same three fields must appear in every
child table. Also, ensuring that a value exists for all of the fields within a composite key (so that
none of the fields is null) can be quite challenging.

Most developers avoid composite keys unless absolutely necessary. In many cases, the problems
associated with composite keys greatly outweigh the minimal advantage of using composite keys
generated from data within the record.

Natural versus surrogate primary keys
Many developers maintain that you should only use natural primary keys. A natural key is derived
from data already in the table, such as a Social Security number or employee number. If no single
field is enough to uniquely identify records in the table, these developers suggest combining fields
to form a composite primary key (we describe this process later in this section).

TIPTIP

113

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 113

However, there are many situations where no “perfect” natural key exists in database tables.
Although a field like SocialSecurityNumber may seem to be the ideal primary key, there are a
number of problems with this type of data:

n The value is not universal. Not everyone has a Social Security number.

n The value may not be known at the time the record is added to the database.
Because primary keys can never be null, provisions must be made to supply some kind of
“temporary” primary key when the Social Security number is unknown, then other provi-
sions must be made to fix up the data in the parent and child tables once the value
becomes known.

n Values such as Social Security number tend to be rather large. A Social Security num-
ber is at least nine characters, even omitting the dashes between groups of numbers.
Large primary keys unnecessarily complicate things and run more slowly than smaller
primary key values.

By far the largest issue is that adding a record to a table is impossible unless the primary key value
is known at the time the record is committed to the database. Even if temporary values are inserted
until the permanent value is known, the amount of fix-up required in related tables can be consid-
erable. After all, you can’t change the value of a primary key if related child records exist in other
tables.

A majority of experienced Access developers have come to consistently use AutoNumber fields as
the primary keys in their tables. Although an AutoNumber value does not naturally occur in the
table’s data, because of the considerable advantages of using a simple numeric value that is auto-
matically generated and cannot be deleted or changed, in most cases an AutoNumber is the ideal
primary key candidate for most tables.

An artificially generated primary key is called a surrogate key. Historically, surrogate keys were only
used as a last resort when no suitable natural key was available. Increasingly, however, surrogate
keys are finding greater acceptance among database developers.

Creating primary keys
A primary key is created by opening a table in design view, selecting the field (or fields) that you
want to use as a primary key, and clicking the Primary Key button on the toolbar (the button with
the key on it). If you’re specifying more than one field to create a composite key, hold down the
Ctrl key while using the mouse to select the fields before clicking on the Primary Key toolbar
button.

If you choose to use a surrogate primary key, such as an AutoNumber field, add the field to the
table, select it, and click the Primary Key button on the toolbar.

The primary key is created when you save the table after designating the table’s primary key. You’ll
see an error message if Access detects a problem (such as null or duplicate values) during the save
process. Of course, there will be no problems with the selected primary key if the table contains no
records.

114

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 114

Creating relationships and enforcing
referential integrity
The Relationships window Database Ribbon icon lets you specify the relationships and referential
integrity rules you want to apply to the tables involved in a relationship. Creating a permanent,
managed relationship that ensures referential integrity between Access tables is easy:

1. Choose Database Tools ➪ Relationships.

The Relationships window appears.

2. Click on the Show Table button.

The Show Table dialog box (see Figure 3-15) appears.

FIGURE 3-15

Add the tables involved in a relationship in the Relationships window.

3. Drag the primary key field in the one-side table and drop it on the foreign key in
the many-side table.

In Figure 3-15, you would drag the OrderID field from tblBookOrders5 and drop-
ping it on OrderID in tblBookOrdersDetails. Access opens the Edit Relationships
dialog box to enable you to specify the details about the relationship you intend to form
between the tables. Notice that Access recognizes that the relationship between the
tblBookOrders5 and tblOrderDetails is a one-to-many.

4. Specify the referential details you want Access to enforce in the database.

In Figure 3-16, Access ensures that deletions in the tblBooksOrders5 table are rip-
pled to the tblOrderDetails table, deleting the corresponding records there.

115

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 115

FIGURE 3-16

You enforce referential integrity in the Edit Relationships dialog box.

In Figure 3-16 if the Cascade Delete Related Records check box were left unchecked,
Access would not permit you to delete records in tblBookOrders5 until all of the cor-
responding records in tblOrderDetails were first manually deleted. With this box
checked, deletions across the relationship are automatic.

5. Click the Create button.

Access draws a line between the tables displayed in the Relationships window, indicating
the type of relationship. In Figure 3-17, the 1 symbol indicates that tblBookOrders is
the “one” side of the relationship while the infinity symbol designates tblOrderDetails
as the “many” side.

FIGURE 3-17

A one-to-many relationship between tblBookOrders5 and
tblBookOrderDetails.

Specifying the Join Type between tables
The right side of the Edit Relations window has four buttons: Create, Cancel, Join Type, and Create
New. Clicking the Create button returns you to the Relationships window with the changes speci-
fied. The Cancel button cancels the current changes and returns you to the Relationships window.
The Create New button lets you specify an entirely new relation between the two tables and fields.

116

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 116

By default, when you process a query on related tables, Access only returns records that appear in
both tables. Considering the payroll example from the “Integrity Rules” section, earlier in this
chapter, this means that you would only see employees that have valid paycheck records in the
paycheck table. You would not see any employees who have not yet received a paycheck. Such a
relationship is sometimes called an equi-join because the only records that appear are those that
exist on both sides of the relationship.

However, the equi-join is not the only type of join supported by Access. Click on the Join Type
button to open the Join Properties dialog box. The alternative settings in the Join Properties dialog
box allow you to specify that you prefer to see all of the records from either the parent table or
child table, whether or not they are matched on the other side (it is possible to have an unmatched
child record as long as the parent foreign key is null). Such a join (call an outer join) can be very
useful because it accurately reflects the state of the data in the application.

In the case of the Access Auto Auction example, seeing all of the contacts, whether or not they
have records in the Sales table, is what you’re shooting for. To specify an outer join connecting con-
tacts to sales, perform these steps:

1. Click the Join Type button.

The Join Properties dialog box appears.

2. Click the Include ALL Records from ‘tblContacts’ and Only Those Records
from ‘tblSales’ Where the Joined Fields Are Equal check box.

The relationship between these tables should now look like what you see in Figure 3-18.

3. Click OK.

You’re returned to the Edit Relationships dialog box.

4. Click OK.

You’re returned to the Relationships window. The Relationships window should now
show an arrow going from the Contacts table to the Sales table. At this point, you’re
ready to set referential integrity between the two tables.

FIGURE 3-18

The Join Properties dialog box, used to set up the join properties between the
Contacts and Sales tables. Notice that it specifies all records from the Contacts
table.

117

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 117

Establishing a join type for every relationship in your database is not absolutely necessary. In the
following chapters, you’ll see that you can specify outer joins for each query in your application.
Many developers choose to use the default equi-join for all the relationships in their databases, and
to adjust the join properties on each query to yield the desired results.

Enforcing referential integrity
After using the Edit Relationships dialog box to specify the relationship, verify the table and related
fields, and specify the type of join between the tables, you should set referential integrity between
the tables. Select the Enforce Referential Integrity check box in the lower portion of the Edit
Relationships dialog box to indicate that you want Access to enforce the referential integrity rules
on the relationship between the tables.

If you choose not to enforce referential integrity, you can add new records, change key fields, or
delete related records without warnings about referential integrity violations — thus making it pos-
sible to change critical fields and damaging the application’s data. With no integrity active, you can
create tables that have orphans (Sales without a Contact). With normal operations (such as data
entry or changing information), referential integrity rules should be enforced.

Enforcing referential integrity also enables two other options (cascading updates and cascading
deletes) that you may find useful. These options can be checked in the Edit Relationships dialog
box, as shown in Figure 3-19.

FIGURE 3-19

Referential Integrity set between the tblSales and tblContacts tables

You might find, when you specify Enforce Referential Integrity and click the Create but-
ton (or the OK button if you’ve reopened the Edit Relationships window to edit a rela-

tionship), that Access will not allow you to create a relationship and enforce referential integrity. The
most likely reason for this behavior is that you’re asking Access to create a relationship that violates
referential integrity rules, such as a child table with orphans in it. In such a case, Access warns you by
displaying a dialog box similar to that shown in Figure 3-20. The warning happens in this example
because there are some records in the Sales table with no matching value in the Salesperson

NOTENOTE

118

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 118

table. This means that Access cannot enforce referential integrity between these tables because the
data within the tables already violate the rules.

FIGURE 3-20

A dialog box warning that referential integrity cannot be created between two tables due to integrity
violations

To solve any conflicts between existing tables, you can create a Find Unmatched query
by using the Query Wizard to find the records in the many-side table that violate refer-

ential integrity. Then you can convert the Unmatched query to a Delete query to delete the offending
records or add the appropriate value to the SalespersonID field.

You could remove the offending records and return to the Relationships window and set referential
integrity between the two tables. However, you should not do this, because Salesperson is not a
critical field that requires referential integrity to be set between these tables.

Choosing the Cascade Update Related Fields option
If you specify Enforce Referential Integrity in the Edit Relationships dialog box, Access enables the
Cascade Update Related Fields check box. This option tells Access that, as a user changes the con-
tents of a related field (the primary key field in the primary table — ContactID, for example), the
new ContactID is rippled through all related tables.

If this option is not selected, you cannot change the primary key value in the primary table that is
used in a relationship with another table.

If the primary key field in the primary table is a related field between several tables, this
option must be selected for all related tables or it won’t work.

Generally speaking, however, there are very few reasons why the value of a primary key may
change. The example we give in the “Connecting the Data” section, earlier in this chapter, of a
missing Social Security number is one case where you may need to replace a temporary Social
Security number with the permanent Social Security number after employee data have been added
to the database. However, when using AutoNumbers or other surrogate key values, there is
seldom any reason to have to change the primary key value once a record has been added to
the database.

NOTENOTE

TIPTIP

119

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 119

Choosing the Cascade Delete Related Records option
The Cascade Delete Related Records option instructs Access to delete all related child records when
a parent record is deleted. Although there are instances where this option can be quite useful, as
with so many other options, cascading deletes come with a number of warnings.

For example, if you have chosen Cascade Delete Related Records and you try to delete a particular
customer (who moved away from the area), Access first deletes all the related records from the
child tables — Sales and SalesLineItems— and then deletes the customer record. In other
words, Access deletes all the records in the sales line items for each sale for each customer — the
detail items of the sales, the associated sales records, and the customer record — with one step.

Perhaps you can already see the primary issue associated with cascading deletes. If all of a cus-
tomer’s sales records are deleted when the customer record is deleted, you have no way of properly
reporting historic financial data. You could not, for instance, reliably report on the previous year’s
sales figures because all of the sales records for “retired” customers have been deleted from the
database. Also, in this particular example, you would lose the opportunity to report on sales
trends, product category sales, and a wide variety of other uses of the application’s data.

To use this option, you must specify Cascade Delete Related Records for all of the
table’s relationships in the database. If you do not specify this option for all the tables in

the chain of related tables, Access will not allow cascade deleting.

Viewing all relationships
With the Relationships dialog box open, Choose View ➪ All Relationships to see all of the relation-
ships in the database. If you want to simplify the view you see in the Relationships window, you
can “hide” a relationship by deleting the tables you see in the Relationships window. Click on a
table, press the Delete key, and Access removes the table from the Relationships window. Removing
a table from the Relationships window does not delete any relationships between the table and
other tables in the database.

Make sure that the Required property of the foreign key field in the related table (in the
case of tblBookOrders5 and tblBookOrderDetails, the foreign key is OrderID in
tblBookOrderDetails) is set to Yes. This ensures that the user enters a value in the foreign
key field, providing the relationship path between the tables.

The relationships formed in the Relationships window are permanent and are managed by Access.
When you form permanent relationships, they appear in the Query Design window by default as
you add the tables (queries are discussed in detail in Chapters 3 and 4). Even without permanent
relationships between tables, you form temporary relationships any time you include multiple
tables in the Query Design window.

If you connect to a SQL Server back-end database or use the Microsoft Database Engine
and create an Access Data Project, the Relationships window is different. You can find

more about this subject in Chapter 28.

CROSS-REFCROSS-REF

TIPTIP

120

Access Building BlocksPart I

07_046732 ch03.qxp 11/21/06 8:46 AM Page 120

Deleting relationships
From time to time, you may find it necessary to delete relationships between tables. The
Relationships window is simply a picture of the relationships between tables. If you open the
Relationships window, click on each of the tables in the relationship and press the Delete key, you
delete the picture of the tables in the relationship, but not the relationship itself. You must first
click on the line connecting the tables and press Delete to delete the relationship, and then delete
each of the table pictures to completely remove the relationship.

Application-specific integrity rules
In addition to the referential integrity rules enforced by the Access database engine, you can estab-
lish a number of business rules that are enforced by the applications you build in Access. In many
cases, your clients or users will tell you the business rules that must be enforced by the application.
It is up to you as the developer to compose the Visual Basic code, table design, field properties, and
so on that implement the business rules expected by your users.

Typical business rules include items such as the following:

n The order entry clerk must enter his ID number on the entry form.

n Quantities can never be less than zero.

n The unit selling price can never be less than the unit cost.

n The order ship date must come after the order date.

Most often, these rules are added to a table at design time. Enforcing such rules goes a long way
toward preserving the value of the data managed by the database. For instance, in Figure 3-21, the
ValidationRule property of the Quantity field (“>=0”) ensures that the quantity cannot be a
negative number. If the inventory clerk tries to put a negative number into the Quantity field, an
error message box pops up containing the validation text (“Must not be a negative number”).

You can also establish a tablewide validation rule that provides some protection for the data in the
table. Unfortunately, only one rule can be created for the entire table, making it difficult to provide
specific validation text for all possible violations.

Other approaches to enforcing business rules involve building VBA code that checks and verifies
data entry at the form level, adding validation rules and validation text to controls on forms, and
applying effective error trapping techniques to all the forms and user interface components of an
application.

You can read examples of these techniques in Chapters 7, 8, and 10.CROSS-REFCROSS-REF

121

Designing Bulletproof Databases 3

07_046732 ch03.qxp 11/21/06 8:46 AM Page 121

FIGURE 3-21

A simple validation rule goes a long way toward preserving the database’s integrity.

Default values are a valuable way to eliminate and enforce some business rules. For instance,
in the case of an order entry form that requires the clerk’s identification, you can use the
CurrentUser() function (in a secured database) to return the user’s login ID. Very often, a little
clever programming is all you need to build an application that is secure, conforms to all business
rules, yet is still easy and flexible for its users.

Summary
This chapter examines the relationships between tables in an Access database, and how you nor-
malize the data for the best performance. We also studied the important topic of ensuring data
security through the built-in integrity rules that are enforced by the Jet database engine. Most
Access databases are built without adequate safeguards; make sure your database applications pro-
vide adequate protection for your user’s data.

We’re now ready to begin exploring using all that data. The next chapter takes on the challenging
topic of constructing powerful, useful queries that return the data in a variety of ways. As you’ll
soon see, building queries in Microsoft Access 2007 is about much more than simply asking the
database to return data to you. You’ll learn how to control the sort order, combine data from multi-
ple tables, and include expressions and other techniques that extend the flexibility of your queries.

Later, Chapter 5 explains the confusing topic of combining query operators such as AND and OR to
achieve the desired results in a query. Access uses the same operators in a number of different
places (such as VBA code and form and report design), so a firm understanding of this important
topic extends well beyond query construction.

122

Access Building BlocksPart I

07_046732 ch03.qxp 11/27/06 4:22 PM Page 122

Queries are an essential part of any database application. Queries are
the tools that enable you and your users to extract data from multi-
ple tables, combine it in useful ways, and present it to the user as a
datasheet, on a form, or as a printed report.

You may have heard the old cliché, “Queries convert data to information.” To
a certain extent, this statement is true (that’s why it’s a cliché). The data con-
tained within tables is not particularly useful because, for the most part, the
data in tables appears in no particular order. Also, in a properly normalized
database, important information is spread out among a number of different
tables. Queries are what draw these various data sources together and pre-
sent the combined information in such a way that users can actually work
with the data.

In this chapter, you learn what a query is and how to create them. Using the
Sales (tblSales), Contacts (tblContacts), Sales Line Items
(tblSalesLineItems), and Products (tblProducts) tables, you create
several types of queries for the Access Auto Auctions database.

This chapter will use the database named Chapter04.accdb. If
you haven’t already copied it onto your machine from the CD,

you should do so now.

Understanding Queries
A database’s primary purpose is to store and extract information. Information
can be obtained from a database immediately after you enter the data or
days, weeks, or even years later. Of course, retrieving information from
database tables requires knowledge of how the database is set up.

ON the CD-ROMON the CD-ROM

123

IN THIS CHAPTER
Understanding the different
types of Access queries

Creating queries

Selecting tables and fields for
queries

Displaying information in
queries

Sorting information in queries

Selecting specific records in
queries

Printing the results of queries

Adding more than one table to a
query

Working around query
limitations

Understanding types of joins

Changing the type of join

Creating an inner join and an
outer join

Selecting Data with Queries

08_046732 ch04.qxp 11/21/06 8:47 AM Page 123

For example, printed reports are often filed in a cabinet, arranged by date and by a sequence num-
ber that indicates when the report was produced. To obtain a specific report, you must know its
year and sequence number. In a good filing system, you may have a cross-reference book to help
you find a specific report. This book may have all reports categorized alphabetically by type of
report and, perhaps, by date. Such a book can be helpful, but if you know only the report’s topic
and approximate date, you still have to search through all sections of the book to find out where to
get the report.

Unlike manual databases, computer databases like Microsoft Access easily obtain information to
meet virtually any criteria you specify.

This is the real power of a database — the capacity to examine the data in more ways than you can
imagine. Queries, by definition, ask questions about the data stored in the database. Most queries
are used to drive forms, reports, and graphical representations of the data contained in a database.

What is a query?
The word query comes from the Latin word quærere, which means “to ask or inquire.” Over the
years, the word query has become synonymous with quiz, challenge, inquire, or question. So, think
of a query as a question or inquiry posed to the database about information contained in its tables.

A Microsoft Access query is a question that you ask about the information stored in your Access
tables. You build queries with the Access query tools, and then save it as a new object in your
Access database. Your query can be a simple question about data within a single table, or it can be
a more complex question about information stored in several tables. After you submit the question,
Microsoft Access returns only the information you requested.

Using queries this way, you ask the Access Auto Auctions database to show you only trucks that
were sold in the year 2007. To see the types of trucks sold for the year 2007, you need information
from three tables: tblSales, tblSalesLineItems, and tblProducts. Figure 4-1 is a
typical Query Design window. Although it may look complex, it’s actually very simple and easy to
understand.

After you create and run a query, Microsoft Access retrieves and displays the requested records as a
datasheet. This set of records is called a recordset, which is the set of records selected by a query. As
you’ve seen, a datasheet looks just like a spreadsheet, with its rows of records and columns of
fields. The datasheet (of the recordset) can display many records simultaneously.

You can easily filter information from a single table using the Search and Filter capabilities of a
table’s datasheet view (Filter by Selection and Filter by Form). Queries allow you to view informa-
tion from a single table, or from multiple tables at the same time (as in Figure 4-1). Many database
queries extract information from several tables.

124

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 124

FIGURE 4-1

A typical three-table select query. This query displays the sales date, number of trucks, and type of truck for
all trucks sold in the year 2007.

Clicking the Datasheet View button on the toolbar shows six records matching the query shown in
Figure 4-1. This is a relatively easy-to-design query when you understand how to use the Access
query designer. This simple query has many elements that demonstrate the power of the Access
query engine: sorting a result set of records, specifying multiple criteria, and even using a complex
Or condition in one of those fields.

You can build very complex queries using the same query designer. Suppose, for instance, that you
want to send a notice to all previous buyers of more than one car in the past year that several new
cars are available for auction. This type of query requires getting information from four tables:
tblContacts, tblSales, tblSalesLineItems, and tblProducts. The majority of the
information you need is in tblContacts and tblProducts.

In this case, you want Access to show you a datasheet of all Contact names and addresses where
they have met your specified criteria (two or more cars purchased in 2007). In this case, Access
retrieves customer names and cities from the tblContacts table and then obtains the number of
cars from the tblProducts table, and the year of sale from the tblSales table. Figure 4-2
shows this relatively complex query. Access then takes the information that’s common to your crite-
ria, combines it, and displays all the information in a single datasheet. This datasheet is the result
of a query that draws from the tblContacts, tblSales, tblSalesLineItems, and
tblProducts tables. The database query performed the work of assembling all the information
for you. Figure 4-3 shows the resulting datasheet.

125

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 125

FIGURE 4-2

A more complex query returning customers that purchased more than one car in 2007.

FIGURE 4-3

The resulting datasheet of the query shown in Figure 4-2.

Types of queries
Access supports many different types of queries, grouped into six basic categories:

n Select: These are the most common types of query. As its name implies, the select query
selects information from one or more tables, creating a recordset. Generally speaking, the
data returned by select query is updatable and is often used to populate forms and
reports.

n Total: These are special type of select queries. Total queries provide sums or other calcu-
lations (such as count) from the records returned by a select query. Selecting this type of
query adds a Total row in the QBE (Query by Example) grid.

n Action: These queries enable you to create new tables (Make Tables) or change data
(delete, update, and append) in existing tables. Action queries affect many records as a
single operation.

126

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 126

n Crosstab: These queries can display summary data in cross-tabular form like a spread-
sheet, with row and column headings based on fields in the table. The individual cells of
the recordset are computed or calculated from data in the underlying tables.

n SQL: There are three SQL (Structured Query Language) query types — Union, Pass-
Through, and Data Definition. These queries are used for advanced database manipula-
tion, such as working with client/server SQL databases like SQL Server or Oracle. You
create these queries by writing specific SQL statements.

n Top(n): Top(n) queries enable you to specify a number or percentage of records you want
returned from any type (select, total, and so on) of query.

Query capabilities
Queries are flexible. They provide the capability of looking at your data in virtually any way you
can imagine. Most database systems are continually evolving and changing over time. Very often,
the original purpose of a database is very different from its current use.

Here is a sampling of what you can do with Access queries:

n Choose tables: Obtain information from a single table or from many tables that are
related by some common data. Suppose you’re interested in seeing the customer name
along with the items purchased by each type of customer. When using several tables,
Access returns the data as a combined single datasheet.

n Choose fields: Specify which fields from each table you want to see in the recordset. For
example, you can select the customer name, zip code, sales date, and invoice number
from tblContacts and tblSales.

n Choose records: Select records based on selection criteria. For example, you may want
to see records for only sellers in tblContacts.

n Sort records: You may want to sort records in a specific order. For example, you may
need to see customers sorted by last name and first name.

n Perform calculations: Use queries to perform calculations on data. Perform calculations
such as averaging, totaling, or counting fields and records.

n Create tables: Create a new table based on data returned by a query.

n Base forms and reports on queries: The recordset you create from a query may have
just the right fields and data needed for a report or form. Basing a form or report on a
query means that, every time you print the report or open the form, you will see the most
current information in the tables.

n Create graphs based on queries: Create graphs from data returned by a query.

n Use a query as a source of data for other queries (subquery): Create additional queries
based on records returned by another query. This is very useful for performing ad hoc
queries, where you may repeatedly make small changes to the criteria. In this case, the sec-
ond query is used to change the criteria while the first query and its data remain intact.

127

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 127

n Make changes to tables: Access queries can obtain information from a wide range of
sources. You can retrieve data stored in dBASE, Paradox, Btrieve, and Microsoft SQL
Server databases, as well as Excel spreadsheets, text files, and other data sources.

How recordsets work
Access takes the records that result from a query and displays them in a datasheet. The set of
records is commonly called (oddly enough) a recordset. Physically, a recordset looks much like a
table. A recordset is, in fact, a dynamic set of records. The set of records returned by a query is not
stored within the database, unless you have directed access to build a table from those records.

When you close a query, the query’s recordset is gone; it no longer exists. Even though the recordset
itself no longer exists, the data that formed the recordset remains stored in the underlying tables.

When you run a query, Access places the returned records into a recordset. When you save the
query, only the structure of the query is saved, and not the returned records. Consider these
benefits of not saving the recordset to a physical table:

n A smaller amount of space on a storage device (usually a hard drive) is needed.

n The query uses updated versions of records.

Every time the query is executed, it reads the underlying tables and re-creates the recordset.
Because recordsets themselves are not stored, a query automatically reflects any changes to the
underlying tables made since the last time the query was executed — even in a real-time, multiuser
environment.

Creating a Query
After you create your tables and place data in them, you’re ready to work with queries. To begin a
query, choose the Create ribbon, and click on the Query Design button in the Other group. Access
opens the query designer in response.

Figure 4-4 shows two windows. The underlying window is the Query Designer. Floating on top of
the designer is the Show Table dialog box. The Show Table window is modal, which means that
you must do something in the dialog box before continuing with the query. Before you continue,
you add the tables required for the query. In this case, tblProducts is highlighted to be added.

The Show Table dialog box shown in Figure 4-5 displays all tables and queries in your database.
Double-click on tblProducts to add it to the query design. Close the Show Table dialog box
after adding tblProducts. Figure 4-5 shows tblProducts added to the query.

128

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 128

FIGURE 4-4

The Show Table dialog box in the Query Design window.

FIGURE 4-5

The Query Design window with tblProducts added to the Query Designer.

To add additional tables to the query, right-click on the query’s design surface and select Show
Table from the shortcut menu that appears. Alternatively, drag tables from the Navigation pane on
to the Query Designer’s surface.

Removing a table from the Query Designer is easy. Just right-click on the table in the Query
Designer and select Remove Table from the shortcut menu.

129

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 129

Using the Query window
The Query window has two main views: Design view and Datasheet view. The difference between
them is self-explanatory: The Design view is where you create the query, and the Datasheet view
displays the records returned by the query.

The Query Design window should now look like Figure 4-5, with tblProducts displayed in the
top half of the Query Design window.

The Query Design window consists of two sections:

n The table/query entry pane (top)

n The Query by Example (QBE) design grid (bottom)

The upper pane is where tables or queries and their fields are displayed. Tables and queries are dis-
played as small windows inside the top pane (the proper name of this window is Field List). The
Field List window can be resized by clicking on the edges and dragging it to a different size.

The Query by Example (QBE) grid holds the field names involved in the query and any criteria
used to select records. Each column in the QBE grid contains information about a single field from
a table or query contained within the upper pane.

Navigating the Query Design window
The two window panes are separated horizontally by a pane-resizing bar (see Figure 4-5). Move
the bar up or down to change the relative sizes of the upper and lower panes.

Switch between the upper and lower panes by clicking the desired pane or by pressing F6 to
switch panes. Each pane has horizontal and vertical scrollbars to help you move around.

You actually build the query by dragging fields from the upper pane to the QBE grid.

Using the Query Design ribbon
The Query Design ribbon (shown in Figure 4-6) contains many different buttons specific to build-
ing and working with queries.

FIGURE 4-6

The Query Design ribbon

130

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 130

This ribbon has many buttons that can be helpful when designing your queries. Although each
button is explained as it is used in the chapters of this book, here are the main buttons:

n View: Switches between the Datasheet view and Design view. The View drop-down con-
trol also enables you to display the underlying SQL statement behind the query (more on
this later).

n Save (in the Quick Access Toolbar): Saves the query. It is a good idea to save your work
often, especially when creating complex queries.

n Make Table, Append, Update, and Crosstab: Specify the type of query you are
building.

n Run: Runs the query. Displays a select query’s datasheet, serving the same function as the
View button. However, when working with action queries, it actually performs the opera-
tions specified by the query.

n Show Table: Opens the Show Table dialog box.

The remaining buttons are used for more creating more advanced queries, printing the contents of
the query, and displaying a query’s property sheet.

Using the QBE grid of the Query Design window
As you saw earlier, Figure 4-5 displays an empty QBE grid, which has six labeled rows:

n Field: Where field names are entered or added.

n Table: Shows the table the field is from (useful in queries with multiple tables).

n Sort: Enables sorting instructions for the query.

n Show: Determines whether to display the field in the returned recordset.

n Criteria: Criteria that filter the returned records.

n or: This row is the first of a number of rows to which you can add multiple query criteria.

You learn more about these rows as you create queries in this chapter.

Selecting Fields
There are several ways to add fields to a query. You can add fields one at a time, select and add
multiple fields, or select and add all fields. You use your keyboard or mouse to add fields.

Adding a single field
You add a single field in several ways. One method is to double-click the field name in the Field
List (also called a Table window); the field name immediately appears in the first available column
in the QEB pane. Alternatively, drag a field from a table in the top portion of the query designer,

131

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 131

and drop it on a column in the QBE grid. Dropping a field between two other fields in the QBE
grid pushes other fields to the right.

Another way to add fields to the QBE grid is to click an empty Field cell in the QBE grid, and
select the field name from the drop-down list in the cell, or type the field’s name into the cell.
Figure 4-7 shows selecting the Cost field from the drop-down list. Once selected, simply move to
the next field cell and select the next field you want to see in the query.

FIGURE 4-7

Adding fields in the QBE grid. Clicking the down arrow reveals a drop-down list from which you select
a field.

You’ll find a similar list of all the tables in the query in a drop-down list in the Table row of the
QBE grid.

After selecting the fields, run the query by clicking the Datasheet button or the Run button on the
ribbon. Click the Design View button on the ribbon to return to the design window.

Adding multiple fields
You add multiple fields in a single action by selecting the fields from the Field List and dragging
them to the QBE grid. The selected fields do not have to be contiguous (one after the other). Hold
down the Shift key while selecting multiple fields. Figure 4-8 illustrates the process of adding mul-
tiple fields.

132

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 132

FIGURE 4-8

Selecting several fields to move to the QBE grid.

The fields are added to the QBE grid in the order in which they occur in the table.

You can also add all the fields in the table by clicking on the Field List’s header (where it says
tblProducts in Figure 4-9) to highlight all the fields in the table. Then drag the highlighted
fields to the QBE grid.

Alternatively, click and drag the asterisk (*) from the Field List to the QBE grid. Although this
action does not add all the fields to the QBE grid, the asterisk directs Access to include all fields in
the table in the query.

FIGURE 4-9

Adding the asterisk to the QBE grid selects all fields in the table.

133

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 133

Unlike selecting all the fields, the asterisk places a reference to all the fields in a single column.
When you drag multiple columns, as in the preceding example, you drag names to the QBE grid. If
you later change the design of the table, you also have to change the design of the query. The
advantage of using the asterisk for selecting all fields is that changes to the underlying tables don’t
require changes to the query. The asterisk means to select all fields in the table, regardless of the
field names or changes in the number of fields in the table.

The downside of using the asterisk to specify all fields in a table is that the query, as instructed,
returns all the fields in a table, whether or not every field is used on a form or report.

Displaying the Recordset
Click the Run button or the Datasheet button to view the query’s results (see Figure 4-10).

FIGURE 4-10

The datasheet view of the query

Working with records in Datasheet view is covered in detail in Chapter 6. As you can see in that
chapter, filtering, sorting, rearranging, and searching within a datasheet is quite easy. Our simple
select query did not transform the data in any way, so the data shown in Figure 4-10 is completely
editable. We can modify existing data, delete rows, and even add new records to this data set, if
we want.

When you’re working with data in the datasheet, all the table and field properties defined at the
table level are in effect. Therefore, validation rules, default values, and other properties assert
themselves even though the datasheet is the result of a query.

134

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 134

Earlier versions of Access referred to an updatable datasheet as a Dynaset. This expression empha-
sized the fact that the datasheet was dynamically linked to its underlying data sources. However,
this expression has fallen by the wayside because, very often the data in a query’s datasheet is not
updatable. For instance, transforming the data in any way, such as combining first and last names
as a single field, makes the datasheet non-updatable. You’ll see data transformations later in this
chapter and in many other chapters in this book.

At any time, clicking the Design View button on the ribbon returns you to Query Design mode.

Working with Fields
There are times when you want to work with the fields you’ve already selected — rearranging their
order, inserting a new field, or deleting an existing field. You may even want to add a field to the
QBE grid without showing it in the datasheet. Adding a field without showing it enables you to
sort on the hidden field, or to use the hidden field as criteria.

Selecting a field in the QBE grid
Before you can move a field’s position, you must first select it. To select it, you will work with the
field selector row.

The field selector row is the narrow gray area at the top of each column in the QBE grid at the bot-
tom of the Query Designer. Recall that each column represents a field. To select the Category field,
move the mouse pointer until a small selection arrow (in this case, a dark downward arrow) is visi-
ble in the selector row and then click the column. Figure 4-11 shows the selection arrow above the
Category column just before it is selected.

FIGURE 4-11

Selecting a column in the QBE grid. The pointer changes to a downward-pointing arrow when you move
over the selection row.

135

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 135

Select multiple contiguous fields by clicking the first field you wish to select and then
dragging across the field selector bars of the other fields.

Changing field order
The left-to-right order in which fields appear in the QBE grid determines the order in which they
appear in Datasheet view. You may want to move the fields in the QBE grid to achieve a new
sequence of fields in the query’s results. With the fields selected, you can move the fields on the
QBE design by simply dragging them to a new position.

Left-click on a field’s selector bar, and, while holding down the left mouse button, drag the field
into a new position in the QBE grid.

Figure 4-12 shows the Category field highlighted. As you move the selector field to the left, the
column separator between the fields ProductID and Description changes (gets wider) to
show you where Category will go.

FIGURE 4-12

Moving the Category field to between ProductID and Description. Notice the QBE field icon
below the arrow near the Description column.

Resizing columns in the QBE grid
The QBE grid generally shows five or six fields in the viewable area of your screen. The remaining
fields are viewed by moving the horizontal scroll bar at the bottom of the window.

There are times that you may want to shrink some fields to be able to see more columns in the QBE
grid. You adjust the column width to make them smaller (or larger) by moving the mouse pointer to
the margin between two fields, and dragging the column resizer left or right (see Figure 4-13). An

TIPTIP

136

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 136

easier way to resize columns in the QBE grid is to double-click on the line dividing two columns in
the grid. Access “auto-sizes” the column to fit the data displayed in the column.

FIGURE 4-13

Resizing columns in the QBE grid

Removing a field
Remove a field from the QBE grid by selecting the field (or fields) and pressing the Delete key. You
can also right-click on a field’s selector and choose Cut from the shortcut menu.

Inserting a field
Insert new fields in the QBE grid by dragging a field from a Field List above the QBE grid and
dropping it onto a column in the QBE grid. The new column is inserted to the left of the column
you dropped the field on. Double-clicking a field in a Field List adds the new column at the far
right position in the QBE grid.

Providing an alias for the field name
To make the query datasheet easier to read, you can provide aliases for the fields in your query. An
alias becomes the field’s heading in the query’s datasheet, but does not affect the field’s name or
how the data is stored and used by Access. Aliases are sometimes useful to help users better under-
stand the data returned by a query. As you will see in Chapter 18, data in queries are often trans-
formed by performing simple operations such as combining a person’s first and last name as a
single field. In these situations, aliases are very useful because they provide an easily recognizable
reference to the transformed data.

137

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 137

To follow along with this example, create a query using the fields from the tblProducts as
shown in Figure 4-12. Follow these steps to establish an alias for the ProductID and
Description fields:

1. Click to the left of the P of the ProductID column in the top row of the QBE grid.

2. Type Product-Number followed by a colon (:) to the left of ProductID.

3. Click to the left of the D in the Description column and enter Product Description: to
the left of the field name.

When you run the query, the aliases you created appear as the column headings.
Figure 4-14 shows both the query in Design view and the query’s datasheet. Notice that
the ProductID and Description column sport their new aliases instead of their
respective field names.

FIGURE 4-14

Aliases can be useful to help users understand data.

Aliases should be used with caution, however. Because an alias masks the name of the field under-
lying a datasheet, it’s easy to become confused which column headings are aliases and which are
field names. It is a complete waste of time looking for a field named ProductDescription,
based on a datasheet column heading. It would be nice if Access somehow distinguished between
aliases and field names in Datasheet view, but the only way to know for sure is to examine the
query’s design.

Showing a field
While performing queries, you may want to show only some of the fields in the QBE grid.
Suppose, for example, you’ve chosen ContactType, FirstName, LastName, Address, City,

138

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 138

and State. Then you decide that you want to temporarily look at the same data, without the
ContactType and Address fields. You could start a new query adding all of the fields except
Address and ContactType, or you can simply “turn off” the Address and ContactType
fields by unchecking the check box in the Show row of each of these columns (see Figure 4-15).

FIGURE 4-15

The Show check box is unchecked for the Address and ContactType fields.

By default, every field you add to the QBE grid has its Show check box selected.

Another common reason to hide a field in the query is because the field is used for searching or
sorting, but its value is not needed in the query. For instance, consider a query involving the
invoices from the Access Auto Auctions database. For a number of reasons, the users may want to
see the invoices sorted by the order date, even though the actual order date is irrelevant for this
particular purpose. Simply include the OrderDate field in the QBE grid, set the sort order for the
OrderDate field, and uncheck its Show box. Access sorts the data by the OrderDate field even
though the field is not shown in the query’s results.

If you save a query that has an unused field (its Show box is unchecked and no criteria
or sort order is applied to the field), Access eliminates the field from the query. The next

time you open the query, the field will not be included in the query’s design.

Changing the Sort Order
When viewing a recordset, you often want to display the data in a sorted order. You may want to
sort the recordset to make it easier to analyze the data (for example, to look at all the
tblProducts sorted by category).

CAUTION CAUTION

139

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 139

Sorting places the records in alphabetical or numeric order. The sort order can be ascending (0 to 9
and A to Z) or descending (9 to 0 and Z to A). You can sort on a single field or multiple fields.

You input sorting directions in the Sort row in the QBE grid. To specify a sort order on a particular
field (such as LastName), perform these steps:

1. Position the cursor in the Sort cell in the LastName column.

2. Click the drop-down list that appears in the cell, and select the sort order
(Ascending or Descending) you want to apply.

Figure 4-16 shows the QBE grid with ascending sorts specified for the LastName and
FirstName fields. Notice that the LastName field is still showing the sort options avail-
able. Also notice that the word Ascending is being selected in the field’s Sort: cell.

FIGURE 4-16

An ascending sort has been specified for the LastName and FirstName fields.

You cannot sort on a Memo or an OLE object field.

The left-to-right order in which fields appear in the QBE grid is important when sorting on more
than one field. Not only to the fields appear in the datasheet in left-to-right order, they are sorted
in the same order (this is known as sort order precedence). The leftmost field containing sort crite-
ria is sorted first, the first field to the right containing sort criteria is sorted next, and so on. In the
example shown in Figure 4-16, the LastName field is sorted first, and then the FirstName field.

Figure 4-17 shows the results of the query shown in Figure 4-16. Notice that the data is sorted by
the values in the LastName column, and the values in the FirstName column are sorted within
each name in the LastName column. This is why Ann Bond appears before John Bond in the
query’s data.

NOTENOTE

140

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 140

FIGURE 4-17

The order of the fields is critical when sorting on multiple fields.

Displaying Only Selected Records
So far, you’ve been working with all the records of the tblContacts and tblProducts tables.
Most often users want to work only with records conforming to some criteria. Otherwise, too many
records may be returned by a query, causing serious performance issues. For example, you may
want to look only at contacts that are buyers and not sellers. Access makes it easy for you to specify
a query’s criteria.

Understanding selection criteria
Selection criteria are simply filtering rules applied to data as it is extracted from the database.
Selection criteria instruct Access which records you want to look at in the recordset. A typical crite-
rion might be “all sellers,” or “only those vehicles that are not trucks,” or “cars with retail prices
greater than $45,000.”

Selection criteria limit the records returned by a query. Selection criteria aid the user by selecting
only the records a user wants to see, and ignoring all the others.

You specify criteria in the Criteria row of the QBE grid. You designate criteria as an expression. The
expression can be as a simple example (like “Trucks” or “Not Trucks”) or can take the form of com-
plex expressions using built-in Access functions.

Entering simple string criteria
Character-type criteria are applied to Text-type fields. Most often, you will enter an example of the
text you want to retrieve. Here is a small example that returns only product records where the
product type is “Cars”:

141

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 141

1. Add tblProducts and choose the Description, Category, and Cost fields.

2. Type CARS into the Criteria cell under the Category column.

3. Run the query.

Only cars are displayed — in this case, 25 records (see Figure 4-18). Observe that you did
not enter an equal sign or place quotes around the sample text, yet Access added double
quotes around the value. Access, unlike many other database systems, automatically
makes assumptions about what you want.

FIGURE 4-18

Specifying character criteria. In this case, because you want to see only cars, you enter
“CARS” as the criteria.

Figure 4-18 shows both the query design and the datasheet resulting from the query. This figure
also illustrates one reason you may wish to hide a column in a query. There’s no point in displaying
“Cars” and every row in the third column. In fact, because this query only returns information
about cars, the user can very well assume that every record references a car and there’s no need to
display a product category in the query. Unchecking the Category’s Show box in the queries design
would remove the Category column from the datasheet, making the data easier to understand.

You could enter the criteria expression in any of these other ways:

n CARS

n = CARS

n “CARS”

n = “Cars”

142

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 142

By default, Access is not case sensitive, so any form of the word cars works just as well as this
query’s criteria.

Figure 4-18 is an excellent example for demonstrating the options for various types of simple char-
acter criteria. You could just as well enter “Not Cars” in the criteria column, to return all products
that are not cars (trucks, vans, and so on).

Generally, when dealing with character data, you enter equalities, inequalities, or a list of values
that are acceptable.

This capability is a powerful tool. Consider that you have only to supply an example and Access
not only interprets it but also uses it to create the query recordset. This is exactly what Query by
Example means: You enter an example and let the database build a query based on the example.

To erase the criteria in the cell, select the contents and press Delete, or select the contents and
Right Click Cut from the shortcut menu that appears. You can also right-click Paste to revert to the
previous content (in this case, a blank cell).

Entering other simple criteria
You can also specify criteria for Numeric, Date, and Yes/No fields. Simply enter the example
data in the criteria field.

It is also possible to add more than one criteria to a query. For example, suppose that you want to
look only at contacts who are both sellers and buyers (“BOTH” type in the ContactType field),
and those contacts have been customers since January 1, 2007 (where OrigCustDate is greater
or equal to January 1, 2007). This query requires criteria in both the ContactType and
OrigCustDate fields. To do this, it is critical that you place both examples on the same Criteria
row. Follow these steps to create this query:

1. Create a new query starting with tblContacts.

2. Add ContactType, FirstName, LastName, State, and OrigCustDate to the
QBE grid.

3. Enter BOTH in the Criteria cell in the ContactType column.

4. Enter >= 01/01/07 in the Criteria cell in the OrigCustDate column.

5. Run the query.

Figure 4-19 shows how the query should look.

Access displays records of contacts that are both sellers and buyers that became customers after
January 1, 2007 — in this example, two contact records.

Multi-criteria queries are covered in depth in Chapter 18.CROSS-REFCROSS-REF

143

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 143

FIGURE 4-19

Specifying character and date criteria in the same query

Access uses comparison operators to compare Date fields to a value. These operators include less
than (<), greater than (>), equal to (=), or a combination of these operators. Notice that Access
automatically adds pound sign (#) delimiters around the date value. Access uses these delimiters to
distinguish between date and text data. The pound signs are just like the quote marks Access
added to the “Cars” criteria. Because the OrigCustDate is a DateTime field, Access under-
stands what you want and inserts the proper delimiters for you.

Operators and precedence are covered more in Chapter 5.

Printing a Query’s Recordset
After you create your query, you can easily print all the records in the recordset. Although you can’t
specify a type of report, you can print a simple matrix-type report (rows and columns) of the
recordset created by your query.

You do have some flexibility when printing a recordset. If you know that the datasheet is set up
just as you want, you can specify some options as you follow these steps:

1. Use the datasheet you just created for both sellers and buyers that have been cus-
tomers since 01/01/2007.

2. If you are not in the Datasheet view, switch to the Query Datasheet mode by click-
ing the Datasheet button on the ribbon.

3. Choose File ➪ Print from the Query Datasheet window’s ribbon

4. Specify the print options that you want in the Print dialog box and click OK.

The printout reflects all layout options in effect when you print the dataset. Hidden columns do
not print, and gridlines print only if the Gridlines option is on. The printout reflects the specified
row height and column width.

CROSS-REFCROSS-REF

144

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 144

Saving a Query
Click the Save button at the top of the Access screen to save your query. Access asks you for the
name of the query if this is the first time the query has been saved.

After saving the query, Access returns you to the mode you were working in. Occasionally, you
will want to save and exit the query in a single operation. To do this, click the Close Window but-
ton in the upper-right corner of the Query Designer. Access always asks you to confirm saving the
changes before it actually saves the query.

Adding More Than One Table to a Query
Using a query to obtain information from a single table is common; often, however, you need
information from several related tables. For example, you may want to obtain a buyer’s name and
vehicle type purchased by the contact. This query requires four tables: tblContacts,
tblSales, tblSalesLineItems, and tblProducts.

In Chapter 2, you learned the importance of primary and foreign keys and how they link tables
together. You learned how to use the Relationships window to create relationships between tables.
Finally, you learned how referential integrity affects data in tables.

After you create the tables for your database and decide how the tables are related to one another,
you are ready to build multiple-table queries to obtain information from several related tables. The
query combines data from multiple tables and presents the data as if it existed in one large table.

The first step in creating a multiple-table query is to add the tables to the Query window:

1. Create a new query by clicking the Query Design button in the Create ribbon tab.

2. Select tblContacts, tblSales, tblSalesLineItems, and tblProducts by
double-clicking each table’s name in the Show Table dialog box.

3. Click the Close button in the Show Table dialog box.

You can also add each table by highlighting the table in the list separately and
clicking Add.

Figure 4-20 shows the top pane of the Query Design window with the four tables you
just added. Because the relationships were set at table level, the join lines are automati-
cally added to the query.

You can add more tables, at any time, by choosing Query ➪ Show Table from the Query
Design Ribbon.NOTENOTE

NOTENOTE

145

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 145

FIGURE 4-20

The Query Design window with four tables added. Notice the join lines are already
present.

Working with the Table/Query Pane
As Figure 4-20 shows, a join line connects tables in the Query Designer. The join line connects the
primary key in one table to the foreign key in another table.

These lines were predrawn because you already set the relationships between the tables
earlier in Chapter 4.

The join line
A join line represents the relationship between two tables in the Access database. In this example, a
join line goes from tblSales to tblContacts, connecting ContactID in the tblContacts
table to the Buyer field in tblSales. There are other join lines connecting the other tables in
this query.

The join line is automatically created because relationships were set in the relationship builder. If
Access already knows about the relationship, it adds the join line when the tables are added to
a query.

If Referential Integrity is set on the relationship, Access displays a thicker line where the join line
connects to the table in the Query Designer. This variation in line thickness tells you that
Referential Integrity is set between the two tables. If a one-to-many relationship exists, the many-
side table is indicated by an infinity symbol (∞).

Access will auto join to tables if the following conditions are met:

n Both tables have fields with the same name.

n The same-named fields are the same data type (text, numeric, and so on).

n One of the field is a primary key in its table.

CROSS-REFCROSS-REF

146

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 146

Access 2007 automatically attempts to join the tables if a relationship exists. Access
cannot set referential integrity on the join line.

Manipulating the Field List window
Each Field List window begins at a fixed size, which shows approximately four fields and perhaps
12 characters for each field. Each Field List is a resizable window and can be moved within the
Query Designer. If there are more fields than will show in the Field List window, a scroll bar
enables you to scroll through the fields in the Field List.

After a relationship is created between tables, the join line remains between the two
fields. As you move through a table selecting fields, the line moves relative to the linked

fields. For example, if the scroll box moves down (toward the bottom of the window) in tblContacts,
the join line moves up with the customer number, eventually stopping at the top of the table window.

When you’re working with many tables, these join lines can become confusing as they cross or
overlap. As you scroll through the table, the line eventually becomes visible, and the field it is
linked to becomes obvious.

Moving a table
Move the Field Lists by grabbing the title bar of a Field List (where the name of the table is) with
the mouse and dragging the Field List to a new location. You may want to move the Field Lists for
a better working view or to clean up a confusing query diagram.

You can move and resize the Field Lists anywhere in the top pane. Access saves the arrangement
when you save and close the query. Generally speaking, the Field Lists will appear in the same con-
figuration the next time you open the query.

Removing a table
There are times when you need to remove tables from a query. Any table can be removed from the
Query window. Use the mouse to select the table you want to remove in the top pane of the Query
window and press the Delete key. Or right-click on the Field List and choose Removed Table from
the shortcut menu.

When you delete a table, join lines to that table are deleted as well. When you delete a
table, there is no warning or confirmation dialog box. The table is simply removed from

the screen, along with any of the table’s fields added to the QBE grid.

Adding more tables
You may decide to add more tables to a query or you may accidentally delete a table and need to
add it back. You accomplish this task by clicking on the Show Table button on the Query Setup
group in the Design ribbon. The Show Table dialog box appears in response to this action.

CAUTION CAUTION

NOTENOTE

TIPTIP

147

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 147

Adding Fields from More Than One Table
You add fields from more than one table to the query in exactly the same way as when you’re
working with a single table. You can add fields one at a time, multiple fields as a group, or all the
fields from a table.

If you type a field name in an empty Field cell that has the same name in more than one
table, Access enters the field name from the first table that it finds containing the field

name.

If you select the field from the drop-down list in the Field cell, you see the name of the table first,
followed by a period and the field name. For example, the ProductID in tblSalesLineItems
is displayed as tblSalesLineItems.ProductID. This helps you select the right field name. Using this
method, you can select a common field name from a specific table.

The easiest way to select fields is still to double-click the field names in the top half of the Query
Designer. To do so, you may have to resize the Field Lists to see the fields that you want to select.

Viewing the table names
When you’re working with two or more tables, the field names in the QBE grid can become con-
fusing. You may find yourself asking, for example, just which table the field is from.

Access automatically maintains the table name that is associated with each field displayed in the
QBE grid. Figure 4-21 shows the Query Designer with the name of each table displayed under the
field name in the QBE grid.

FIGURE 4-21

The QBE grid with table names displayed. Notice that it shows all four table names.

After you add fields to a query, you can view the returned records at any time. Figure 4-22 shows
the data returned by the query in Figure 4-21.

CAUTION CAUTION

148

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 148

FIGURE 4-22

Datasheet view of data from multiple tables. This resulting recordset, from the query, contains 84 records.

Adding multiple fields
The process of adding multiple fields in a multi-table query is identical to adding multiple fields in
a single-table query. When you’re adding multiple fields from several tables, you must add them
from one table at a time. The easiest way to do this is to select multiple fields and drag them
together down to the QBE grid.

You can select multiple contiguous fields by clicking the first field of the list and then clicking the
last field while holding down the Shift key. You can also select noncontiguous fields in the list by
holding down the Ctrl key while clicking individual fields with the mouse.

Selecting the * does have one drawback: You cannot specify criteria on the asterisk col-
umn itself. You have to add an individual field from the table and enter the criterion. If

you add a field for a criterion (when using the *), the query displays the field twice — once for the *
field and a second time for the criterion field. Therefore, you may want to deselect the Show cell of
the criterion field.

Understanding Multi-Table
Query Limitations
When you create a query with multiple tables, there are limits to which fields can be edited.
Generally, you can change data in a query’s recordset, and your changes are saved in the underlying
tables. The main exception is a table’s primary key — a primary key value cannot be edited if refer-
ential integrity is in effect and if the field is part of a relationship.

CAUTION CAUTION

149

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 149

To update a table from a query, a value in a specific record in the query must represent a single
record in the underlying table. This means that you cannot update fields in a query that transforms
data because most transformations group records and fields display aggregate information. Each
field in a transformed recordset represents multiple fields in the underlying tables. There is no way
to change the data in a transformed field and have it reflected in the underlying tables.

Updating limitations
In Access, the records in your tables may not always be updateable. Table 4-1 shows when a field
in a table is updateable. As Table 4-1 shows, queries based on one-to-many relationships are
updateable in both tables (depending on how the query was designed).

TABLE 4-1

Rules for Updating Queries

Type of Query or Field Updateable Comments

One table Yes

One-to-one relationship Yes

Results contains Memo field Yes Memo field updateable

Results contain Hyperlink Yes Hyperlink updateable

Results contain an OLE object Yes OLE object updateable

One-to-many relationship Mostly Restrictions based on design methodology
(see text)

Many-to-one-to-many No Can update data in a form or data access page
if RecordType = Recordset

Two or more tables with no join line No Must have a join to determine updateability

Crosstab No Creates a snapshot of the data

Totals Query (Sum, Avg, and so on) No Works with grouped data creating a snapshot

Unique Value property is Yes No Shows unique records only in a snapshot

SQL-specific queries No Union and pass-through work with ODBC data

Calculated field No Will recalculate automatically

Read-only fields No If opened read-only or on read-only drive
(CD-ROM)

Permissions denied No Insert, replace, or delete are not granted

ODBC tables with no primary key No A primary key (unique index) must exist

Paradox table with no primary key No A primary key file must exist

Locked by another user No Cannot be updated while a field is locked by
another

150

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 150

Overcoming query limitations
Table 4-1 shows that there are times when queries and fields in tables are not updateable. As a
general rule, any query that performs aggregate operations or uses an ODBC (Open DataBase
Connectivity) data source is not updateable. Most other queries can be updated. When your query
has more than one table and some of the tables have a one-to-many relationship, there may be
fields that are not updateable (depending on the design of the query).

Updating a unique index (primary key)
If a query uses two tables involved in a one-to-many relationship, the query must include the pri-
mary key from the one-side table. Access must have the primary key value so that they can find the
related records in the two tables.

Replacing existing data in a query with a one-to-many relationship
Normally, all the fields in the many-side table (such as the tblSales table) are updateable in a
one-to-many query. All the fields (except the primary key) in the one-side table (tblCustomers)
can be updated. Normally, this is sufficient for most database application purposes. Also, the pri-
mary key field is rarely changed in the one-side table because it is the link to the records in the
joined tables.

Design tips for updating fields in queries
If you want to add records to both tables of a one-to-many relationship, include the foreign key
from the many-side table and show the field in the datasheet. After doing this, records can be
added starting with either the one-side or many-side table. The one side’s primary key field is auto-
matically copied to the many side’s join field.

If you want to add records to multiple tables in a form (covered in Chapters 7 and 8), remember to
include all (or most) of the fields from both tables. Otherwise, you will not have a complete record
of data in your form.

Creating and Working with Query Joins
By default, an Access query returns only records where data exists on both sides of a relationship.
This means, for instance, that a query that extracts data from the Contacts table and the Sales table
only returns records where contacts have actually placed sales, and will not show contacts who
haven’t yet placed a sale. If a contact record is not matched by at least one sales record, the contact
data is not returned by the query. This means that, sometimes, the query does not return all of the
records that you expect it to produce.

The situation described in the preceding paragraph is called an inner join, or an equi-join.
Although this is the most common join type between tables in a query, there are instances where

151

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 151

users want to see all of the data in a table (like the tblContacts table in the preceding example),
whether or not those records are matched in another table. In fact, users often want to specifically
see records that are not matched on the other side of the join. Consider a sales department that
wants to know all the contacts who have not made a sale in the last year. You must modify the
default query join characteristics in order to process this type of query.

You can create joins between tables in these three ways:

n By creating relationships between the tables when you design the database.

n By selecting two tables for the query that have a field in common that has the same name
and data in both tables. The field is a primary key field in one of the tables.

n By creating joins in the query designer at the time you create the query.

The first two methods occur automatically in the Query Design window. Relationships between
tables are displayed in the Query Designer when you add the related tables to a query. It also
creates an automatic join between two tables that have a common field, provided that field is a
primary key in one of the tables and the Enable Auto Join choice is selected (by default) in
the Options dialog box.

If relationships are set in the relationship builder, you may add a table to a query and it will not
automatically be related to another table, as in these examples:

n The two tables have a common field, but it is not the same name.

n A table is not related and cannot be logically related to the other table (for example,
tblContacts cannot directly join the tblSalesLineItems table).

If you have two tables that are not automatically joined and you need to relate them, you join them
in the Query Design window. Joining tables in the Query Design window does not create a perma-
nent relationship between the tables. Rather, the join (relationship) applies only to the tables while
the query operates.

Tables in a query have to be joined in some fashion or other. Including two tables with nothing in
common (for instance, a query based on tblContacts and tblProducts, with nothing in
between them) means that Access has no way to know which records in the tblContacts table
match which records in the tblProducts table. Unless there is some way to relate the tables to
one another, the query returns unusable data.

All tables in a query should be joined to at least one other table. If, for example, two
tables in a query are not joined in some way, the query produces a Cartesian product

(also known as the cross product) of the two tables. (This subject is discussed in the “Creating a
Cartesian Product” section, later in this chapter). For now, note that a Cartesian product means that
if you have five records in table 1 and six records in table 2, the resulting query will have 30 records
(5 × 6) that will probably be useless.

CAUTION CAUTION

152

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 152

Joining tables
Figure 4-23 shows a simple query containing tblSales, tblSalesLineItems, tblProducts,
and tblCategories. Notice that the join line between tblProducts and tblCategories is
thinner than the other join lines and does not include the 1 and infinity symbols. This is an auto-
join, formed when the Categories table was added to the query.

FIGURE 4-23

An auto-join between tblProducts and tblCategories

No formal relationship yet exists between tblProducts and tblCategories. However, Access
found the Category field in both the tables, determined that the Category data type is the same
in both tables, and that the Category field in tblCategories is the primary key. Therefore,
Access added an auto-join between the tables.

Tables are not joined automatically in a query if they are not already joined at the table
level, if they do not have a common named field for a primary key, or if the AutoJoin

option is off.

If Access had not auto-joined tblProducts and tblCategories (perhaps because the
Category field was named differently in the tables), you easily add a join by dragging the
Category field from one table and dropping it on the corresponding field in the other table.

Specify the type of join
The problem with auto-joins is that, but default, they exhibit equi-join behavior as the query exe-
cutes. In the case of the query in Figure 4-23, if a product record exists that does not have an
assigned category (for instance, a car that was never assigned to a category) the query does not
return any records where a product record is not matched by a category. Figure 4-24 shows the
result of this query.

NOTENOTE

153

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 153

FIGURE 4-24

You can’t tell that records are missing from this query.

The problem in Figure 4-24 is that you can’t even tell that records are missing. The only way you’d
ever determine there should be more than 81 records is by carefully examining the sales records, or
by composing another query that counts all sales, or performing some other audit operation.

You must modify the join characteristics between tblProducts and tblCategories to get an
accurate picture of the Access Auto Auctions sales. Carefully right-click on the thin join line
between tblProducts and tblCategories, and select the Join Properties command from the
shortcut menu. This action opens the Join Properties dialog box (see Figure 4-25), enabling you to
specify an alternate join between the tales.

FIGURE 4-25

Selecting an outer join for the query

In Figure 4-25, the third option (Include All Records from ‘tblProducts’ . . .) has been selected (the
first option is the default). Options 2 and 3 are called outer joins and direct Access to retrieve all
records from the left (or right) table involved in the join, whether or not those records are matched
on the other side of the join.

154

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 154

Figure 4-26 shows the result of the new join. In the lower-right corner of this figure you see how
an outer join appears in the Access query design, while the rest of the figure shows the recordset
returned by the query.

FIGURE 4-26

A right outer join corrects the problem in Figure 4-25.

An outer join is represented by a join line with an arrow pointing at one of the tables involved in
the join. In Figure 4-26, tblProducts is right-joined to tblCategories, which means all
records from tblProducts are shown, whether or not there are matching records in
tblCategories.

The larger portion of Figure 4-26 shows the recordset from the query. Notice that 84 records are
now returned, and that the first three rows in the recordset have no Category value. The query
now accurately reports the number of sales records.

Of course, you can easily create joins that make no sense, but when you view the data, you’ll get
less-than-desirable results. If two joined fields have no values in common, you’ll have a datasheet
in which no records are selected.

You can select either table first when you create a join.

You would never want to create a meaningless join. For example, you would not want to join the
City field from the tblContact table to the tblSalesDate of tblSales. Although Access
will enable you to create this join, the resulting recordset will have no records in it.

Deleting joins
To delete a join line between two tables, select the join line and press the Delete key. Select the join
line by placing the mouse pointer on any part of the line and clicking once.

NOTENOTE

155

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 155

If you delete a join between two tables and the tables remain in the Query window
unjoined to any other tables, the solution will have unexpected results because of the

Cartesian product that Access creates from the two tables. The Cartesian product is effective for only
this query. The underlying relationship remains intact.

Access enables you to create multiple-field joins between tables (more than one line can be drawn).
The two fields must have data in common; if not, the query will not find any records to display.

Understanding Table Join Types
In Chapter 3, you learned about table relationships and relating two tables by a common field.
Access understands all types of table and query relations, including these:

n One-to-one

n One-to-many

n Many-to-one

n Many-to-many

When you specify a relationship between two tables, you establish rules for the type of relation-
ship, not for viewing the data based on the relationship.

To view data in two tables, they must be joined through common fields in the two tables. Tables
with established relationships are automatically joined through the relationship. Within a query,
you can create ad-hoc joins or change existing joins, and as you’ve already seen, Access often auto-
joins tables for you. Just as there are different types of relationships, there are different types of
joins. In the following sections, you learn about a number of different types of joins:

n Equi-joins (inner joins)

n Outer joins

n Self-joins

n Cross-product joins (Cartesian joins)

Inner joins (equi-joins)
The default join in Access is known as an inner join or equi-join. It tells Access to select all records
from both tables that have the same value in the fields that are joined.

The Access manuals refer to the default join as both an equi-join and inner join (com-
monly referred to as an inner join in database relational theory). The Access Help sys-

tem refers to it as an inner join. The terms equi-join and inner join are interchangeable; however, in
the remainder of this chapter they are referred to as inner joins.

NOTENOTE

CAUTION CAUTION

156

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 156

If records are found in either table that do not have matching records in the other table, they are
excluded from the returned recordset and are not shown in the datasheet. Thus, an inner join
between tables is simply a join where records are selected when matching values exist in the joined
field of both tables.

You can create an inner join between the tblContacts and tblSales tables by bringing these
two tables into a new query and clicking on the join line to activate the Join Property dialog box and
selecting the first choice: Only Include Rows Where the Joined Fields from Both Tables Are Equal.

Remember that you are looking for all records from these two tables with matching fields. The
ContactID field and Buyer contain the common field values, so the inner join does not show any
records for contacts that have no sales or any sales that do not relate to a valid contactID num-
ber. Referential integrity prevents sales records that are not tied to a contact number. Of course, it’s
possible to delete all sales from a contact or to create a new contact record with no sales records
(possibly a seller instead of a buyer), but a sale should always be related to a valid contact (buyer).
Referential integrity keeps a contact from being deleted or changed if there is a related sale.

It’s possible to have a buyer in tblContacts who has no sales. With referential integrity controlling
the relationship, it is impossible, to have a sale with no buyer. If you create a query to show contacts
and their sales, any record of a contact without a sale is not shown in the returned recordset.

Changing join properties
You can change the default behavior of tables joined through formal relationships. Because default
joins in Access queries are always inner joins, a query may under-report the returned data, as
shown in Figure 4-24.

A join property is a rule that is enforced by Access. This rule tells Access how to interpret excep-
tions between two tables. For example, as you saw earlier, should the noncorresponding records
be shown?

Access has several types of joins, each with its own characteristics or behaviors. Access enables you to
change the type of join quickly by changing its properties. You change join properties by selecting the
join line between tables and double-clicking the line or right-clicking and selecting Join Properties
from the shortcut menu. When you do so, the Join Properties dialog box appears (Figure 4-27).

FIGURE 4-27

The Join Properties dialog box

157

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 157

As Figure 4-27 shows, the Join Properties dialog box has two parts: the four combo boxes and
three option buttons. For now, you focus on the three options buttons:

n Only include rows where the joined fields from both tables are equal. (This is the
default.)

n Include ALL records from “tblContacts” and only those records from “tblSales” where the
joined fields are equal.

n Include ALL records from “tblSales” and only those records from “tblContacts” where the
joined fields are equal.

The first choice is commonly known as an inner join, and the other two are known as outer joins.
These joins control the behavior of Access as it builds the recordset from the query.

Inner and outer joins
The Query Design window should now display two tables in the top pane of the Query window —
tblContacts and tblSales, with four fields selected to display. If your query window does
not have these two tables, create a new query and add them. The following sections use these
tables as examples to explain how inner and outer joins operate.

Inner joins
You’ve already seen many examples of inner joins. The important thing to keep in mind about
inner joins is that the records returned by an inner join will not include any records that are
unmatched on either side of the join. A contact with no sales will not be shown; neither will a
product without a specified category.

Creating a right outer join
Unlike inner joins (equi-joins), outer joins show all records in one table and any matching records
in the other. The table or query that does not have a matching record simply displays an empty cell
for the unmatched data when the recordset is displayed.

When you have created an outer join, the join line points to one of the tables (see Figure 4-26).
The base of the arrow is attached to the “main” table — the one that returns all records. The arrow
points to the right-joined (or left-joined) table — the one that may be missing a matching record.

So far the outer join examples you’ve seen have involved tables with no formal relationships.
Figure 4-28 shows the results of an inner join between contacts and sales. Not all contacts have
placed sales with Access Auto Auctions; perhaps they are sellers and not buyers.

The recordset contains 82 records and includes all contacts, whether or not they’ve placed sales.

158

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 158

FIGURE 4-28

A datasheet with a right outer join. It shows all contacts (buyers and sellers), including those with no sales.

Creating a left outer join
Once in the query design, again double-click the join line between the tblContacts and tblSales
tables. Select the third choice from the Join Properties dialog box (Include All Records from tblSales).
Then click the OK button. The join line now has an arrow pointing to tblContacts. This is known
as a left outer join. (If the arrow points to the right in the top pane, the join is known as a right outer
join; if the arrow points to the left, it’s a left outer join.)

If you create this left outer join query between the tables and select the Datasheet button to display
the recordset, you will see that you again have 53 records. This simply means that there are no
records in tblSales (sales without buyers). If there were one or more sales without buyers, this
query would show them. The sales records, without buyers, would result from selecting the join
property to include all records from tblSales (a left outer join in database terminology).

Any sales record without a buyer is known as an orphan record. Referential integrity can’t be set in
the Relationships window if there is an orphan record. If you attempt to set Referential Integrity
between tables and you cannot, simply remove any orphan records and then return to the
Relationships window to set up referential integrity between the tables.

Creating a Cartesian product
If you add both the tblContacts and tblSales tables to a query but don’t specify a join
between the tables, Access combines the first tblContact record with all the tblSales records;
then it takes the second record and combines it with all the tblSales records and continues until
all the tblContacts records have been combined with all of the tblSales records. Combining

159

Selecting Data with Queries 4

08_046732 ch04.qxp 11/21/06 8:47 AM Page 159

each record in one table with each record in the other table results in a Cartesian product (cross-
product) of both tables. Because tblContacts has 58 records and tblSales has 53, the result-
ing recordset has 3,074 records.

Summary
This chapter has taken on the major topic of building select queries. Without a doubt, query
creation is a daunting task, and one that takes a lot of practice. Even simple queries can return
unexpected results, depending on the characteristics of the join between tables, and the criteria
used to filter data in the underlying tables.

Queries are an integral and important part of any Access database application. Queries drive forms,
reports, and many other aspects of Access applications.

Your best bet for mastering Access queries is to try increasingly difficult queries, and to always
check your work. In the case of improperly joined tables, Access queries almost always under-
report the data in the tables. You will discover the missing records only by carefully examining the
data to ensure that your query is working properly.

160

Access Building BlocksPart I

08_046732 ch04.qxp 11/21/06 8:47 AM Page 160

In previous chapters, you created queries using selected fields from one
or more tables. You also sorted the data and set criteria to limit the
results of a query. This chapter focuses on using operators and expres-

sions to calculate information, compare values, and display data in a differ-
ent format — using queries to build examples.

You aren’t limited to using operators and expressions inside of queries. You’ll
also learn how to use them when creating calculated fields on forms and
reports, and when programming in Visual Basic for Applications (VBA). This
chapter only uses queries to demonstrate the use of operators and functions.

This chapter will use the Chapter05Start.accdb data-
base. If you haven’t already copied it onto your machine

from the CD, you’ll need to do so now.

For more on using operators and expressions on forms,
reports, and in VBA, see Chapters 4, 9, and 13.

What Are Operators?
Operators let you add numbers, compare values, put text strings together,
format data, and perform a wide variety of tasks. You use operators to inform
Access to perform a specific action against one or more items. The combina-
tion of operators and items is known as an expression.

You’ll use operators every time you create an equation in Access. For exam-
ple, operators specify data-validation rules in table properties, create calcu-
lated fields in forms and reports, and specify criteria in queries.

CROSS-REFCROSS-REF

ON the CD-ROMON the CD-ROM

161

IN THIS CHAPTER
Understanding operators,
functions, and expressions and
how they’re used

Reviewing types of operators

Looking at types of functions

Creating an expression

Examining special identifier
operators and expressions

Creating and using text
expressions as criteria

Using the Like and Not
operators and wildcards

Creating and using date and
numeric expressions as criteria

Using the And/Or operators in
single-field criteria

Using the In and
Between...And operators

Searching for Null data

Using the And/Or operators
across several fields

Using functions as expressions
for criteria

Creating and using a calculated
field

Using Operators and
Expressions in Access

09_046732 ch05.qxp 11/21/06 8:47 AM Page 161

Operators indicate that an operation needs to be performed on one or more items. Some common
examples of operators are:

=

&

And

Like

+

Types of operators
Here are the types of operators discussed in this chapter:

n Mathematical (arithmetic) operators

n Relational operators

n String operators

n Boolean (logical) operators

n Miscellaneous operators

Mathematical operators
There are seven basic mathematical operators. These are also known as arithmetic operators,
because they’re used for performing numeric calculations:

* Multiply

+ Add

– Subtract

/ Divide

\ Integer divide

^ Exponentiation

Mod Modulo

By definition, you use mathematical operators to work with numbers. When you work with math-
ematical operators, numbers can be any numeric data type. The number can be an actual number
(constant value), the value of a memory variable, or a field’s contents.. Furthermore, you use these
numbers individually or combine them to create complex expressions. Some of the examples in
this section may seem complex, but trust us: You don’t need a master’s degree in mathematics to
work through them.

162

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 162

The * (multiplication) operator
A simple example of when to use the multiplication operator is to calculate the total price
of purchasing several items. You could design a query to display the number of items purchased
and the price for each item. Then you could add a column — a calculated field — containing
the value of the number of items purchased times the price per item. In this case, you could
get that information from tblSalesLineItems, and the formula would be
[tblSalesLineItems].[Quantity] * [tblSalesLineItems].[Price].

The standard Access notation for dealing with table names and field names in an expres-
sion is to enclose them in square brackets.

Notice that you use the table name before the field name in the above example.
Because your tables only have one field named Price and one field named Quantity,

you could have skipped the table names; however, it’s good practice to specify the name of the table
where the field comes from, separating the table name from the field name by a single period.

The + (addition) operator
If you want to create a calculated field in a query for adding the value of tax to the price, you
would use an expression similar to this: [TaxAmt]+[tblSalesLineItems].[Price]. To use
this expression, you would have to create another calculated field in the query named [TaxAmt]
that you create using the multiplication operator — TaxAmt: [tblSales].[TaxRate] *
[tblSalesLineItems].[Price]. You could also create a form for adding the values in fields,
such as GrossAmount and Tax, in which case you would use the expression [GrossAmount] +
[Tax]. This simple formula uses the addition operator to add the contents of both fields and dis-
play the result in the object containing the formula.

Besides adding two numbers, you can use the addition operator to concatenate two character
strings — putting two text-based strings together to form a single text string. For example, you may
want to combine the fields FirstName and LastName from tblContacts to display them as a
single field. This expression is:

[tblContacts].[FirstName] + [tblContacts].[LastName]

You use the table name before the field name. In this example, specifying the table
name isn’t necessary because your tables only have one field named FirstName and

one field named LastName; however, it is good practice to specify the table name containing this
field, separating the table name from the field name by a single period.

Although you can concatenate (join) text strings by using the addition operator, you
should use the ampersand (&) operator to avoid confusing Access. You can find more on

this in the “String operators” section, later in this chapter.

The – (subtraction) operator
An example of using the subtraction operator on the same form is to calculate the final invoice
amount by subtracting a calculated discount from the price. The formula to determine the net
invoice amount of an item would be as follows:

CAUTION CAUTION

NOTENOTE

TIPTIP

NOTENOTE

163

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 163

[tblSalesLineItems].[Price] - ([tblSalesLineItems].[Price] *
[tblSalesLineItems].[DiscountPercent])

Although parentheses are not mathematical operators, they play an integral part in
working with operators, as we discuss in the “Operator precedence” section, later in

this chapter.

The / (division) operator
You can use the division operator to divide two numbers and (as with the previous operators) dis-
play the result wherever you need it. Suppose, for example, that a pool of 212 people win the
$1,000,000 lottery this week. The formula to determine each individual’s payoff of $4,716.98 per
person would be as follows:

1,000,000 / 212

The \ (integer division) operator
The integer division operator takes any two numbers (number1 and number2), rounds them up
or down to integers, divides the first by the second (number1 / number2), then drops the deci-
mal portion of the result, leaving only the integer value. Here are some examples of how integer
division differs from normal division:

Normal Division Integer Conversion Division

100 / 6 = 16.667 100 \ 6 = 16

100.9 / 6.6 = 15.288 100.9 \ 6.6 = 14

102 / 7 = 14.571 102 \ 7 = 14

Access rounds numbers based on the greater-than-0.5 rule: Any number with a decimal
value of x.5 or less rounds down; greater than x.5 rounds up to the next whole number.

This means that 6.49 and 6.5 become 6, but 6.51 and 6.6 become 7.

The integer divide operator can be a confusing operator until you understand just what it
does. Using it is equivalent to rounding both numbers in the division operation (101.9 =

102 and 6.6 = 7), then converting the answer to an integer (102 / 7 =14.571 = 14). Remember: It only
rounds the numbers in the expression. It does not round the answer; it simply drops the remainder
after the decimal point.

The ^ (exponentiation) operator
The exponentiation operator (^) raises a number to the power of an exponent. Raising a number
simply means indicating the number of times that you want to multiply a number by itself. For
example, multiplying the value 4 x 4 x 4 (that is, 43) is the same as entering the formula 4^3.

CAUTION CAUTION

NOTENOTE

NOTENOTE

164

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 164

The Mod (Modulo) operator
The modulo operator (mod), or remainder operator, takes any two numbers (number1 and num-
ber2), rounds them up or down to integers, divides the first by the second (number1 / num-
ber2), and then returns the remainder. Here are some examples of how modulo division compares
to normal division:

Normal Division Modulo Division Explanation

10 / 5 = 2 10 Mod 5 = 0 10 is evenly divided by 5

10 / 4 = 2.5 10 Mod 4 = 2 10 / 4 = 2 with a remainder of 2

22.24 / 4 = 5.56 22.24 Mod 4 = 2 22 / 4 = 5 with a remainder of 2

22.52 / 4 = 5.63 22.52 Mod 4 = 3 23 / 4 = 5 with a remainder of 3

Relational operators
There are six basic relational operators (also known as comparison operators). They compare two
values or expressions via an equation. The relational operators include the following:

= Equal

<> Not equal

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The expressions built from relational operators always return either a logical value or Null; the
value they return says Yes (True), No (not True; that is, False), or Null (unknown/no value).

Access actually returns a numeric value for relational operator equations. It returns a –1
(negative 1) for True and a 0 (zero) for False.

If either side of an equation is a Null value, the result will always be a Null.

The = (equal) operator
The equal operator returns a logical True if the two expressions being compared are the same. Here
are two examples of the equal operator:

[tblProducts].[Category] = “Car” Returns a True if the Category is a car;
False is returned for any other
Category.

[tblSales].[SaleDate] = Date() Returns a True if the date in the
SaleDate field is today.

NOTENOTE

165

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 165

The <> (not-equal) operator
The not-equal operator is exactly the opposite of the equal operator. In this example, the car exam-
ple is changed to not-equal:

[tblProducts].[Category] <> “Car” Returns a True if Type of Category
is anything but a car.

[tblProducts].[Category] != “SUV” Returns a True if Type of Category
is anything but an SUV.

Notice that you have two different ways to express not equal to: The <> or != symbols mean
exactly the same thing.

The < (less-than) operator
The less-than operator returns a logical True if the left side of the equation is less than the right
side, as in this example:

[tblSalesLineItems].[Price] < 1000 Returns a True if the Price field
contains a value of less than 1000.

The <= (less-than-or-equal-to) operator
The less-than-or-equal-to operator returns a True if the left side of the equation is either less than
or equal to the right side, as in this example:

[tblSalesLineItems].[Price] <= 2500 Returns a True if the value of Price
equals 2500 or is less than 2500.

[tblSalesLineItems].[Price] !> 1500 Returns a True if the value of Price
equals 1500 or is less than 1500.

Notice, in the second example, that you got the same results using the operator !> (not greater
than). In other words, less than or equal to can be expressed using either operator, <= or !>.

Access 2007 is sensitive to the order of the operators. Access reports an error if you
enter =<; the order is important. It must be less than or equal to (<=).

The > (greater-than) operator
The greater-than operator is the exact opposite of the less-than operator. This operator returns a
True when the left side of the equation is greater than the right side, as in this example:

[tblSales].[TaxRate] > 3.5 Returns True if the value of TaxRate
is greater than 3.5.

The >= (greater-than-or-equal-to) operator
The greater-than-or-equal-to operator returns a True if the left side of the equation is either greater
than or equal to the right side. For example:

CAUTION CAUTION

166

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 166

[tblSales].[TaxRate] >= 5 Returns a True if the value of TaxRate
equals 5 or is greater than 5.

[tblSales].[TaxRate] !< 5 Returns a True if the value of TaxRate
equals 5 or is greater than 5.

Notice, in the second example, that you got the same results using the operator !< (not less than).
In other words, greater than or equal to can be expressed using either operator, >= or !<.

Access 2007 is sensitive to the order of the operators. Access reports an error if you
enter =>; the order is important. It must be greater than or equal to (>=).

String operators
Access has three string operators, also know as text operators. Unlike the other operators, these
work specifically with the Text data type:

& Concatenation

Like Similar to . . .

NOT Like Not similar to . . .

The & (concatenation) operator
The concatenation operator concatenates or joins two or more values into a single string. This
operator works similarly to the addition operator. Unlike the addition operator, however, the &
operator always returns a string value. For instance, this example produces a single string:

[FirstName] & [LastName]

However, in the resultant string, no spaces are automatically added. If [FirstName] equals
“Fred” and [LastName] equals “Smith”, concatenating the field contents yields FredSmith. To
add a space between the strings, you must add a string containing a space between the two fields:

[FirstName] & “ “ & [LastName]

This concatenation operator easily joins a string with a number- or date-type value. Using the &
eliminates the need for special functions to convert numbers or dates to strings.

Suppose, for example, that you have a Number field, which is HouseNumber, and a Text field,
which is StreetName, and that you want to build an expression that combines both fields. For
this, enter the following:

[HouseNumber] & “ “ & [StreetName]

If HouseNumber has a value of 1600 and StreetName is Pennsylvania Avenue N.W., the
resulting string is:

“1600 Pennsylvania Avenue N.W.”

CAUTION CAUTION

167

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 167

Perhaps on a report you want to print the OperatorName field and the date and time the report
was run at the bottom of the page. This can be accomplished by creating a calculated field using
syntax similar to the following:

“This report was printed “ & Now() & “ by “ & [OperatorName]

Notice the spaces after the word printed and before and after the word by. If the date is March 21,
2007, and the time is 4:45 p.m., the expression looks something like this:

This report was printed 3/21/07 4:45:40 PM by Jim Simpson

Knowing how the concatenation operator works makes maintaining your database expressions
easier. If you always use the concatenation operator (&) — instead of the addition operator (+) —
for creating concatenated text strings, you won’t have to be concerned with the data types of the
concatenated objects. Any formula that uses the & operator converts all the objects being concate-
nated to a string data type for you. Using the plus sign (+) to concatenate strings can sometimes
lead to unpredictable results because Access must decide whether the operands are numbers
or strings, and act accordingly. The concatenation operator forces Access to treat the operands as
strings and always returns a string as a result.

If both operands are Null, the result is also a Null. If only one of the two objects is
Null, Access ignores the Null object and builds the string from the other operand.

The Like (similar to) and Not Like operators
The Like operator, and its opposite, the Not Like operator, are used to compare two string
expressions. These operators determine whether one expression matches, or doesn’t match, the
pattern of another expression. The resultant value of the comparison is a True, False, or Null.

The Like operator uses the following basic syntax:

expression Like pattern

Like looks for the expression in the pattern; if it is present, the operation returns a True. For
example:

[FirstName] Like “John” Returns a True if the first name is John.

[LastName] Like “SMITH” Returns a True if the last name is Smith,
Smithson, or any other name beginning with
“Smith”, regardless of capitalization. (Wildcards
like “*” are discussed in the next section.)

[State] Not Like “NY” Returns a True for any state, except New York.

If either expression in the Like formula is a Null, the result is a Null.

This operator provides a powerful and flexible tool for string comparisons. Wildcard characters
also increase the flexibility of the Like operator. (see the sidebar “Using Wildcards”).

NOTENOTE

NOTENOTE

168

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 168

Here are some examples that use wildcards with the Like operator:

[tblContacts].[LastName] Like “Mc*” Returns a True for any last name that
begins with “Mc” or “MC”.
“McDonald”, “McJamison”,
“MCWilliams” all return True; “Jones”
and “Mitchell” return False.

[Answer] Like “[A-D]” Returns a True if the Answer is A, B,
C, D, a, b, c, or d. Any other letter
returns a False.

“AB1989” Like “AB####” Returns a True because the string
begins with the letters AB and is fol-
lowed by any four numbers.

[LastName] Not Like “[A,E,I,O,U]*” Returns a True for any last name that
DOES NOT begin with a vowel.
“Smith” and “Jones” return True;
“Adams” and “O’Malley” return False.

[City] Like “?????” Returns a True for any city that is five
characters long.

169

Using Operators and Expressions in Access 5

Using Wildcards

Access lets you use these five wildcards with the Like operator:

Character Matches

? A single character (A to Z, 0 to 9)

* Any number of characters (0 to n)

Any single digit (0 to 9)

[list] Any single character in the list

[!list] Any single character not in the list

Both [list] and [!list] can use the hyphen between two characters to signify a range.

09_046732 ch05.qxp 11/21/06 8:47 AM Page 169

If the pattern you’re trying to match actually contains a wildcard character, you must
enclose the wildcard character in brackets. In the example:

“AB*Co” Like “AB[*]C*”

the [*] in the third position of the pattern object will look for the asterisk as the third character of
the string. Since the asterisk character is enclosed in brackets, it won’t be mistaken for the asterisk
wildcard character.

Boolean (logical) operators
Access uses six Boolean operators. Also referred to as logical operators, you use these for creating
multiple conditions in expressions. Like relational operators, these always return either a logical
True or False or a Null. Boolean operators include the following:

And Logical and

Or Logical inclusive or

Eqv Logical equivalence

Imp Logical implication

Xor Logical exclusive or

Not Logical not

The And operator
You use the And operator to perform a logical conjunction of two expressions; the operator returns
the value True if both expressions return True values. The general syntax of an And operation is:

expression 1 And expression 2

Here is an example:

[tblContacts].[State] = “MA” And Returns a True only if both expressions
[tblContacts].[ZipCode] = “02379-” return True values.

If the expressions on both sides of the And operator are True, the result is a True value. Table 5-1
demonstrates the results.

TABLE 5-1

And Operator Resultants

Expression 1 Expression 2 Expression 1 And Expression 2

True True True

True False False

True Null Null

TIPTIP

170

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 170

Expression 1 Expression 2 Expression 1 And Expression 2

False True False

False False False

False Null False

Null True Null

Null False False

Null Null Null

The Or operator
The Or operator is used to perform a logical disjunction of two expressions; the operator returns
the value True if either condition returns a True value. The general syntax of an Or operation is

expression 1 Or expression 2

The following two examples show how the Or operator works:

[LastName] = “Casey” Or Returns a True if LastName is either Casey or
[LastName] = “Gleason” Gleason.

[TaxLocation] = “TX” Or Returns a True if the TaxLocation is either
[TaxLocation] = “CT” TX or CT.

If the condition of either side of the Or operator is true, the operator returns a True value. Table
5-2 demonstrates the results.

TABLE 5-2

Or Expression Resultants

Expression 1 Expression 2 Expression 1 Or Expression 2

True True True

True False True

True Null True

False True True

False False False

False Null Null

Null True True

Null False Null

Null Null Null

171

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 171

The Not operator
The Not operator is used for negating a numeric or boolean expression. The Not operator returns
the value True if the expression is False and False if the expression is True. This operator
reverses the logical result of an expression.

The general syntax of a Not operation is:

Not [numeric|boolean] expression

The following examples show how to use the Not operator:

Not [Price] <= 100000 Returns a True if Price is greater than 100000.

If Not (City = “Seattle”) Then Returns True for any city that is not Seattle

If the operand is Null, the Not operator returns Null. Table 5-3 demonstrates the results.

TABLE 5-3

Not Operator Resultants

Expression Not Expression

True False

False True

Null Null

Miscellaneous operators
Access has three very useful miscellaneous operators:

Between...And Range

In List comparison

Is Reserved word

The Between...And operator
Use the Between...And operator to determine whether one expression’s value is within a spe-
cific range of values. This is the general syntax:

expression Between value 1 And value 2

If the value of the expression is between value 1 and value 2, or equal to value 1 or value 2, the
result is True; otherwise, it is False.

172

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 172

The following examples show how to use the Between...And operator:

[TotalCost] Between 10000 And 19999 Returns a True if the TotalCost is
between 10,000 and 19,999, or equal to
10,000 or 19,999.

[SaleDate] Between #1/1/2007# and Returns a True when the SaleDate is in
#12/31/2007# the year 2007.

The In operator
The In operator is used to determine whether one expression’s value is equal to any value in a spe-
cific list. This is the general syntax:

expression In (value1, value2, value3, ...)

If the value is found in the list, the result is True; otherwise, the result is False.

The following example uses the In operator as a field’s criteria for a query:

In (‘SUV’,’Minivans’)

This displays only those vehicles that are SUVs or minivans.

The Is (reserved word) operator
The Is operator is used only with the keyword Null to determine whether an object has nothing
in it. This is the general syntax:

expression Is Null

The following example uses the Is operator:

[LastName] Is Null Returns True if no data was entered in
the LastName field.

To eliminate records from a query where a particular field doesn’t contain data, enter
Is Not Null as the criteria for that field.

Operator precedence
When you work with complex expressions that have many operators, Access must determine
which operator to evaluate first, and then which is next, and so forth. To do this, Access has a
built-in predetermined order, known as operator precedence. Access always follows this order unless
you use parentheses to specify otherwise.

Parentheses are used to group parts of an expression and override the default order of precedence.
Operations within parentheses are performed before any operations outside of them. Inside the
parentheses, Access follows the predetermined operator precedence.

TIPTIP

173

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 173

Precedence is determined first according to category of the operator. The operator rank by order of
precedence is:

1. Mathematical

2. Comparison

3. Boolean

Each category contains its own order of precedence, which we explain next.

The mathematical precedence
Within the general category of mathematical operators, this order of precedence is in effect:

1. Exponentiation

2. Negation

3. Multiplication and/or division (left to right)

4. Integer division

5. Modulo

6. Addition and/or subtraction (left to right)

7. String concatenation

The comparison precedence
Comparison operators observe this order of precedence:

1. Equal

2. Not equal

3. Less than

4. Greater than

5. Less than or equal to

6. Greater than or equal to

7. Like

The Boolean precedence
The Boolean operators follow this order of precedence:

1. Not

2. And

3. Or

4. Xor

5. Eqv

6. Imp

174

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 174

Moving beyond Simple Queries
Select queries are the most common type of query used; they select information (based on a specific
criterion) from one or more related tables. With these queries, you can ask questions and receive
answers about information that’s stored in your database tables. In previous chapters, you work
with queries that use simple criteria on a single field in a table with operators, such as equal (=)
and greater than (>).

Knowing how to specify criteria is critical to designing and writing effective queries. Although
queries can be used against a single table for a single criterion, many queries extract information
from several tables using more complex criteria.

Because of this complexity, your queries are able to retrieve only the data you need, in the order
that you need it. You may, for example, want to select and display data from the Access Auto
Auctions database to get the following information:

n All buyers of Chevy cars or Ford trucks

n All buyers who have purchased something during the past 60 days

n All sales for items greater than $90,000

n The number of customers from each state

n Any customers that have made comments or complaints

175

Using Operators and Expressions in Access 5

Precedence Order

Simple mathematics provides an example of order of precedence. Remember that Access performs
operations within parentheses before operations that are not in parentheses. Also remember that

multiplication and division operations are performed before addition or subtraction operations.

For example, what is the answer to this simple equation?

X=10+3*4

If your answer is 52, you need a better understanding of precedence in Access. If your answer is 22,
you’re right. If your answer is anything else, you need a calculator!

Multiplication is performed before addition by the rules of mathematical precedence. Therefore, the
equation 10+3*4 is evaluated in this order: 3*4 is performed first, which yields an answer of 12.
Twelve is then added to 10, which yields 22.

Look at what happens when you add parentheses to the equation. What is the answer to this simple
equation?

X=(10+3)*4

Now the answer is 52. Within parentheses, the values 10 and 3 are added first; then the result (13) is
multiplied by 4, which yields 52.

09_046732 ch05.qxp 11/21/06 8:47 AM Page 175

As your database system evolves, you’ll want to retrieve a subset of information like this. Select
queries are the easiest way to obtain this information from one or more tables. Using operators and
expressions, you create complex criteria to limit the number of records and calculated fields that
display data differently than it’s stored. This section uses select queries to demonstrate the use of
these operators and expressions. Later, you’ll apply this knowledge when working with forms,
reports, and VBA code.

Chapter 4 gives an in-depth explanation of working with queries. For more on using
operators and expressions on forms, reports, and in VBA, see Chapters 4, 9, and 13.

Using query comparison operators
When working with select queries, you may need to specify one or more criteria to limit the scope
of information shown. You specify criteria by using comparison operators in equations and calcula-
tions. The categories of operators are mathematical, relational, logical, and string. In select queries,
operators are used in either the Field: or Criteria: cell of the QBE (Query by Example) pane.

Here’s a good rule of thumb to observe:

Use mathematical and string operators for creating calculated fields; use relational and logi-
cal operators for specifying criteria.

We discuss calculated fields in the “Creating a New Calculated Field in a Query” section, later in
this chapter. You can find an in-depth explanation of operators in the “What Are Operators?” sec-
tion, earlier in this chapter.

Table 5-4 shows most of the common operators that are used with select queries.

TABLE 5-4

Common Operators Used in Select Queries

Mathematical Relational Logical String Miscellaneous

* (multiply) = (equal) And & (concatenate) Between...And

/ (divide) <> (not equal) Or Like In

+ (add) > (greater than) Not Not Like Is Null

– (subtract) < (less than) Is Not Null

Using these operators, you can ferret out groups of records like these:

n Product records that include a picture

n A range of records, such as all sales between November and January

CROSS-REFCROSS-REF

176

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 176

n Records that meet both And and Or criteria, such as all records that are cars and are not
either a minivan or SUV

n All records that do not match a value, such as any category that is not a car

When you add a criterion to a query, you use the appropriate operator with an example of what
you want. In Figure 5-1, the example is Cars. The operator is equal (=). Notice that the equal sign
is not shown in the figure. The equal sign is the default operator for selection criteria.

FIGURE 5-1

The QBE pane shows a simple criterion asking for all vehicles where the Category is Cars.

Understanding complex criteria selection
You build complex query criteria using any combination of the available operators shown in Table
5-4. For many queries, complex criteria consist of a series of Ands and Ors, as in these examples:

n State must be Connecticut or Texas

n City must be Sunnyville and state must be Georgia

n State must be MA or MO and city must be Springfield

These examples demonstrate the use of both logical operators: And/Or. Many times, you can create
complex criteria by entering example data in different cells of the QBE pane. Figure 5-2 demon-
strates how to create complex And/Or criteria without entering the operator keywords And/Or at
all. This example displays all the buyers and their sales that satisfy the following criteria:

177

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 177

Live in either the state of Connecticut (CT) or the state of Massachusetts (MA) and whose
product category is not a car.

You learn how to create this type of complex query in the “Entering Criteria in Multiple Fields”
section, later in this chapter.

FIGURE 5-2

Creating complex And/Or criteria by example without using the And/Or operators. This Query uses both
the Criteria row and the Or row of the QBE pane to combine the And/Or criteria through example.

In the QBE pane, enter And criteria in the same row; enter Or criteria in different rows.

Access takes your graphical query and creates a single SQL SELECT statement to actually extract
the information from your tables. Click the drop-down in the ribbon’s View group and select SQL
View to change the window’s contents to display the SQL SELECT statement (shown in Figure
5-3), which Access creates from the fields and criteria placed in the QBE pane in Figure 5-2.

FIGURE 5-3

The SQL view for the query built in Figure 5-2. Notice that it contains a single OR statement and two AND
statements (in the WHERE clause).

TIPTIP

178

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 178

The SQL statement in Figure 5-3 has been separated by the author for clarification purposes.
When you switch to SQL View in your database, you’ll see one long multi-line statement with no
breaks between sections.

Sometimes you see a field name referred to first by the table name and then by the field
name, as shown in the SQL statement in Figure 5-3. When you see this kind of refer-

ence, it will have a dot (.) between the two names, such as Customers.[Customer Name]. This
nomenclature tells you which table contains the field. This is especially critical when you’re describ-
ing two fields that have the same name but are contained in different tables. In a multiple-table
query, you see this format in the field list when you add a field to the QBE pane by clicking an empty
column. You also see this format when you create a multiple-table form by using the field list. The
general format is Table Name.Field Name. If the field name or table name contains spaces, you must
surround the name with brackets []; for example, tblSales.[Date of Sale] and
tblContacts.[Customer Last Name].

We do not use spaces in table and field names; although many people do use spaces for
better readability, it’s a really good idea to not use spaces at all. This way, you don’t have

to use brackets around your field or object names. For example, name tblContacts.[Customer
Last Name] without spaces between the words as tblContacts.CustomerLastName—
eliminating the need for using brackets. Instead of using spaces, capitalize the first letter of each new
word in the table and field name (e.g., tblSalesLineItems, FirstName, ZipCode, AuctionEndDate).

If you build an expression for this query (not the SQL statement), it looks similar to this example:

(tblContacts.State = “CT” AND tblProducts.Category <> “Cars”) OR
(tblContacts.State = “MA” AND tblProducts.Category <> “Cars”)

You must enter the category (<> “Cars”) for each state line in the QBE pane, as shown in Figure
5-2. In the “Entering Criteria in Multiple Fields” section, later in this chapter, you learn to use the
And/Or operators in a Criteria: cell of the query, which eliminates the redundant entry of these
fields.

In this example, you looked for all vehicles that didn’t contain cars in the category
field. To find records that match a value, drop the use of the <> operator with the value.

For example, enter the expression Cars to find all vehicles that have a category of cars. You don’t
have to use the equal (=) operator in the QBE pane when looking for matching values.

The And/Or operators are the most commonly used operators when working with complex crite-
ria. The operators consider two different formulas (one on each side of the And/Or operators) and
then determine individually whether they are True or False. Then the operators compare the
results of the two formulas against each other for a logical True/False answer. For example, take
the first And statement in the formula given in the preceding paragraph:

(tblContacts.State = “CT” AND tblProducts.Category <> “Cars”)

The first half of the formula, tblContacts.State = “CT”, converts to a True if the state is CT
(False if a different state; Null if no state was entered in the field).

TIPTIP

TIPTIP

NOTENOTE

179

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 179

Then the second half of the formula, tblProducts.Category <> “Cars”, is converted to a
True if the Category is anything except Cars (False if Cars; Null if no category was
entered). The And compares the logical True/False from each side against the other side to
return a True/False answer.

A field has a Null value when it has no value at all; it is the lack of entry of information
in a field. Null is neither True nor False; nor is it equivalent to all spaces or zero —

it simply has no value. If you never enter a city name in the City field and just skip it, Access leaves
the field empty. This state of emptiness is known as Null.

When the result of an And/Or operation is True, the overall condition is True, and the query
displays those records meeting the True condition. Table 5-5 reviews the True and False condi-
tions for each operator.

TABLE 5-5

Results of Logical Operators And/Or

Left Side Is Operator Is Right Side Is Resultant Answer Is

True AND True True

True AND False False

False AND True False

False AND False False

True AND Null Null

Null AND True Null

False AND Null False

Null AND False False

True OR True True

True OR False True

False OR True True

True OR Null True

Null OR True True

False OR False False

False OR Null Null

Null OR False Null

Notice that the result of an And operation is True only when both sides of the formula are True,
whereas the result of an Or operation is True when either side of the formula is True. In fact, one
side can be a Null value, and the result of the Or operation will still be True if the other side is
True. This is the difference between And/Or operators.

NOTENOTE

180

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 180

Using functions in select queries
When you work with queries, you may want to use built-in Access functions to display informa-
tion. For example, you may want to display items such as:

n The day of the week (Sunday, Monday, and so forth) for sales dates

n All customer names in uppercase

n The difference between two date fields

You can display all this information by creating calculated fields for the query. We discuss calcu-
lated fields in depth later in this chapter.

Referencing fields in select queries
When you work with a field name in queries, as you do with calculated fields or criteria values,
you should enclose the field name in square brackets ([]). Access requires brackets around any
field name that is in a criterion and around any field name that contains a space or punctuation.
An example of a field name in brackets is the criterion [tblSales].[SaleDate] + 30.

If you omit the brackets ([]) around a field name in the criterion, Access may automat-
ically place quotes around the field name and treat it as text instead of a field name.

Entering Single-Value Field Criteria
You’ll encounter situations in which you want to limit the query records returned on the basis of a
single field criterion, such as in these queries:

n Customer (buyer) information for customers living in the state of New York

n Sales of any motor homes

n Customers who bought anything in the month of January

Each of these queries requires a single-value criterion. Simply put, a single-value criterion is the
entry of only one expression in a field. That expression can be example data, such as NY, or a func-
tion, such as DatePart(“m”,[SaleDate]) = 1. Criteria expressions can be specified for any
data type: Text, Numeric, Date/Time, and so forth. Even OLE Object and Counter field types can
have criteria specified.

All the examples in this chapter rely on several tables: tblContacts, tblSales,
tblSalesLineItems, and tblProducts. The Chapter05Start.accdb database

contains the tables used in this chapter. The majority of these examples use only the tblContacts
and tblSales tables.

Each series of steps in this chapter tells you which tables and fields make up the query. For most
examples, you should clear all previous criteria. Each example focuses on the criteria line of the QBE
pane. Examine each figure closely to make sure you understand the correct placement of the criteria
in each example.

NOTENOTE

CAUTION CAUTION

181

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 181

Entering character (Text or Memo) criteria
You use character criteria for Text or Memo data-type fields. These are either examples or patterns
of the contents of the field. To create a text criterion to display customers who live in New York
state, for example, follow these steps:

1. Open a new query in Design View based on tblContacts and add the
FirstName, LastName, and State fields to the QBE pane.

2. Click the Criteria: cell for State field.

3. Type NY in the cell.

Your query should look similar to the query shown in Figure 5-4. Notice that only one
table is open and only three fields are selected. Click the Datasheet View command in the
Home ribbon’s Views group to see the results of this query.

FIGURE 5-4

The Datasheet window showing tblContacts open. You see the example data NY in
the Criteria row under the State field.

When specifying example-type criteria, it isn’t necessary to match capitalization. Access
defaults to case-insensitive when working with queries. Entering NY, ny, or nY provides

the same results.

You don’t have to enter an equal sign before the literal word NY because Access uses the equal
operator as the default operator. To see all states except Ny, you must enter either the <> (not
equal) or the Not operator before the word NY.

You also don’t have to type quotes around the word NY. Access assumes that you’re using an exam-
ple literal NY and adds the quotes for you automatically.

TIPTIP

182

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 182

If you type quotation marks, you should use the double quotation mark to surround lit-
erals. Access normally uses the single quotation mark as a remark character in its pro-

gramming language. However, when you use the single quotation mark in the Criteria: cell, Access
interprets it as a double quotation mark.

The Like operator and wildcards
In previous sections, you worked with literal criteria. You specified the exact field contents for
Access to find, which was “NY” in the previous example. Access used the literal to retrieve the spe-
cific records. Sometimes, however, you know only a part of the field contents, or you may want to
see a wider range of records on the basis of a pattern. For example, you may want to see all buyer
information for those buyers who bought vehicles made in the 1950s (where descriptions begin
with the characters 195); so you need to check 1950, 1951, 1952, and so forth. Here’s a more prac-
tical example: Suppose you have a buyer who has purchased a couple of red cars in the last year.
You remember making a note of it in the Comments field about the color, but you don’t remember
which customer it was. To find these records, you’re required to use a wildcard search against the
Comments field in tblProducts to find any records that contain the word Red.

Access uses the string operator Like in the Criteria: cell of a field to perform wildcard searches
against the field’s contents. Access searches for a pattern in the field; you use the question mark (?)
to represent a single character or the asterisk (*) for several characters. (This works just like file-
names at the DOS level.) In addition to these two characters (? and *), Access uses three other
characters for wildcard searches. Table 5-6 lists the wildcards that the Like operator can use.

The question mark (?) stands for any single character located in the same position as the question
mark in the example expression. An asterisk (*) stands for any number of characters in the same
position in which the asterisk is placed. Access can use the asterisk any number of times in an
example expression. The pound sign (#) stands for any single digit (0-9) found in the same posi-
tion as the pound sign. The brackets ([]) and the list they enclose stand for any single character
that matches any one character in the list located within the brackets. Finally, the exclamation
point (!) inside the brackets represents the Not word for the list — that is, any single character
that does not match any character in the list within the brackets.

TABLE 5-6

Wildcards Used by the Like Operator

Wildcard Purpose

? A single character (0–9, Aa–Zz)

* Any number of characters (0–n)

Any single digit (0–9)

[list] Any single character in the list

[!list] Any single character not in the list

TIPTIP

183

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 183

These wildcards can be used alone or in conjunction with each other. They can even be used sev-
eral times within the same expression. The examples in Table 5-6 demonstrate how you can use
the wildcards.

To create an example using the Like operator, let’s suppose that you want to find the record of a
sports car with an exterior color of red. You know that the word Red is used in one of the records
in the Features field of tblProducts. To create the query, follow these steps:

1. Add the four tables: tblContacts, tblSales, tblSalesLineItems, and
tblProducts.

2. Select LastName and FirstName from tblContacts, and select Description
and Features from tblProducts, and add them to the QBE pane.

Although not necessary, you may want to set an Ascending sort order in the LastName
and FirstName fields.

3. Click the Criteria: cell of the Features field.

4. Type * red * in the cell.

Be sure to put a space between the first asterisk and the r and the last asterisk and
the d — in other words, put spaces before and after the word red.

In the preceding steps, you put a space before and after the word red. If you did not,
Access would find all words that have the word red in them, like aired, bored, credo,

fired, geared, restored, and on and on. By placing a space before and after the word red, Access is
being told to look for the word red only. Of course, it would not find black/red or red/black with
spaces around the word. If you need to find these, you could put them as additional criteria in the
or cells.

When you click outside the Criteria: cell, Access automatically adds the Like operator and the
quotation marks around the expression. Your query QBE pane should look similar to the one
shown in Figure 5-5.

TIPTIP

184

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 184

FIGURE 5-5

Using the Like operator with a select query in a Memo field. In this case, the query looks for the word red
in the Features field.

After creating this query, click on the Datasheet View command to view the query’s results. It
should look similar to the one shown in Figure 5-6.

FIGURE 5-6

The results of using the Like operator with a select query in a Memo field; the query looks for the word red
in the Features field.

185

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 185

To make your query look like the one shown in Figure 5-6, you need to widen the
Description and Features fields to see more of the contents and expand the num-

ber of lines to show for each record. To make the height of each record more than one line, select the
line between any two records in the record selector bar, as shown in Figure 5-6, between the first and
second record. When the cursor becomes a small line with arrows pointing up and down, click and
drag the field down to make each record show more lines.

Clicking on the Datasheet View command on the ribbon, you see that eight records match your
query request — a red vehicle. Looking closer at the results, you see that although there are eight
records that match your criteria of the word red in the Features field, they do not all show red
exterior color cars. In this case, you will have to physically examine each record to see if the exte-
rior color of the vehicle is red (versus the interior being red). If you need to see records where the
Features may show black/red or red/black, you will need to refine your search. These records
are only those that have the standalone word red.

Access automatically adds the Like operator and quotation marks if you meet these conditions:

n Your expression contains no spaces.

n You use only the wildcards ?, *, and #.

n You use brackets ([]) inside quotation marks (“ “).

If you use the brackets without quotation marks, you must supply the Like operator and the quo-
tation marks.

Using the Like operator with wildcards is the best way to perform pattern searches through
memo fields. It is just as useful in text and date fields as the examples in Table 5-7 demonstrate.

TABLE 5-7

Using Wildcards with the Like Operator

Expression Field Used In Results of Criteria

Like “Ca*” tblContacts.LastName Finds all records of contacts whose last
name begin with Ca. Examples: Carson
and Casey

Like “* red *” tblProducts.Features Finds all records of products with the word
red anywhere within the Features field.

Like “C*” tblSales.TaxLocation Finds all records of sales in states that
begin with the letter C.

Like “9/*/2007” tblSales.SaleDate Finds all records of sales for the month of
September 2007.

Like “## South Main” tblContacts.Address Finds all records of contacts with houses
containing house numbers between 10
and 99 inclusively. Examples: 10, 22, 33,
51 on South Main

TIPTIP

186

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 186

Expression Field Used In Results of Criteria

Like “[CDF]*” tblContacts.City Finds all records of contacts for customers
who live in any city with a name
beginning with C, D, or F.

Like “[!EFG]*” tblContacts.City Finds all records of contacts who do not
live in any city that begins with the letters
E, F, or G; all other city records are
displayed.

Table 5-7 shows several examples that can be used to search records in the tables of the Access
Auto Auctions database.

Specifying non-matching values
To specify a non-matching value, you simply use either the Not or the <> operator in front of the
expression that you don’t want to match. For example, you may want to see all contacts who have
purchased a vehicle , but you want to exclude buyers from New York state. Follow these steps to
see how to specify this non-matching value:

1. Open a new query in Design View, and add tblContacts and tblSales.

If you only add the tblContacts table, you will see both sellers and buyers. When you
add both tables, the query only displays buyers because tblContacts.ContactID is

linked to tblSales.Buyer; the query only shows contacts who appear as a buyer in tblSales—
thus eliminating the sellers.

2. Add LastName, FirstName, and State from tblContacts.

3. Click in the Criteria: cell of State.

4. Type Not NY in the cell.

Access automatically places quotation marks around NY if you don’t do so before you
leave the field. You can also use <> instead of the word Not as in Figure 5-7. The query
should look similar to the one shown in Figure 5-7. The query selects all records except
those for buyers who live in the State of New York.

You can use the <> operator instead of Not in Step 4 of the previous instructions to
exclude New York (NY). The result is the same with either operator. These two operators

are interchangeable except with the use of the keyword Is. You cannot say Is <> Null. Rather, you
must say Not Is Null or more accurately Is Not Null.

NOTENOTE

TIPTIP

187

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 187

FIGURE 5-7

Using the Not operator in criteria. Entering Not NY in the State field displays all
records except those where the state is NY (New York).

Entering numeric (Number, Currency,
or Counter) criteria
You use numeric criteria with Number, Currency, or Counter data-type fields. You simply enter the
numbers and the decimal symbol — if required — following the mathematical or comparison oper-
ator. For example, you may want to see all sales where the vehicle price was under $10,000. To
create a query like this, follow these steps:

1. Open a new query in Design View, and add tblSalesLineItems and
tblProducts.

2. Add Price from tblSalesLineItems, and Description and Category from
tblProducts.

3. Click in the Sort: cell for Price.

4. Select Ascending from the drop-down list.

5. Click in the Criteria: cell for Price.

6. Type <10000 in the cell.

When you follow these steps, your query looks similar to the query shown in Figure 5-8.
When working with numeric data, Access doesn’t enclose the expression with quotes, as
it does with string criteria.

188

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 188

FIGURE 5-8

Criteria set for price of vehicles. Here the criteria is less than (<)10000.

Running this query should show 24 records under $10,000 sorted by price from $700 to $7,800.

Numeric fields are generally compared to a value string that uses comparison operators, such as
less than (<), greater than (>), or equal to (=). If you want to specify a comparison other than
equal, you must enter the operator as well as the value. Remember that Access defaults to equal
when an operator is not specified in criteria. That is why you needed to specify less than (<) 10000
in the previous example query for vehicles under $10,000.

Working with Currency and Counter data in a query is exactly the same as working with Numeric
data; you simply specify an operator and a numeric value.

Entering Yes/No (logic) criteria
Yes/No criteria are used with Yes/No type fields. The example data that you supply in the criteria
can be for only Yes or No states. You can also use the Not and the <> operators to signify the
opposite, but the Yes/No data also has a Null state that you may want to check for. Access recog-
nizes several forms of Yes and No. Table 5-8 lists all the available positive and negative values.

Thus, instead of typing Yes, you can type any of these in the Criteria: cell: On, True, Not No, <>
No, <No, or -1.

A Yes/No field can have three states: Yes, No, and Null. Null only occurs when no
default value was set in a table and the value has not yet been entered. Checking for “Is

Null” displays only records with no value, and checking for “Is Not Null” always displays all Yes or
No records. After a Yes/No field check box is checked (or checked and then deselected), it can never
be Null. It must be either Yes or No (–1 or 0).

NOTENOTE

189

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 189

TABLE 5-8

Positive and Negative Values Used in Yes/No Fields
Yes True On Not No <> No <No -1

No False Off Not Yes <>Yes >Yes 0

Entering a criterion for an OLE object
You can even specify a criterion for OLE objects: Is Null or Is Not Null. For example, suppose
you don’t have pictures for all the vehicles and you want to view only those records that have a pic-
ture of the vehicle — that is, those in which the picture is not null. You specify the Is Not Null
criterion for the Picture field of tblProducts. After you do this, Access limits the records to
those that have a picture in them.

Although Is Not Null is the correct syntax, you can also type Not Null and Access
supplies the Is operator for you.

Entering Multiple Criteria in One Field
In previous sections of this chapter, you worked with single-condition criteria on a single field. As
you learned in those sections, you can specify single-condition criteria for any field type. In this
section, you work with multiple criteria based on a single field. For example, you may be inter-
ested in seeing all records in which the buyer comes from either New York, New Jersey, or
Pennsylvania. Or perhaps you want to view the records of all the vehicles that were sold during the
first quarter of the year 2007.

The QBE pane has the flexibility to solve these types of problems. You can specify criteria for sev-
eral fields in a select query. Using multiple criteria, for example, you can determine which cus-
tomers are from New York or New Jersey (“NY” or “NJ”) or which vehicles were sold for the past
90 days (Between Date() And Date() - 90).

You use the And and Or operators to specify several criteria for one field.

Understanding an Or operation
You use an Or operation in queries when you want a field to meet either of two conditions. For
example, you may want to see all the records where the customer lives in either NY or NJ. In other
words, you want to see all records where a customer lives in New York, in New Jersey, or both. The
general formula for this operation is:

[State] = “NY” Or [State] = “NJ”

If either side of this formula is True, the resulting answer is also True. To clarify this point, con-
sider these conditions:

TIPTIP

190

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 190

n Customer 1 lives in NY — the formula is True.

n Customer 2 lives in NJ — the formula is True.

n Customer 3 lives in NY and NJ — the formula is True.

n Customer 4 lives in CT — the formula is False.

Specifying multiple values for a field
using the Or operator
The Or operator is used to specify multiple values for a field. For example, you use the Or operator
if you want to see all records of buyers who live in CT or NJ or NY. To do this, follow these steps:

1. Open a new query in Design View, and add tblContacts and tblSales.

2. Add FirstName, LastName, and State from tblContacts and SalesDate from
tblSales.

3. Click in the Sort: cell of State.

4. Select Ascending from the drop-down list.

5. Click in the Criteria: cell of State.

6. Type CT Or NJ Or NY in the cell.

Your QBE pane should resemble the one shown in Figure 5-9. Access automatically
places quotation marks around your example data — CT, NJ, and NY.

FIGURE 5-9

Using the Or operator. Notice the two Or operators under the State field — CT Or NJ
Or NY.

191

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 191

Using the Or: cell of the QBE pane
Besides using the literal Or operator in a single statement on the Criteria row under the State
field, you can supply individual criteria for the field on separate rows of the QBE pane. To do this,
enter the first criterion example in the Criteria: cell of the field. Then enter the second criterion
example in the Or: cell of the same field. Enter the next criterion in the cell directly beneath the
Or: example; and continue entering examples vertically down the column. This is equivalent to
typing the Or operator between examples. Using the example in which you queried for NJ, NY, or
CT, change your QBE pane to look like the one shown in Figure 5-10. Notice that each state abbre-
viation is on a separate row in the QBE pane.

FIGURE 5-10

Using the Or: cell of the QBE pane. You can place each bit of example data on its own row in the Or:
cells.

Access allows up to nine Or: cells for each field. If you need to specify more Or condi-
tions, use the Or operator between conditions (for example: CT Or NJ Or NY Or PA).

Using a list of values with the In operator
Another method for specifying multiple values of a single field is using the In operator. The In
operator finds a value that is one of a list of values. For example, type the expression IN(CT, NJ,
NY) under the State field in the query used in Figure 5-10. The list of values in the parentheses
becomes an example criterion. Your query should resemble the query shown in Figure 5-11.

In this example, quotation marks have been automatically added by Access around CT, NJ, and NY.

When you work with the In operator, each value (example data) must be separated
from the others by a comma.NOTENOTE

TIPTIP

192

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 192

FIGURE 5-11

Using the In operator to find all records for buyer state being either CT, NJ, or NY.

Understanding an And query
You use the And operator in queries when you want a field to meet two or more conditions that
you specify. For example, you may want to see records of buyers that have purchased vehicles
between October 1, 2007, and March 31, 2008. In other words, the sale had to have occurred dur-
ing the last quarter of the year 2007 and first quarter of 2008. The general formula for this exam-
ple is (parentheses are included in this example for clarity):

[SaleDate] >= 10/1/2007 And [SaleDate] <= 3/31/2008

Unlike the Or operation (which has several conditions under which it is True), the And operation
is True only when both sides of the formula are True. To clarify use of the And operator, consider
these conditions:

n SaleDate (9/22/2007) is not greater than 10/01/2007, but it is less than 3/31/2008 —
the result is False.

n SaleDate (4/11/2008) is greater than 10/01/2007, but it is not less than 3/31/2008 —
the result is False.

n SaleDate (11/22/2007) is greater than 10/01/2007, and it is less than 3/31/2008 — the
result is True.

Both sides of the operation must be True for the And operation to be True.

Specifying a range using the And operator
The And operator is frequently used in fields that have Numeric or Date/Time data types. It is sel-
dom used with Text data types, although it can be. For example, you may be interested in viewing
all buyers whose names start with the letters d, e, or f. The And operator can be used here (> “Cz”
And <”G”), although the Like operator is better (Like “[DEF]*”). Using an And operator with
a single field sets a range of acceptable values in the field. Therefore, the key purpose of an And
operator in a single field is to define a range of records to be viewed. For example, you can use the
And operator to create a range criterion to display all buyers who have purchased vehicles between
October 1, 2007, and March 31, 2008, inclusively. To create this query, follow these steps:

193

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 193

1. Create a new query using tblContacts and tblSales.

2. Add FirstName and LastName from tblContacts and SaleDate from
tblSales.

3. Click in the Criteria: cell of SaleDate.

4. Type >= 10/1/2007 And <= 3/31/2008 in the cell.

The query should resemble the one shown in Figure 5-12.

FIGURE 5-12

Using the And operator with numeric fields. Notice that this query shows all records for
sales during the last quarter of 2007 and the first quarter of 2008.

Using the Between...And operator
You can request a range of records based on criteria in a single field by using another method —
the Between...And operator. With the Between...And operator, you can find records that
meet a range of values — for example, all sales where the value of the vehicle was between $10,000
and $20,000. Using the example of sales between October 1, 2007, and March 31, 2008, create the
query using the Between...And operator, as shown in Figure 5-13.

FIGURE 5-13

Using the Between...And operator. The results are the same as the query in Figure 5-12.

When you use the Between...And operator, the values entered in the Criteria
field (in this example, 10/1/2007 and 3/31/2008) are (if they match) included in the

results.

CAUTION CAUTION

194

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 194

Searching for Null data
A field may have no contents for several reasons: For example, perhaps the value wasn’t known at
the time of data entry, or the person who did the data entry simply forgot to enter the information,
or the field’s information was removed. Access does nothing with this field; it simply remains an
empty field. (A field is said to be null when it’s empty.)

Logically, a Null is neither True nor False. A Null field is not equivalent to all spaces or to
zero. A Null field simply has no value.

Access lets you work with Null value fields by means of two special operators:

Is Null
Is Not Null

You use these operators to limit criteria based on Null values of a field. In the “Entering a criterion
for an OLE object” section, earlier in this chapter, you learned that a Null value can be used to
query for vehicles having a picture on file. In the next example, you look for buyers that don’t have
the OrigCustDate field filled in. To create this query, follow these steps:

1. Create a new query using tblContacts and tblSales.

2. Add OrigCustDate, FirstName, and LastName from tblContacts, and
SaleDate from tblSales.

3. Click in the Criteria: cell of OrigCustDate.

4. Type Is Null in the cell.

Your query should look like the query shown in Figure 5-14. Select the Datasheet View
command to see the records that don’t have a value in the OrigCustDate field. If you
add a record to tblContacts and don’t enter a value in this field, that record shows in
this query’s results since OrigCustDate contains a Null value.

FIGURE 5-14

If the table has records with the OrigCustDate field missing a value (the user clicked
past the field), they’ll be shown when you click Datasheet View command.

When using the Is Null and Is Not Null operators, you can enter Null or Not
Null and Access automatically adds the Is to the Criteria field.TIPTIP

195

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 195

Entering Criteria in Multiple Fields
Previously in this chapter, you worked with single and multiple criteria specified in single fields. In
this section, you work with criteria across several fields. When you want to limit the records based
on several field conditions, you do so by setting criteria in each of the fields that will be used for
the scope. Suppose you want to search for all sales of cars in Kansas (KS). Or, suppose you want to
search for SUVs in Massachusetts or Connecticut. Or, suppose you want to search for all SUVs in
Massachusetts or minivans in Connecticut. Each of these queries requires placing criteria in multi-
ple fields and on multiple lines.

Using And and Or across fields in a query
To use the And operator and the Or operator across fields, place your example or pattern data in
the Criteria: cells (for the And operator) and the Or: cells of one field relative to the placement in
another field. When you want to use And between two fields, you place the example or pattern
data across the same row in the QBE pane. When you want to use Or between two fields, you
place the example or pattern data on different rows in the QBE pane. Figure 5-15 shows the QBE
pane and a conceptual representation of this placement.

FIGURE 5-15

The QBE pane with And/Or criteria between fields using the Criteria: and or: rows

Figure 5-15 shows that if the only criteria fields present were Ex1, Ex2, and Ex3 (with Ex4 and
Ex5 removed), all three would be And-ing between the fields. If only the criteria fields Ex4 and
Ex5 were present (with Ex1, Ex2, and Ex3 removed), the two would be Or-ing between fields. As
it is, the expression for this example is (Ex1 And Ex2 And Ex3) Or Ex4 Or Ex5. Therefore, this
query displays a record if a value matches any of these criteria:

Ex1 And Ex2 And Ex3 (all must be True) or

Ex4 (this can be True and either/both of the other two lines can be False) or

Ex5 (this can be True and either/both of the other two lines can be False)

As long as one of these three criteria is True, the record appears in the query’s results.

196

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 196

Specifying And criteria across fields of a query
The most common type of condition operator between fields is the And operator. You use the And
operator to limit records on the basis of several field conditions. For example, you may want to
view only the records of buyers who live in the state of Massachusetts and bought Chevys. To cre-
ate this query, follow these steps:

1. Create a new query using tblContacts, tblSales, tblSalesLineItems, and
tblProducts.

2. Add FirstName, LastName, and State from tblContacts and Description
from tblProducts.

3. Click the Criteria: cell of State.

4. Type MA in the cell.

5. Click the Criteria: cell for Description.

6. Type Like *chevy* in the cell.

Your query should look like the query shown in Figure 5-16. Notice that both example
data are in the same row. If you look at the datasheet, you will see seven records that
match the criteria one truck and six cars.

FIGURE 5-16

An And operator performing a Boolean operation based on two fields — MA in State
and Like *chevy* in Description.

Because you placed data for both criteria on the same row, Access interprets this as an And
operation — where both conditions must be True. If you click on the Datasheet View command,
you see that you only have seven records in the query’s results.

197

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 197

Specifying Or criteria across fields of a query
Although the Or operator isn’t used across fields as commonly as the And operator, occasionally
Or is very useful. For example, you may want to see records of any vehicles bought by contacts in
Connecticut or you may want to see records on SUVs, regardless of the state they live in. To create
this query, follow these steps:

1. Use the query from the previous example, emptying the two criteria cells first.

2. Add Category from tblProducts.

3. Click the Criteria: cell of State.

4. Type CT in the cell.

5. Click in the Or: cell for Category (one line below the CT example).

6. Type SUV in the cell.

Your query should resemble the query shown in Figure 5-17. Notice that the criteria
entered are not in the same row of the QBE pane for both fields. When you place the cri-
terion for one field on a different line from the criterion for another field, Access inter-
prets this as an Or between the fields. If you click on the Datasheet View command, you
see that you now have 28 records in the query’s results. You’re seeing records where the
State is “CT” or the Category is “SUV.”

FIGURE 5-17

Using the Or operator between fields. Either condition must be True— either from the
state of CT or the category of vehicle is SUV.

198

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 198

Using And and Or together in different fields
After you’ve worked with And and Or separately, you’re ready to create a query using And and Or
in different fields. In the next example, you want to display information for all buyers of SUVs in
Connecticut and all buyers of trucks in New York. To create this query, follow these steps:

1. Use the query from the previous example, emptying the two criteria cells first.

2. Click the Criteria: cell of State.

3. Type CT in the cell.

4. Click the Or: cell of State.

5. Type NY in the cell.

6. Click the Criteria: cell for Category.

7. Type SUV in the cell.

8. Click the Or: cell for Category.

9. Type Trucks in the cell.

Figure 5-18 shows how the query should look. Notice that CT and SUV are in the same
row; NY and Trucks are in another row. This query represents two Ands across fields,
with an Or in each field.

FIGURE 5-18

Using Ands and Ors across fields to select all SUVs for buyers that live in CT or all
trucks whose buyers live in NY.

Clicking on the Datasheet View command displays eight records — four SUV records for CT and
four truck records for NY.

A complex query on different lines
Suppose you want to view all records of Chevys that were bought in the first six months of 2007
where the buyer lives in Massachusetts, or any vehicle from buyers in California. In this example,
you use three fields for setting criteria: tblContacts.State, tblSales.SaleDate, and
tblProducts.Description. Here’s the expression for setting these criteria:

((tblSales.SaleDate Between #1/1/2007# And #6/30/2007#) And
(tblProducts.Description = Like “*Chevy*”) And
(tblContacts.State = “MA”)) OR (tblContacts.State = “CA”)

199

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 199

You can display this data by creating the query shown in Figure 5-19.

FIGURE 5-19

Using multiple Ands and Ors across fields. This is a rather complex Select query.

You can enter the date 1/1/07 instead of 1/1/2007, and Access processes the query
exactly the same. All Microsoft Office products process two-digit years from 00 to 30 as

2000 to 2030, while all two-digit years between 31 and 99 are processed as 1931 to 1999.

Creating a New Calculated Field in a Query
Fields in a query are not limited to the fields from the tables in your database. You can also create
calculated fields to use in a query. For example, you can create a calculated field named Discount
Amount that displays the result of multiplying the value of the discount percent
(DiscountPercent) times the price (Price) in the tblSalesLineItem table.

To create this calculated field, follow these steps:

1. Create a new query using tblContacts, tblSales, tblSalesLineItems, and
tblProducts.

2. Add FirstName and LastName from tblContacts, and Price and
DiscountPercent from tblSalesLineItems.

3. Click the first empty Field: cell.

4. Type the following DiscountAmt: tblSalesLineItems.Price * tblSalesLineItems
.DiscountPercent and click in another cell.

Your query should look like the one shown in Figure 5-20. The name of the calculated
field is now DiscountAmt. If you didn’t type the name in Step 4 above, Access automat-
ically places Expr1: as the name before the calculation. Notice that the DiscountAmt
expression does not completely show in Figure 5-20; however, it should match the
expression entered in Step 4 above.

NOTENOTE

200

Access Building BlocksPart I

09_046732 ch05.qxp 11/21/06 8:47 AM Page 200

FIGURE 5-20

A calculated field, Discount Amount, was created by multiplying two fields from
tblSalesLineItems.

A calculated field has to have a name (supplied either by the user or by Access). The
name — which appears before the colon (:) — is needed as a heading for the datasheet

column and as a reference to the field in a form, report, or another query. If you don’t give a calcu-
lated field a name, Access will give it one for you (e.g., Expr1, Expr2, etc.).

To see the entire contents of the field cell, drag the field until it is all visible or press the
Shift+F2 keys to open the Zoom window.

Notice that the general format for creating a calculated field is as follows:

CalculatedFieldName: Expression to build calculated field

Summary
In this chapter, you learned how to use various operators to create expressions in Access. You used
mathematical operations to perform arithmetic calculations, relational operators to compare values,
string operators to concatenate and match text patterns using wildcards, and Boolean operators to
perform logical operations. You also used Is, Not, and Between...And operators.

You implemented these operators in queries to see them in action. You created simple and complex
criteria, as well as calculated fields by creating expressions using the various types of operators.
You learned the difference between using And and Or in your queries and how to set the QBE
pane to get the desired results.

TIPTIP

NOTENOTE

201

Using Operators and Expressions in Access 5

09_046732 ch05.qxp 11/21/06 8:47 AM Page 201

09_046732 ch05.qxp 11/21/06 8:47 AM Page 202

In Chapter 2, you created a database named My Access Auto Auctions to
hold the tables, queries, forms, reports, and macros you’ll create as you
learn Access. You also created a table named tblContacts using the

Access 2007 table designer.

In this chapter, you’ll use a datasheet to enter data into an Access table and
display the data many different ways. Using Datasheet View allows you to see
many records at once, in a the common spreadsheet-style format. In this
chapter, you’ll work with tblContacts and tblProducts to add,
change, and delete data, as well as learn about different features available in
Datasheet View.

This chapter uses the database named Chapter06.accdb.
If you haven’t already copied it onto your machine from the

CD, you’ll need to do so now.

Understanding Datasheets
Using a datasheet is just one of the ways to view data in Access. A datasheet
is similar to a spreadsheet because it displays data as a series of rows and
columns. Figure 6-1 shows a typical Datasheet View of data. Each row repre-
sents a single record, and each column represents a single field in the table.
Scroll up or down in the datasheet to see the rows (records) that don’t fit on
the screen; scroll left or right to see the columns (fields) that don’t fit.

ON the CD-ROMON the CD-ROM

203

IN THIS CHAPTER
Displaying a datasheet

Moving within a datasheet

Opening a new datasheet

Using special data-entry
techniques

Finding and replacing values

Hiding, freezing, and
rearranging datasheet columns

Sorting or filtering records in a
datasheet

Saving and printing datasheets

Working with
Datasheet View

10_046732 ch06.qxp 11/21/06 8:48 AM Page 203

Datasheets are completely customizable, which allows you to view data in many ways. Changing
the font size, column widths, and row heights makes more or less of the data fit on the screen.
Rearranging the order of the rows and/or columns lets you organize the records and fields logically.
Locking columns makes them stay in position as you scroll to other parts of the datasheet, and hid-
ing columns makes them disappear. Filtering the data hides records that don’t match a specific
criteria.

FIGURE 6-1

A typical Datasheet View. Each row represents a single record in the table; each column represents a single
field (like Description or RetailPrice) in the table.

Status Bar

Navigation Buttons

Search Box

Datasheet Window

Quick Access Toolbar

View Shortcuts

Navigation Pane

Ribbon

Microsoft Office Button

204

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 204

The Datasheet Window
The Datasheet window appears in the center of the Access window shown in Figure 6-1. This
Datasheet window displays the data in rows and columns. Each record occupies one row, and each
column — headed by a field name in the field title area — contains each field’s values. The display
arranges the records initially by primary key and the fields by the order in the table design.

At the top of the Access window, you see the title bar (displaying the database filename and
Microsoft Access), the Quick Access toolbar, and the ribbon. At the bottom of the Access window,
you see the status bar, which displays assorted information about the datasheet. For example, it
may contain field description information (as in Figure 6-1, “Up to 100 character description of the
product”), error messages, warnings, or a progress bar. If you gave the field a description when cre-
ating it, the field description that you enter for each field is displayed in the status bar. If a specific
field doesn’t have a field description, Access displays the words Datasheet View. Generally, error
messages and warnings appear in dialog boxes in the center of the screen rather than in the status
bar. If you need help understanding the meaning of a button in the toolbar, move the mouse over
the button, hovering over it, and a ToolTip appears with a one- or two-word explanation.

The right side of the Datasheet window contains a scroll bar for moving quickly between records
(up and down). As you scroll between records, a ScrollTip (shown in Figure 6-1) tells you precisely
where the scroll bar takes you. In Access 2007, the size of the scroll bar thumb gives you a propor-
tional look at how many of the total number of records are being displayed. In Figure 6-1, the
scroll bar thumb takes up about 12 percent of the scroll area, and 28 of 60 records are shown on-
screen. The bottom of the Datasheet window also contains a proportional scroll bar for moving
among fields (left to right). The Navigation buttons — for moving between records — also appear
in the bottom-left corner of the datasheet window.

205

Working with Datasheet View 6

Quick Review of Records and Fields

Atable is a container for storing related information — patient records, a card list (birthday, holi-
day), birthday reminders, payroll information, and so on. Each table has a formal structure com-

prised of fields, each with a unique name to identify and describe the stored information and a
specific data type — text, numeric, date and time, and so on — to limit what users enter in these
fields. When displayed in a datasheet (a two-dimensional sheet of information), Access displays
these fields in columns.

The table is composed of records, which hold information about a single entity (like a single cus-
tomer or a single product). One record is made up of information stored in all the fields of the table
structure. For example, if a table has three fields — name, address, and phone number — then the
first record only has one name, one address, and one phone number in it. The second record also
has one name, one address, and one phone number in it. A datasheet is an ideal way of looking at
all the table’s contents at once. A single record appears as a row in the datasheet; each row contains
information for that specific record. The fields appear as columns in the datasheet; each column
contains an individual field’s contents. This row-and-column format lets you see lots of data at once.

10_046732 ch06.qxp 11/21/06 8:48 AM Page 205

Moving within a datasheet
You easily move within the Datasheet window using the mouse to indicate where you want to
change or add to your data — just click a field and record location. In addition, the ribbons, scroll
bars, and Navigation buttons make it easy to move among fields and records. Think of a datasheet
as a spreadsheet without the row numbers and column letters. Instead, columns have field names,
and rows are unique records that have identifiable values in each cell.

Table 6-1 lists the navigational keys that you can use for moving within a datasheet.

TABLE 6-1

Navigating in a Datasheet

Navigational Direction Keystrokes

Next field Tab

Previous field Shift+Tab

First field of current record Home

Last field of current record End

Next record Down arrow (↓)

Previous record Up arrow (↑)

First field of first record Ctrl+Home

Last field of last record Ctrl+End

Scroll up one page PgUp

Scroll down one page PgDn

The Navigation buttons
The Navigation buttons (shown in Figure 6-2) are the six controls located at the bottom of the
Datasheet window, which you click to move between records. The two leftmost controls move you
to the first record or the previous record in the datasheet. The three rightmost controls position
you on the next record, last record, or new record in the datasheet. If you know the record number
(the row number of a specific record), you can click the record number box, enter a record num-
ber, and press Enter.

If you enter a record number greater than the number of records in the table, an error
message appears stating that you can’t go to the specified record.NOTENOTE

206

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 206

FIGURE 6-2

The Navigation buttons of a datasheet

The Datasheet ribbon
The Datasheet ribbon (shown in Figure 6-3) provides a way to work with the datasheet. The Home
ribbon has some familiar objects on it, as well as some new ones. This section provides an
overview of the Home ribbon; the individual commands are described in more detail later in this
chapter.

FIGURE 6-3

The Datasheet ribbon’s Home tab

The Home ribbon is divided into the following groups:

n Views: The first group is the Views group, which allows you to switch between Datasheet
View, PivotTable View, PivotChart View, and Design View. You can see all four choices by
clicking the View command’s down arrow (triangle pointing down). Clicking Design View
permits you to make changes to the object’s design (table, query, and so on). Clicking
Datasheet View returns to the datasheet.

n Clipboard: The Clipboard group contains the Cut, Copy, and Paste commands. These
commands work like the commands in other applications (Word, Excel, and so on). The
Paste command’s down arrow gives you three choices: Paste, Paste Special, and Paste
Append. Paste Special gives you the option of pasting the contents of the clipboard in dif-
ferent formats (Text, CSV, Records, and so on). Paste Append pastes the contents of the
Clipboard as a new record — provided a row with a similar structure was copied.

Tabs

Groups

First

Previous

Record Number Box Next

Last

New

207

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 207

n Font: The Font group lets you change the look of the datasheet. Use these commands to
change the font, size, bold, italic, color, and so on. Use the Align Left, Align Right, and
Align Center commands to justify the data in the selected column. Click the Gridlines
command to toggle gridlines on and off. Use the Alternate Fill/Back Color command to
change the colors of alternating rows or to make them all the same.

n Rich Text: The Rich Text group lets you change a memo field’s data if the field’s Text
Format property is set to Rich Text. Use these commands to add bullets or numbered lists
and change the indentation levels. Highlighting text in a Rich Text field, and then select-
ing commands in the Font group, changes the highlighted text instead of the entire
datasheet.

n Records: The Records group lets you save, delete, or add a new record to the datasheet. It
also contains commands to show totals, check spelling, freeze and hide columns, and
change the row height and cell width.

n Sort & Filter: The Sort & Filter group lets you change the order of the rows as well as
limit the rows being displayed — based on criteria you want.

n Find: The Find group lets you find and replace data and go to specific records in the
datasheet. Use the select command to select a record or all records.

Opening a Datasheet
Follow these steps to open a datasheet from the Database window:

1. Using the Chapter06.accdb database from the CD, click Tables in the Navigation
Pane.

2. Double-click the table name you want to open (in this example, tblProducts).

An alternative method for opening the datasheet is to right-click on tblProducts and select
Open from the pop-up menu.

If you are in any of the design windows, click on the Datasheet View command in the
ribbon’s View group to view your data in a datasheet.

Entering New Data
All the records in your table are visible when you first open it in Datasheet View. If you just created
your table, the new datasheet doesn’t contain any data. Figure 6-4 shows an empty datasheet. When
the datasheet is empty, the first row contains an asterisk (*) in the record selector — indicating it’s a
new record.

TIPTIP

208

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 208

FIGURE 6-4

An empty datasheet. Notice that the first record is blank and has an asterisk in the record selector.

The new record appears at the bottom of the datasheet when the datasheet already contains
records. Click the New Record command in the ribbon’s Record group, or click the new record
navigation button to move the cursor to the new row — or simply click on the last row, which con-
tains the asterisk. The asterisk turns into a pencil when you begin entering data, indicating that the
record is being edited. A new row — containing an asterisk — appears below the one you’re enter-
ing data into. The new-record pointer always appears in the last row of the datasheet. Figure 6-5
shows adding a new record into tblProducts.

FIGURE 6-5

Entering a new record into the datasheet of tblProducts

To add a new record to the open Datasheet View of the tblProducts, follow these steps:

1. Click the New Record button.

2. Type in values for all fields of the table, moving between fields by pressing the
Enter key or the Tab key.

Record Selectors

New Row

New Record Indicator

209

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 209

When adding or editing records, you may see three different record pointers:

n Record being edited

n Record is locked (multiuser systems)

n New record

If the record contains an AutoNumber field, Access shows the name (New) in the field.
You cannot enter a value in this type of field; rather, simply press the Tab or Enter key to

skip this field. Access automatically puts the number in when you begin entering data.

Saving the record
Moving to a different record saves the record you’re editing. Tabbing through all the fields, clicking
on the Navigation buttons, clicking Save in the ribbon’s Record group, and closing the table all
write the edited record to the database. You’ll know the record is saved when the pencil disappears
from the record selector.

To save a record, you must enter valid values into each field. The fields are validated for data type,
uniqueness (if indexed for unique values), and any validation rules that you have entered into the
Validation Rule property. If your table has a primary key that’s not an AutoNumber field,
you’ll have to make sure you enter a unique value in the primary key field to avoid the error mes-
sage shown in Figure 6-6. Using an AutoNumber field as a table’s primary key ensures you won’t
get this error message when entering data.

FIGURE 6-6

The error message Access displays when attempting to save a record with a duplicate primary key value
entered into the new record. Use an AutoNumber field as your primary key to avoid this error.

The Undo button in the Quick Access toolbar reverses changes to the current record
and to the last saved record. After you change a second record, you cannot undo the

saved record.

You can save the record to disk without leaving the record by pressing Shift+Enter.

Now you know how to enter, edit, and save data in a new or existing record. Next you learn how
Access validates your data as you make entries into the fields.

TIPTIP

TIPTIP

CAUTION CAUTION

210

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 210

Understanding automatic data-type validation
Access validates certain types of data automatically. Therefore, you don’t have to enter any data-
validation rules for these data types when you specify table properties. The data types that Access
validates automatically include

n Number/Currency

n Date/Time

n Yes/No

Access validates the data type when you move off the field. When you enter a letter into a Number
or Currency field, you don’t initially see a warning not to enter these characters. However, when you
tab out of or click on a different field, you get a warning like the one shown in Figure 6-7. This par-
ticular warning lets you choose to enter a new value or change the column’s data type to Text. You’ll
see this message if you enter other inappropriate characters (symbols, letters, and so on), enter more
than one decimal point, or enter a number too large for a certain Number data type.

FIGURE 6-7

The warning Access displays when entering data that doesn’t match the field’s data type. Access gives you
a few choices to correct the problem.

Access validates Date/Time fields for valid date or time values. You’ll see a warning similar to the
one shown in Figure 6-7 if you try to enter a date such as 14/45/05, a time such as 37:39:12, or an
invalid character in a Date/Time field.

Yes/No fields require that you enter one of these defined values: Yes, True, -1, or a number other
than 0 (it displays as a -1) for Yes; or No, False, Off, or 0 for No. Of course, you can define your
own acceptable values in the Format property for the field, but generally these are the only accept-
able values. If you enter an invalid value, the warning appears with the message to indicate an
inappropriate value.

Display a check box in Yes/No fields to prevent users from entering invalid data.TIPTIP

211

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 211

Understanding how properties affect data entry
Because field types vary, you use different data-entry techniques for each type. Previously in this
chapter, you learned that some data-type validation is automatic. Designing tblContacts, how-
ever, means entering certain user-defined format and data-validation rules. The following sections
examine the types of data entry.

Standard text data entry
The first field — ContactID— in tblContacts is an AutoNumber field; the next 13 fields are
Text fields. After skipping ContactID, you simply enter a value in each field and move on. The
ZipCode field uses an input mask (00000\-9999;0;) for data entry. The Phone and Fax fields
also use an input mask (!\(999”) “000\-0000;0;). These are the only fields that use any spe-
cial formatting via the input mask. Text fields accept any characters, unless you restrict them with
an input mask.

To enter multiple lines in a Text or Memo field, press Ctrl+Enter to add a new line. This
is useful, for example, in large text strings for formatting a multiple-line address field.

Date/Time data entry
The OrigCustDate and LastSalesDate fields in tblContacts are Date/Time data types,
which both use a Short Date format (3/16/2007). However, you could have defined the format as
Medium Date (16-Mar-07) or Long Date (Friday, March 16, 2007). Using either of these formats
simply means that no matter how you type in the date — using month and year; day, month, and
year; or month, day, and year — it always displays as the format specified (short date [3/16/07],
medium date [16-Mar-07], or long date [Friday, March 16, 2007]). So if you type 4/8/08 or 8 Apr
08, Access displays the value in the defined format when you leave the field. The value 4/8/2008 is
really stored in the table.

Formats only affect the display of the data. They do not change storage of data in the
table.

Number/Currency data entry with data validation
The CreditLimit field in tblContacts has a validation rule assigned to it. It has a Validation
Rule property to limit the amount of credit to $250,000. If the rule is violated, a dialog box
appears with the validation text entered for the field. If you want to allow a contact to have more
than $250,000 credit, change the validation rule in the table design.

OLE object data entry
You can enter OLE (Object Linking and Embedding) Object data into a datasheet, even though you
don’t see the object. An OLE Object field holds many different item types, including:

n Bitmap pictures

n Sound files

TIPTIP

TIPTIP

212

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 212

n Business graphs

n Word or Excel files

Any object that an OLE server supports can be stored in an Access OLE Object field. OLE objects
are generally entered into a form so you can see, hear, or use the value. When OLE objects appear
in datasheets, you see text that tells what the object is (for example, you may see Bitmap Image in
the OLE Object field). You can enter OLE objects into a field in two ways:

n Pasting from the Clipboard

n Right-clicking on the OLE Object field and clicking on Insert Object from the pop-up
menu

For thorough coverage of using and displaying OLE objects, see Chapter 24.

Memo field data entry
The second-to-last field in the table is Notes, which is a Memo data type. This type of field allows
up to 65,536 characters of text for each field. Recall that you entered a long string (about 260 char-
acters) into the Memo field. As you entered the string, however, you saw only a few characters at a
time. The rest of the string scrolled out of sight. Pressing Shift+F2 displays a Zoom window with a
scroll bar (see Figure 6-8) that lets you to see more characters at a time. Click the Font button at
the bottom of the window to view all the text in a different font or size.

FIGURE 6-8

The Zoom window. Notice you can see a lot more of the field’s data — not all 65,536 characters, but still
quite a lot.

When you first display text in the Zoom window, all the text is selected and highlighted. You can
deselect the text by clicking anywhere in the window. If you accidentally delete all the text or
change something you didn’t want to, click Cancel to exit back to the datasheet with the field’s
original data.

CROSS-REFCROSS-REF

213

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 213

Use the Zoom window (Shift+F2) when designing Access objects (tables, forms, reports,
queries) to see text that normally scrolls out of view.

Navigating Records in a Datasheet
Wanting to make changes to records after you’ve entered them is not unusual. You may want to
change records for several reasons:

n You receive new information that changes existing values.

n You discover errors in existing values.

n You need to add new records.

When you decide to edit data in a table, the first step is to open the table — if it isn’t already open.
From the list of tables in the Navigation pane, double-click on tblProducts to open it in
Datasheet View. If you’re already in Design View for this table, click the Datasheet View button to
switch views.

When you open a datasheet in Access that has related tables, a column with a plus sign (+) is
added to access the related records, or subdatasheets.

Moving between records
You can move to any record by scrolling through the records and positioning your cursor on the
desired one. With a large table, scrolling through all the records might take a while, so you’ll want
to use other methods to get to specific records quickly.

Use the vertical scroll bar to move between records. The scroll-bar arrows move one record at a
time. To move through many records at a time, drag the scroll box or click the areas between the
scroll box and the scroll-bar arrows.

Watch the ScrollTips when you use scroll bars to move to another area of the datasheet.
Access does not update the record number box until you click a field.

Use the five Navigation buttons (refer to Figure 6-2) to move between records. You simply click
these buttons to move to the desired record. If you know the record number (row number of a spe-
cific record), click the record number box, enter a record number, and press Enter.

Also use the Go To command in the ribbon’s Find group to navigate to the First, Previous, Next,
Last, and New records.

TIPTIP

TIPTIP

214

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 214

Finding a specific value
Although you can move to a specific record (if you know the record number) or to a specific field
in the current record, usually you’ll want to find a certain value in a record. You can use one of
these methods for locating a value in a field:

n Select the Find command (a pair of binoculars) from the ribbon’s Find group

n Press Ctrl+F

n Use the Search box at the bottom of the datasheet window

The first two methods display the Find and Replace dialog box (shown in Figure 6-9). To limit the
search to a specific field, place your cursor in the field you want to search before you open the dia-
log box. Change the Look In combo box to the table name to search the entire table for the value.

FIGURE 6-9

The Find and Replace dialog box. The fastest way to activate it is to simply press the Ctrl+F key
combination.

If you highlight the entire record by clicking the record selector (the small gray box next
to the record), Access automatically searches through all fields.

The Find and Replace dialog box lets you control many aspects of the search. Enter the value you
want to search for in the Find What combo box — which contains a list of recently used searches.
You can enter a specific value or choose to use three types of wildcards:

* (any number of characters)

? (any one character)

(any one number)

To look at how these wildcards work, first suppose that you want to find any value in the
Description field of tblProducts beginning with 2001; for this, you type 2001*. Then sup-
pose that you want to search for values ending with Sedan, so you type *Sedan. If you want to
search for any value that begins with 2001, ends with Sedan, and contains any number of charac-
ters in between, you type 2001*Sedan.

TIPTIP

215

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 215

For more information on using wildcards, see Chapter 5.

The Match drop-down list contains three choices that eliminate the need for wildcards:

n Any Part of Field

n Whole Field

n Start of Field

The default is Whole Field, which finds only the whole value you enter. For example, the Whole
Field option finds the value FORD only if the value in the field being searched is exactly FORD. If
you select Any Part of Field, Access searches to see whether the value is contained anywhere in the
field; this search finds the value FORD in the field values FORDMAN, 2001 FORD F-150, and
FORD. A search for FORD using the Start of Field option searches from the beginning of the field,
and returns no values because the Description field always begins with a year (1999, 2003, and
so on).

In addition to these combo boxes, you can use two check boxes at the bottom of the Find and
Replace dialog box:

n Match Case: Match Case determines whether the search is case-sensitive. The default is
not case-sensitive (not checked). A search for SMITH finds smith, SMITH, or Smith. If
you check the Match Case check box, you must then enter the search string in the exact
case of the field value. (The data types Number, Currency, and Date/Time do not have
any case attributes.)

If you have checked Match Case, Access does not use the value Search Fields As
Formatted (the second check box), which limits the search to the actual values displayed
in the table. (If you format a field for display in the datasheet, you should check the box.)

n Search Fields As Formatted: The Search Fields As Formatted check box, the selected
default, finds only text that has the same pattern of characters as the text specified in the
Find What box. Clear this box to find text regardless of the formatting. For example, if
you’re searching the Cost field for a value of $16,500, you must enter the comma if
Search Fields as Formatted is checked. Uncheck this box to search for an unformatted
value (16500).

Checking Search Fields As Formatted may slow the search process.

The search begins when you click the Find Next button. If Access finds the value, the cursor high-
lights it in the datasheet. To find the next occurrence of the value, click the Find Next button
again. The dialog box remains open so that you can find multiple occurrences. Choose one of three
search direction choices (Up, Down, All) in the Search drop-down list to change the search direc-
tion. When you find the value that you want, click Close to close the dialog box.

CAUTION CAUTION

CROSS-REFCROSS-REF

216

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 216

Use the search box at the bottom of the Datasheet window (refer to Figure 6-1) to quickly search
for the first instance of a value. When using the search box, Access searches the entire datasheet for
the value in any part of the field. If you type FORD in the search box, the datasheet moves as you
type each letter. First, it finds an F; then it finds FO and so on. Once it finds the value, it stops
searching. To find more than one instance, use the Find and Replace dialog box.

Changing Values in a Datasheet
If the field that you are in has no value, you can type a new value into the field. When you enter
new values into a field, follow the same rules as for a new-record entry.

Replacing an existing value manually
Generally, you enter a field with either no characters selected or the entire value selected. If you use
the keyboard (Tab or Arrow keys) to enter a field, you select the entire value. (You know that the
entire value is selected when it is displayed in reverse video.) When you begin to type, the new
content replaces the selected value automatically.

When you click in a field, the value is not selected. To select the entire value with the mouse, use
any of these methods:

n Click just to the left of the value when the cursor is shown as a large plus sign.

n Double-click in the field. (This only works if the field doesn’t contain spaces.)

n Click to the left of the value, hold down the left mouse button, and drag the mouse to
select the whole value.

n Click in the field and press F2.

You may want to replace an existing value with the value from the field’s Default Value
property. To do so, select the value and press Ctrl+Alt+Spacebar. To replace an existing

value with that of the same field from the preceding record, press Ctrl+’ (single quote mark). Press
Ctrl+; (semicolon) to place the current date in a field.

Pressing Ctrl+- (minus sign) deletes the current record.

Changing an existing value
If you want to change an existing value instead of replacing the entire value, use the mouse and
click in front of any character in the field to activate Insert mode; the existing value moves to the
right as you type the new value. If you press the Insert key, your entry changes to Overstrike mode;
you replace one character at a time as you type. Use the arrow keys to move between characters
without disturbing them. Erase characters to the left by pressing Backspace, or to the right of the
cursor by pressing Delete.

CAUTION CAUTION

TIPTIP

217

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 217

Table 6-2 lists editing techniques.

TABLE 6-2

Editing Techniques

Editing Operation Keystrokes

Move the insertion point within a field Press the right-arrow (→) and left-arrow (←) keys

Insert a value within a field Select the insertion point and type new data

Select the entire field Press F2

Replace an existing value with a new value Select the entire field and type a new value

Replace a value with the value of the previous field Press Ctrl+’ (single quote mark)

Replace the current value with the default value Press Ctrl+Alt+Spacebar

Insert a line break in a Text or Memo field Press Ctrl+Enter

Save the current record Press Shift+Enter or move to another record

Insert the current date Ctrl+; (semicolon)

Insert the current time Ctrl+: (colon)

Add a new record Ctrl++ (plus sign)

Delete the current record Ctrl+- (minus sign)

Toggle values in a check box or option button Spacebar

Undo a change to the current field Press Esc or click the Undo button

Undo a change to the current record Press Esc or click the Undo button a second time
after you undo the current field

Fields that you can’t edit
Some fields can’t be edited, such as:

n AutoNumber fields: Access maintains AutoNumber fields automatically, calculating the
values as you create each new record. AutoNumber fields can be used as the primary key.

n Calculated fields: Access uses calculated fields in forms or queries; these values are not
actually stored in your table.

n Locked or disabled fields: You can set certain properties in a form to prevent editing for
a specific field.

n Fields in multiuser locked records: If another user locks the record, you can’t edit any
fields in that record.

218

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 218

Using the Undo Feature
The Undo button on the Quick Access toolbar is often dimmed because there’s nothing to undo. As
soon as you begin editing a record, however, you can use this button to undo the typing in the cur-
rent field. You can also undo a change with the Esc key; pressing Esc cancels either a changed
value or the previously changed field. Pressing Esc twice undoes changes to the entire current
record.

After you type a value into a field, click the Undo button to undo changes to that value. After you
move to another field, you can undo the change to the preceding field’s value by clicking the Undo
button. You can also undo all the changes to an unsaved current record by clicking the Undo button
after you undo a field. After you save a record, you can still undo the changes by clicking the Undo
button. However, after the next record is edited, changes to the previous record are permanent.

Don’t rely on the Undo command to save you after you edit multiple records. When
working in a datasheet, changes are saved when you move from record to record and

you can only undo changes to one record.

Copying and Pasting Values
Copying or cutting data to the Clipboard is a Microsoft Windows task; it is not a specific function
of Access. After you cut or copy a value, you can paste into another field or record by using the
Paste command in the ribbon’s Clipboard group. You can cut, copy, or paste data from any
Windows application or from one task to another in Access. Using this technique, you can copy
entire records between tables or databases, and you can copy datasheet values to and from
Microsoft Word and Excel.

The Paste command’s down arrow gives you three choices:

n Paste: Paste inserts the contents of the Clipboard into one field.

n Paste Special: Paste Special gives you the option of pasting the contents of the Clipboard
in different formats (Text, CSV, Records, and so on).

n Paste Append: Paste Append pastes the contents of the Clipboard as a new record —
provided a row with a similar structure was copied.

Select a record or group of records using the record selector to cut or copy one or more
records to the Clipboard. Then use Paste Append to add them to a table with a similar

structure.

TIPTIP

CAUTION CAUTION

219

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 219

Replacing Values
To replace an existing value in a field, you can manually find the record to update or you can use
the Find and Replace dialog box. Display the Find and Replace dialog box using these methods:

n Select the Replace command from the ribbon’s Find group

n Press Ctrl+H

This dialog box allows you to replace a value in the current field or in the entire datasheet. Use it
to find a certain value and replace it with a new value everywhere it appears in the field or table.

After the Find and Replace dialog box is active, you should first click the Replace tab and type in
the value that you want to find in the Find What box. After you have selected all the remaining
search options (turn off Search Fields As Formatted, for example), click the Find Next button to
find to the first occurrence of the value. To change the value of the current found item (under the
cursor), enter a value in the Replace With box and click the Replace button. For example, Figure
6-10 shows that you want to find the value Motor Homes in the Category field of tblProducts
and change it to Camper.

FIGURE 6-10

Find and Replace dialog box with the Replace tab showing. In this case, you want to replace the value
Motor Homes with Camper.

You can select your search options in the Find tab and then click the Replace tab to continue the
process. However, it is far easier to simply do the entire process using the Replace tab. Enter the
value you want to find and the value that you want to replace it with. After you have completed
the dialog box with all the correct information, select one of the command buttons on the side:

n Find Next: Finds the next field that has the value in the Find What field.

n Cancel: Closes the form and performs no find and replace.

n Replace: Replaces the value in the current field only. (Note: You must use the Find Next
button first.)

220

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 220

n Replace All: Finds all the fields with the Find What value and replaces them with the
Replace With value. Use this if you’re sure that you want to replace all the values; double-
check the Look In box to make sure you don’t replace the values in the entire datasheet if
you don’t want to.

Adding New Records
There are a number of ways to add a record to the datasheet:

n Click on the datasheet’s last line, where the record pointer is an asterisk.

n Click the new record Navigation button (the furthest button on the right).

n Click the New command from the ribbon’s Records group.

n Click the Goto ➪ New command from the ribbon’s Find group.

n Move to the last record and press the down-arrow (↓) key.

n Press Ctrl++ (plus sign).

Once you move to a new record, enter data into the desired fields and save the record.

Deleting Records
To delete records, select one or more records using the record selectors, then press the Delete key
or click the Delete command in the ribbon’s Records group. The Delete command’s drop-down
contains the Delete Record command, which deletes the current record, even if it’s not selected.
When you press Delete or choose the ribbon command, a dialog box asks you to confirm the dele-
tion (see Figure 6-11). If you select Yes, the records are deleted. If you select Cancel, no changes
are made.

The Default value for this dialog box is Yes. Pressing the Enter key automatically deletes
the records. If you accidentally erase records using this method, the action can’t be

reversed.

FIGURE 6-11

The Delete Record dialog box warns you that you are about to delete x number of records — the default
response is YES (OK to delete) so be careful when deleting records.

CAUTION CAUTION

221

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 221

If you have relations set between tables and checked Enforce Referential Integrity — for
example, the tblContacts (Customer) table is related to tblSales— then you can’t

delete a parent record (tblContacts) that has related child records (in tblSales) unless the you also
check the Cascade Delete check box. Otherwise, you receive an error message dialog box that reports
The record can’t be deleted or changed because the table ‘<tablename>’
includes related records.

To select multiple contiguous records, click the record selector of the first record that you want to
select and drag the mouse to the last record that you want to select. Or click to select the first
record, then hold Shift and click on the last record you want in the selection.

Displaying Records
A number of techniques can increase your productivity when you add or change records. Change
the field order, hide and freeze columns, change row height or column width, change display fonts,
and change the display or remove gridlines to make data entry easier.

Changing the field order
By default, Access displays the fields in a datasheet in the same order that they appear in a table or
query. Sometimes, you want to see certain fields next to each other in order to better analyze your
data. To rearrange your fields, select a column by clicking the column heading, and then drag the
column to its new location (as shown in Figure 6-12).

FIGURE 6-12

Selecting and dragging a column to change the field order

CAUTION CAUTION

222

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 222

You can select and drag columns one at a time, or select multiple columns to move at the same
time. Suppose you want QtyInStock to appear before Description in the tblProducts
datasheet. Follow these steps to make this change:

1. Position the mouse pointer over the QtyInStock column heading.

The cursor changes to a down arrow.

2. Click to select the column.

The entire QtyInStock column is now highlighted.

3. Release the mouse button.

4. Click the mouse button on the column heading again.

The pointer changes to an arrow with a box under it.

5. Drag the column to the left edge of the datasheet between the Product ID and
Description field.

A thin black column appears between them (see Figure 6-12).

6. Release the mouse button.

The column moves in front of the Description field of the datasheet.

With this method, you can move any individual field or contiguous field selection. To select multi-
ple fields, click and drag the mouse across multiple column headings. Then you can move the
fields left or right or past the right or left boundary of the window.

Moving fields in a datasheet does not affect the field order in the table design.

Changing the field display width
You can change the field display width (column width) either by specifying the width in a dialog box
(in number of characters) or by dragging the column border. When you drag a column border, the
cursor changes to the double-arrow symbol.

To widen a column or to make it narrower, follow these steps:

1. Place the mouse pointer between two column names on the field separator line.

The mouse pointer turns into a small line with arrows pointing to the left and right — if
you have it in the correct location.

2. Drag the column border to the left to make the column smaller or to the right to
make it larger.

You can instantly resize a column to the best fit (based on the longest visible data value)
by double-clicking the right column border after the cursor changes to the double

arrow.

TIPTIP

NOTENOTE

223

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 223

Resizing the column doesn’t change the number of characters allowed in the table’s
field size. You are simply changing the amount of viewing space for the data contained

in the column.

Alternatively, you can resize a column by right-clicking the column header and selecting Column
Width from the pop-up menu to display the Column Width dialog box, as shown in Figure 6-13.
Set the Column Width box to the number of characters you want to fit in the column or click the
Standard Width check box to set the column to its default size. Click on Best Fit to size the column
to the widest visible value.

FIGURE 6-13

The Column Width dialog box

You can hide a column by dragging the column gridline to the gridline of the next col-
umn to the left, or by setting the column width to 0 in the Column Width dialog box. If

you do this, you must choose More ➪ Unhide Columns in the ribbon’s Records group to redisplay the
columns.

Changing the record display height
Sometimes you may need to increase the row height to accommodate larger fonts or text data dis-
plays of multiple lines. Change the record (row) height of all rows by dragging a row’s border to
make the row height larger or smaller, or you can choose More ➪ Row Height in the ribbon’s
Records group.

When you drag a record’s border, the cursor changes to the vertical two-headed arrow you see at
the left edge of Figure 6-14.

CAUTION CAUTION

NOTENOTE

224

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 224

FIGURE 6-14

Changing a row’s height. Simply put the mouse pointer between two rows. When the mouse pointer
changes to arrows pointing up and down, drag to the desired height.

To increase or decrease a row’s height, follow these steps:

1. Place the mouse pointer between record selectors of two rows.

The cursor changes to the double pointing arrow (up and down).

2. Drag the row border upward to shrink all row heights, or drag the border down-
ward to increase all row heights.

The procedure for changing row height changes the row size for all rows in the
datasheet. You can’t have rows with different heights.

You can also resize rows by choosing More ➪ Row Height in the ribbon’s Records group. The Row
Height dialog box appears; there you enter the row height in point size. Check the Standard Height
check box to return the rows to their default size.

If you drag a record’s gridline up to meet the gridline immediately above it in the previ-
ous record, all rows are hidden. This also occurs if you set the row height close to 0 (for

example, a height of 0.1) in the Row Height dialog box. In that case, you must use the Row Height
dialog box to set the row height to a larger number to redisplay the rows.

Changing display fonts
By default, Access displays all data in the datasheet in the Calibri 11-point Regular font. Use the
commands and drop-down lists in the ribbon’s Font group (shown in Figure 6-15) to change the
datasheet’s text appearance.

CAUTION CAUTION

NOTENOTE

225

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 225

FIGURE 6-15

Changing the datasheet’s font directly from the ribbon. Choose font type style, size, and other font attrib-
utes for the entire datasheet.

Setting the font display affects the entire datasheet. If you want to see more data on the screen, you
can use a very small font. You can also switch to a higher-resolution display size if you have the
necessary hardware. If you want to see larger characters, you can increase the font size or click the
Bold button.

Displaying cell gridlines and alternate row colors
Normally gridlines appear between fields (columns) and between records (rows). You can set how
you want the gridlines to appear using the Gridlines command in the ribbon’s Font group (shown
in Figure 6-15). Choose from the following options in the Gridlines drop-down list:

n Gridlines: Both

n Gridlines: Horizontal

n Gridlines: Vertical

n Gridlines: None

Use the Fill Color and Alternate Fill/Back Color drop-down lists to change the background colors
of the datasheet. The Fill Color palette changes the color of the odd-numbered rows in the
datasheet. The Alternate Fill/Back Color palette changes the color of the even-numbered rows. If
you don’t want alternating row colors, select No Color from the Alternate Fill/Back Color palette
and the even-numbered rows will match the odd-numbered rows.

Bold

Italic

Underline

Font Color

Fill Color

Text Highlight Color

Gridlines

Alignment

Font
Font Size

Alternate Fill/Back Color
Datasheet Formatting

226

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 226

The Datasheet Formatting dialog box (shown in Figure 6-16) gives you complete control over the
datasheet’s look. Open this dialog box using the Datasheet Formatting command in the bottom-
right corner of the ribbon’s Font group. Use the Flat, Sunken, and Raised radio buttons under Cell
Effect to change the grid to a 3D look. Click the Horizontal and Vertical check boxes under
Gridlines Shown to toggle which gridlines you want to see. Change the Background Color,
Alternate Background Color, and Gridline Color using the available color palettes. The sample in
the middle of the dialog box shows you a preview of changes.

FIGURE 6-16

The Datasheet Formatting dialog box. Use this dialog box to customize the look of the datasheet.

Use the Border and Line Styles drop-down lists to change the look of the gridlines. You can change
the styles for the Datasheet Border and the Column Header Underline. Choose a different line style
for each of the selections in the first drop-down list. The different line styles you can select from
include

n Dash-Dot

n Dash-Dot-Dot

n Dashes

n Dots

n Double Solid

n Short Dashes

n Solid

n Sparse Dots

n Transparent Border

227

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 227

Figure 6-17 shows a datasheet with dots instead of solid lines and a higher contrast between alternat-
ing rows. You can use the various colors and styles to customize the datasheet’s look to your liking.

FIGURE 6-17

Different line styles and row colors for the datasheet

Aligning data in columns
Align the data to the left or right, or center it within a column using the alignment buttons. Choose
alignments different from the default alignments Access chooses based on a field’s data type (text
aligns left, numbers/dates align right). To change the alignment of the data in a column, follow
these steps:

1. Position the cursor anywhere within the column that you want to change the
alignment.

2. Click on the Align Left, Align Center, or Align Right commands in the ribbon’s Font
group (shown in Figure 6-15) to change the alignment of the column’s data.

Hiding and unhiding columns
Hide columns by dragging the column gridline to the preceding field or by setting the column
width to 0. To hide a single column, follow these steps:

1. Position the cursor anywhere within the column that you want to hide.

2. Choose More ➪ Hide Columns in the ribbon’s Records group.

The column disappears. Actually, the column width is simply set to 0. You can hide mul-
tiple columns by first selecting them and then choosing More ➪ Hide Columns.

After you’ve hidden a column, you can redisplay it by choosing More ➪ Unhide Columns in the
ribbon’s Records group. This action displays a dialog box that lets you unhide columns selectively
by checking next to each field. When you’re finished, click Close; the datasheet appears, showing

228

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 228

the desired fields. Also use this dialog box to hide one or more columns by unchecking the check
box next to each field you want to hide.

Freezing columns
When you want to scroll left and right among many fields but want to keep certain fields from
scrolling out of view, choose More ➪ Freeze in the ribbon’s Records group. With this command,
for example, you can keep the ProductID and Description fields visible while you scroll
through the datasheet to find the product’s features. The frozen columns are visible on the far-left
side of the datasheet; other fields scroll out of sight horizontally. The fields must be contiguous if
you want to freeze more than one at a time. (Of course, you can first move your fields to place
them next to each other.) When you’re ready to unfreeze the datasheet columns, simply choose
More ➪ Unfreeze.

When you unfreeze columns, the column doesn’t move back to its original position. You
must move it manually.

Saving the changed layout
When you close the datasheet, you save all your data changes but you might lose all your layout
changes. As you make all of these display changes to your datasheet, you probably won’t want to
make them again the next time you open the same datasheet. If you make any layout changes,
Access prompts you to save the changes to the layout when you close the datasheet. Choose Yes to
save the changes; choose No to preserve the layout when you opened the table. Save the layout
changes manually by clicking Save on the Quick Access Toolbar.

If you’re following the example, don’t save the changes to tblProducts.

Saving a record
Access saves each record when you move off it. Pressing Shift+Enter or selecting Save from the rib-
bon’s Records group saves a record without moving off it. Closing the datasheet also saves a record.

Sorting and Filtering Records
in a Datasheet
The ribbon’s Sort & Filter group (shown in Figure 6-18) lets you rearrange the order of the rows
and narrow down the number of rows. Using the commands in this group, you’ll display the
records you want in the order you want them. The following sections demonstrate how to use
these commands.

CAUTION CAUTION

TIPTIP

229

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 229

FIGURE 6-18

The Sort & Filter group. Change the record order and narrow the number of rows using commands in this
group.

Using the QuickSort feature
Sometimes you may simply want to sort your records into a desired order. The QuickSort ribbon
commands let you sort selected columns into either ascending or descending order. To use these
commands, click in a field you want to sort by, then click Ascending (A–Z) or Descending (Z–A).
The data redisplays instantly in the sorted order. Right-clicking on a column and selecting either
Sort A to Z or Sort Z to A also sorts the data.

To sort your data on the basis of values in multiple fields, highlight more than one column:
Highlight a column (as previously discussed), hold down the Shift key, and drag the cursor to the
right. When you select one of the QuickSort commands, Access sorts the records into major order
(by the first highlighted field) and then into orders within orders (based on subsequent fields). If
you need to select multiple columns that aren’t contiguous (next to each other), you can move
them next to each other, as discussed earlier in this chapter.

To display the records in their original order, use the Clear All Sorts command.

Using Filter by Selection
Filter by Selection lets you select records on the basis of the current field value. For example, using
tblProducts, move your cursor to the Category column and click the Ascending (A to Z)
command. Access sorts the data by the vehicle’s category. Now place your cursor in the Category
column with the value Minivans. Press the Selection command in the ribbon’s Sort & Filter group
and choose Equals “Minivans”; Access displays the records where the Category is Minivans.
Access gives you four choices when clicking the Selection command:

n Equals “Minivans”

n Does Not Equal “Minivans”

TIPTIP

Clear All Sorts

Descending

Ascending

230

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 230

n Contains “Minivans”

n Does Not Contain “Minivans”

The area to the right of the Navigation buttons — at the bottom of the Datasheet window — tells
you whether the datasheet is currently filtered; in addition, the Toggle Filter command on the rib-
bon is highlighted, indicating that a filter is in use. When you click this command, it removes the
filter. The filter specification does not go away; it is simply turned off. Click the Toggle Filter com-
mand again to apply the same filter.

Filtering by selection is additive. You can continue to select values, each time pressing the Selection
command.

Right-click the field content that you want to filter by and then select from the available
menu choices.

If you want to further specify a selection and then see everything that doesn’t match that selection
(for example, where Description doesn’t equal 2003 Mini Van), move the cursor to the field (the
Description field where the value is 2003 Mini Van) that you want to say doesn’t match, right-click
on the datasheet, and then select Does Not Equal “2003 Mini Van”. You are now left with six
records — all minivans except the 2003 Mini Van.

When using the Selection command on numeric or date fields, select Between from the available
command to enter a range of values. Enter the Smallest and Largest numbers or Oldest and Newest
dates to limit the records to values that fall in the desired range.

Imagine using this technique to review sales by salespeople for specific time periods or products.
Filtering by selection provides incredible opportunities to drill down into successive layers of data.
Even when you click the Toggle Filter command to redisplay all the records, Access still stores the
query specification in memory. Figure 6-19 shows the filtered datasheet.

FIGURE 6-19

Using Filter by Selection. In this case, you see all records for minivans except 2003 Mini Van records.

Filter Indicators

TIPTIP

231

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 231

When a datasheet is filtered, each column has an indicator in the column heading letting you
know if a filter is applied to that column. Hover the mouse over the indicator to see a ToolTip dis-
playing the filter. Click on the indicator to specify additional criteria for the column using the pop-
up menu shown in Figure 6-20. Click on the column heading’s down-arrow for an unfiltered
column to display a similar menu.

FIGURE 6-20

Filtering the Category field. Use the column filter menu to select criteria for a field.

The menu contains commands to sort the column ascending or descending, clear the filter from
the field, select a specific filter, and check values you want to see in the datasheet. The available
commands change based on the data type of the column. In this case, Text Filter lets you enter a
criterion that filters the data based on data you type in.

The check boxes in this menu contain data that appears in the column. In this case, the choices are
(Select All), (Blanks), Minivans, Cars, Motor Homes, SUV, and Trucks. Click (Select All) to see all
the records regardless of this field’s value. Click (Blanks) to see the records that don’t contain data.
Select any of the data values to limit the records where the field contains the selected values. Click
on Minivans and Cars to display the records where Category is equal to Minivans or Cars.

If you want to filter data but you can’t find the value that you want to use, but you know the value,
click the Text Filters (or Number Filters, Date Filters, and so on) command and choose one of the
available commands (Equals, Does Not Equal, Begins With, and so on) to display a dialog box
where you type in the desired value.

232

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 232

Using Filter by Form
Filter by Form lets you to enter criteria into a single row on the datasheet. Each field becomes a
combo box enabling you to select from a list of values in that field. An Or tab at the bottom of the
window lets you specify OR conditions for each group. Choose Advanced ➪ Filter by Form in the
ribbon’s Sort & Filter group to enter Filter by Form mode, shown in Figure 6-21.

Select values from the combo boxes or type values you want to search for in the field. If you want
to see records where the Category field is Minivans or Cars, select Minivans from the Category
drop-down list, click the Or tab at the bottom of the window, and then select Cars from the
Category drop-down list. To see records where Category is SUV and QtyInStock is 1, select
SUV from the Category drop-down and type 1 in QtyInStock. Once you enter the desired cri-
teria, click the Toggle Filter command to apply the filter.

FIGURE 6-21

Using Filter by Form lets you set multiple conditions for filtering at one time. Notice the Or tab at the bot-
tom of the window.

Enter as many conditions as you need using the Or tab. If you need even more advanced manipu-
lation of your selections, you can choose Advanced ➪ Advanced Filter/Sort from the ribbon’s Sort
& Filter group to get an actual QBE (Query by Example) screen that you can use to enter more
complex criteria.

Chapters 4 and 5 discuss queries and using operators and expression.

Printing Records
You can print all the records in your datasheet in a simple row-and-column layout. In Chapter 9,
you learn to produce formatted reports. For now, the simplest way to print is to click the Print icon
in the Quick Access toolbar. This prints the datasheet to the Windows default printer. Click on the
Microsoft Office Button to view other print options, shown in Figure 6-22.

CROSS-REFCROSS-REF

233

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 233

FIGURE 6-22

The Microsoft Office Print menu

The printout reflects all layout options that are in effect when the datasheet is printed. Hidden
columns don’t print. Gridlines print only if the cell gridline properties are on. The printout also
reflects the specified row height and column width.

Only so many columns and rows can fit on a page; the printout takes up as many pages as required
to print all the data. Access breaks up the printout as necessary to fit on each page. For example,
the tblProducts printout may be six pages. Three pages across are needed to print all the fields
in tblProducts; each record requires three pages in length. Each record of tblContacts may
need four pages in length. The number of pages depends on your layout and your printer.

Printing the datasheet
You can also control printing from the Print dialog box, which you open by clicking the Microsoft
Office Button, and then clicking on Print. From this dialog box, customize your printout by select-
ing from several options:

n Print Range: Prints the entire datasheet or only selected pages or records

n Copies: Determines the number of copies to be printed

n Collate: Determines whether multiple copies are collated

234

Access Building BlocksPart I

10_046732 ch06.qxp 11/21/06 8:48 AM Page 234

You can also click the Properties button and set options for the selected printer or select the printer
itself to change the type of printer. The Setup button allows you to set margins and print headings.

Using the Print Preview window
Although you may have all the information in the datasheet ready to print, you may be unsure of
whether to change the width or height of the columns or rows, or whether to adjust the fonts to
improve your printed output. To preview your print job, either click the Print Preview command
under the Print menu to display the Print Preview window. The default view is the first page in
single-page preview. Use the ribbon commands to select different views and zoom in and out. Click
Print to print the datasheet to the printer. Click the Close Print Preview command on the right side
of the ribbon to return to Datasheet View.

Summary
In this chapter, you learned how to open and navigate around in a datasheet using the keyboard,
ribbons, and navigation buttons. You learned to enter new records and edit data in existing
records, as well as how to undo changes you made to the data. You saw what happens when Access
validates each field based on its data type.

You also customized the fonts, colors, column widths, row heights, and other visual aspects of the
datasheet. You froze and unfroze columns and hid them from view. Then, you limited the number
of records using different types of filters and sorted the records using the QuickSort commands.

235

Working with Datasheet View 6

10_046732 ch06.qxp 11/21/06 8:48 AM Page 235

10_046732 ch06.qxp 11/21/06 8:48 AM Page 236

Forms provide the most flexible way for viewing, adding, editing, and
deleting your data. They are also used for switchboards (forms with
buttons that provide navigation), dialog boxes that control the flow of

the system, and the o displaying messages. Controls are the objects on forms
such as labels, text boxes, buttons, and many others. In this chapter, you
learn how to create different types of forms and get an understanding about
the types of controls that are used on a form.

In this chapter, you use tblProducts in the
Chapter07.accdb database to provide the data

necessary to create the examples used in this chapter.

Adding Forms Using the Ribbon
Use the Form group in the Create ribbon to add forms to your database. The
commands in the Form group — shown in Figure 7-1 — let you create the
following different types of forms:

n Form: Creates a new form that lets you enter information for one
record at a time. You must have a table, query, form, or report open
or selected to use this command.

n Split Form: Creates a split form that shows a datasheet in the
upper section and a form in the lower section for entering informa-
tion about the record selected in the datasheet.

n Multiple Items: Creates a form that shows multiple records in a
datasheet, with one record per row.

n PivotChart: Instantly creates a PivotChart form.

ON the CD-ROMON the CD-ROM

237

IN THIS CHAPTER
Creating different types of forms

Understanding controls

Adding controls to a form

Using the Field List

Using the ribbon’s Controls
group

Selecting controls

Manipulating controls

Understanding control
properties

Using the Property Sheet

Control naming conventions

Creating Basic Access Forms

11_046732 ch07.qxp 11/21/06 9:39 AM Page 237

n Blank Form: Instantly creates a blank form with no controls.

n More Forms: This drop-down list lets you start the Form Wizard or instantly create a
Datasheet, Modal Dialog, or PivotTable.

n Form Design: Creates a new blank form and displays it in Design View.

FIGURE 7-1

The ribbon’s Create tab. Use the Form group to add new forms to your database.

Creating a new form
Use the Form command in the ribbon’s Form group to create a new form based on a table or query
selected in the Navigation Pane. To create a form based on tblProducts, follow these steps:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Form command in the
Form group.

Access creates a new form containing all the fields from tblProducts displayed in
Layout View, shown in Figure 7-2. Layout View lets you see the forms data while chang-
ing the layout of controls on the form.

Form

Blank FormSplit Form

Multiple Items

Form Design

More Forms

PivotChart

238

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 238

FIGURE 7-2

Creating a new form. Use the Form command to quickly create a new form with all the
fields from a table or query.

Creating a split form
Use the Split Form command in the ribbon’s Form group to create a split form based on a table or
query selected in the Navigation Pane. This new feature gives you two views of the data at the same
time, letting you select a record from a datasheet in the upper section and edit the information in a
form in the lower section. To create a split form based on tblProducts, follow these steps:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Split Form command in
the Form group.

Access creates a new split form based on tblProducts displayed in Layout View,
shown in Figure 7-3. Resize the form and use the splitter bar in the middle to make the
lower section completely visible.

239

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 239

FIGURE 7-3

Create a split form when you want to select records from a list and edit them in a form.
Use the splitter bar to resize the upper and lower sections of the form.

Creating a multiple-items form
Use the Multiple Items command in the ribbon’s Form group to create a multiple-items form based
on a table or query selected in the Navigation Pane. This new feature creates a form that looks like
a datasheet, but it lets you add graphical elements, buttons, and other controls. To create a
multiple-items form based on tblProducts, follow these steps:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Multiple Items command
in the Form group.

Access creates a new multiple items form based on tblProducts displayed in Layout
View, shown in Figure 7-4. Although the form looks similar to a datasheet, you can only
resize the rows and columns in Design View and Layout View.

Splitter Bar

240

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 240

FIGURE 7-4

Create a multiple items form when you want to see data similar to Datasheet View but
also want to add form controls such as buttons and graphical elements.

Creating a form using the Form Wizard
Use the Form Wizard command in the Form group’s More Forms drop-down list to create a form
using a wizard. The Form Wizard visually walks you through a series of questions about the form
that you want to create and then creates it for you automatically. The Form Wizard lets you select
which fields you want on the form, the layout (Columnar, Tabular, Datasheet, Justified) of the
form, the style (Access 2003, Access 2007, Apex, and so on), and the title on the form.

To start the Form Wizard based on tblProducts, follow these steps:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Form group’s More Forms
drop-down and select Form Wizard.

Access starts the Form Wizard shown in Figure 7-5. Choose which table or query you
want the form based on using the Tables/Queries drop-down list. Use the buttons in the
middle of the form to add and remove fields to the Available Fields and Selected Fields
list boxes.

241

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 241

FIGURE 7-5

Use the Form Wizard to create a form with the fields you choose, as well as the layout
and styles you want.

You can also double-click any field in the Available Fields list box to add it to the
Selected Fields list box.

The series of buttons at the bottom of the form let you navigate through the other steps of the wiz-
ard. The types of buttons available here are common to most wizard dialog boxes:

n Cancel: Cancel the wizard without creating a form

n Back: Return to the preceding step of the wizard

n Next: Go to the next step of the wizard

n Finish: End the wizard using the current selections

If you click Next or Finish without selecting any fields, Access tells you that you must
select fields for the form before you can continue.

Creating a datasheet form
Use the Datasheet command in the Form group’s More Forms drop-down list to create a form that
looks like a table or query’s datasheet. A datasheet form is useful when you want to see the data in
a row and column format but want to limit which fields are displayed and editable. To create a
datasheet form based on tblProducts, follow these steps:

CAUTION CAUTION

NOTENOTE

Remove All Fields

Add Selected Field

Add All Fields

Remove Selected Field

242

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 242

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Form group’s More Forms
drop-down and select Datasheet.

You can view any form you create as a datasheet by selecting Datasheet View from the rib-
bon’s View drop-down. A datasheet form appears in Datasheet View by default when you
open it.

You can prevent users from viewing a form as a datasheet by setting the form’s proper-
ties. You’ll learn more about form properties later in this chapter.

Creating a blank form
Use the Blank Form command in the ribbon’s Form group to create a form without any controls.
To create a blank form based on tblProducts, follow these steps:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Blank Form command in
the Form group.

Access creates a new blank form based on tblProducts displayed in Layout View. In
the next section, you’ll learn how to add and customize controls on the form.

Use the Form Design command in the ribbon’s Form group to create a blank form and display it in
Design View.

Adding Controls
In this section, you’ll learn how to change a form’s design using Design View. You’ll add, move, and
resize different controls, as well as customize other aspects of a form.

Click on Design View from the View drop-down in the ribbon’s View group to switch a form to
Design View. The Design tab on the Form Tools ribbon — shown in Figure 7-6 — lets you add and
customize controls on your form.

FIGURE 7-6

The Design tab lets you add and customize controls in a form’s Design View.

TIPTIP

243

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/27/06 4:28 PM Page 243

The Controls group on the ribbon’s Design tab replaces the Toolbox from previous ver-
sions of Access.

Resizing the form area
The white area of the form is where you work. This is the size of the form when it is displayed.
Resize the white area of the form by placing the cursor on any of the area borders and dragging the
border of the area to make it larger or smaller. Figure 7-7 shows a blank form in Design View being
resized.

FIGURE 7-7

Design View of a blank form. Resize the form area by dragging the bottom-right corner.

Saving the form
You can save the form at any time by clicking on Save in the Quick Access toolbar. When you’re
asked for a name for the form, give it a meaningful name (for example, frmProducts,
frmCustomers, frmProductList). If you’ve already given the form a name, you won’t be
prompted for a name when you click Save.

When you close a form, Access asks you to save it. If you don’t save a form, all changes since you
opened the form (or the last time you pressed Save) are lost. You should frequently save the form
while you work if you’re satisfied with the results.

If you are going to make extensive changes to a form, you might want to make a copy of
the form. If you want to work on the form frmProducts, you can copy and then paste

the form in the database window, giving it a name like frmProductsOriginal. Later, when you
have completed your changes and tested them, you can delete the original copy.

TIPTIP

NEW FEATURENEW FEATURE

244

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 244

Understanding controls
Controls and properties form the basis of forms and reports. It is critical to understand the funda-
mental concepts of controls and properties before you begin to apply them to custom forms and
reports.

Although this chapter is about forms, you will learn that forms and reports share many
common characteristics including controls and what you can do with them. As you

learn about controls in this chapter, you will be able to apply nearly everything you learn when you
create reports.

The term control has many definitions in Access. Generally, a control is any object on a form or
report, such as a label or text box. These are the same controls that you use in any Windows appli-
cation, such as Access, Excel, or Web-based HTML forms, or those that are used in any language,
such as .Net, Visual Basic, C++, or even C#. Although each language or product has different file
formats and different properties, a text box in Access is the same as a text box in any other
Windows product.

You enter data into controls and display data using controls. A control can be bound to a field in a
table (when the value is entered in the control it is also saved in some underlying table field), or it
can be unbound and displayed in the form but not saved when the form is closed. A control can
also be an object, such as a line or rectangle. Calculated fields are also controls, as are pictures,
graphs, option buttons, check boxes, and objects. Some controls that aren’t part of Access are
developed separately — these are ActiveX controls. ActiveX controls extend the base feature set of
Access 2007 and are available from a variety of vendors. Many ActiveX controls are shipped with
Access 2007.

ActiveX controls are covered in Chapter 24.

Whether you’re working with forms or reports, essentially the same process is followed to create
and use controls. In this chapter, we explain controls from the perspective of a form.

The different control types
Forms and reports contain many different control types. You can add these controls to forms using
the Controls group shown in Figure 7-6. Hovering the mouse over the control displays a ToolTip
telling you what the control is. Table 7-1 briefly describes each control.

CROSS-REFCROSS-REF

NOTENOTE

245

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 245

TABLE 7-1

Controls in Access Forms and Reports

Control What It Does

Text Box Displays and allows users to edit data.

Label Displays static text that typically doesn’t change.

Button Also called a command button. Calls macros or runs VBA code when clicked.

Combo Box A drop-down list of values.

List Box A list of values that is always displayed on the form or report.

Subform/Subreport Displays another form or report within the main form or report.

Line A graphical line of variable thickness and color, which is used for separation.

Rectangle A rectangle can be any color or size or can be filled in or blank; the rectangle is
used for emphasis.

Image Displays a bitmap picture with very little overhead.

Option Group Holds multiple option buttons, check boxes, or toggle buttons.

Check Box A two-state control, shown as a square that contains a check mark if it’s on and an
empty square if it’s off.

Option Button Also called a radio button, this button is displayed as a circle with a dot when the
option is on.

Toggle Button This is a two-state button — up or down — which usually uses pictures or icons
instead of text to display different states.

Tab Control Displays multiple pages in a file folder type interface.

Page Adds a “page” on the form or report. Additional controls are added to the page,
and multiple pages may exist on the same form.

Chart This chart displays data in a graphical format.

Unbound Object Frame This frame holds an OLE object or embedded picture that is not tied to a table
field and can include graphs, pictures, sound files, and video.

Bound Object Frame This frame holds an OLE object or embedded picture that is tied to a table field.

Page Break This is usually used for reports and indicates a physical page break.

Hyperlink This control creates a link to Web page, a picture, an e-mail address, or a
program.

Attachment This control manages attachments for the Attachment data type.

The Use Control Wizards command, located on the right side of the Controls group, doesn’t add a
control to a form; instead, it determines whether a wizard is automatically activated when you add
certain controls. The Option Group, Combo Box, List Box, Subform/Subreport, Bound and

246

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 246

Unbound Object Frame, and Command Button controls all have wizards that Access starts when
you add a new control. You can also use the ActiveX Controls command (found in the bottom-
right corner of the Controls group) to display a list of ActiveX controls, which you can add to
Access 2007.

Understanding bound, unbound, and calculated controls
These are the three basic categories of controls:

n Bound controls: These are controls that are bound to a table field. When you enter a
value into a bound control, Access automatically updates the table field in the current
record. Most of the controls that let you enter information can be bound; these include
OLE (Object Linking and Embedding) fields. Controls can be bound to most data types,
including text, dates, numbers, Yes/No, pictures, and memo fields.

n Unbound controls: Unbound controls retain the entered value, but they don’t update
any table fields. You can use these controls for text label display, for controls such as lines
and rectangles, or for holding unbound OLE objects (such as bitmap pictures or your
logo) that aren’t stored in a table but on the form itself. Unbound controls are also known
as variables or memory variables.

n Calculated controls: Calculated controls are based on expressions, such as functions or
calculations. Calculated controls are also unbound because they don’t update table fields.
An example of a calculated control is =[SalePrice] - [Cost]. This control calculates
the total of two table fields for display on a form but is not bound to any table field.

The two ways to add a control
You add a control to a form in either of two ways:

n Click a button in the Design ribbon’s Controls group and draw a new unbound control
on the form.

n Drag a field from the Field List to add a bound control to the form.

A bound control is one that is linked to a table field, while an unbound control is one that is not
bound to a table field. A control bound to a table places the data directly into the table by using the
form.

Using the Controls group to add a control
By using the buttons in the Controls group to add a control, you decide which type of control to
use for each field. The control you add is unbound (or not attached to the data in a table field) and
has a default name such as Text21 or Combo11. After you create the control, you decide what table
field to bind the control to, enter text for the label, and set any properties. You’ll learn more about
setting properties later in this chapter.

247

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 247

You can add one control at a time using the Controls group. To create three different unbound con-
trols, perform these steps:

1. Click the Create tab on the ribbon, and then click on the Form Design command in
the Form group to create a new form in Design View.

2. Click the Design tab on the ribbon, and then click the Text Box button (ab|) in the
Controls group.

The selected button appears with a colored background.

3. Move the mouse pointer to the Form Design window.

The cursor changes to the Text Box icon.

4. Click and hold down the mouse button where you want the control to begin, and
drag the mouse to size the control.

5. Click the Option Button in the Controls group.

6. Move the mouse pointer in the Form Design window.

The cursor changes to the Option Button icon.

7. Click and hold down the mouse button where you want the control to begin, and
drag the mouse to size the control.

8. Click the Check Box button in the Controls group.

9. Move the mouse pointer in the Form Design window.

The cursor changes to the Check Box icon.

10. Click and hold down the mouse button where you want the control to begin, and
drag the mouse to size the control.

When you’re done, your screen should resemble the one shown in Figure 7-8.

FIGURE 7-8

Unbound controls added from the Controls group

248

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 248

Clicking the Form Design window with a control selected creates a default-sized con-
trol. If you want to add multiple controls of the same type, double-click on the icon in

the Controls group, and then draw as many controls as you want on the form.

Using the Field List to add a control
The Field List displays a list of fields from the table or query the form is based on. You add bound
controls to the form by dragging fields from the Field List onto the form. Select and drag them one
at a time, or select multiple fields by using the Ctrl key or Shift key.

n Select multiple contiguous fields by holding down the Shift key and clicking the first and
last fields that you want.

n Select multiple noncontiguous fields by holding down the Ctrl key and clicking each field
that you want.

Click the Add Existing Fields command in the Design ribbon’s Tools group to display the Field
List. By default, the Field List appears docked on the right of the Access window, shown in Figure
7-9. This window is movable and resizable and displays a vertical scroll bar if it contains more
fields than can fit in the window.

FIGURE 7-9

Click Add Existing Fields in the Tools group to show the Field List, docked on the right of the Access window.

Generally, dragging a field from the Field List window adds a bound text box to the Form Design
window. If you drag a Yes/No field from the Field List window, you add a check box. If you drag a
field that has a Lookup property, you add a List Box control or Combo Box control. If you drag an

TIPTIP

249

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/27/06 4:28 PM Page 249

OLE field from the Field List window, you create a bound object frame. Optionally, you can select
the type of control by selecting a control from the Controls group and dragging the field to the
Form Design window.

When you drag fields from the Field List window, the first control is placed where you
release the mouse button. Make sure that you have enough space to the left of the con-

trol for the labels. If you don’t have sufficient space, the labels slide under the controls.

You gain several distinct advantages by dragging a field from the Field List window:

n The control is bound automatically to the field that you dragged it from.

n Field properties inherit table-level formats, status-bar text, and data-validation rules and
messages.

n The label control and label text are created with the field name as the caption.

n The label control is attached to the field control, so they move together.

Select and drag the Description, Category, RetailPrice, and AuctionEndDate fields
from the Field List window to the form, as shown in Figure 7-10. Double-clicking a field also adds
it to the form.

FIGURE 7-10

Drag fields from the Field List to add bound controls to the form.

You can see four new controls in the form’s Design View — each one consists of a Label control and
a Text Box control (Access attaches the Label control to the text box automatically). You can work
with these controls as a group or independently, and you can select, move, resize, or delete them.
Notice that each control has a label with a caption matching the field name, and the Text Box con-
trol displays the bound field name used in the text box. If you want to resize just the control and
not the label, you must work with the two controls separately.

Close the Field List by clicking the Add Existing Fields command in the ribbon’s Tools group or the
Close button on the Field List.

CAUTION CAUTION

250

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 250

In Access, you can change the type of control after you create it; then you can set all
the properties for the control. For example, suppose that you add a field as a Text Box

control and you want to change it to a List Box. You can right-click the control and select Change To
from the pop-up menu to change the control type. However, you can change only from some types of
controls to others. You can change anything to a Text Box control; option buttons, toggle buttons, and
check boxes are interchangeable, as are List Boxes and Combo Boxes.

In Figure 7-10, notice the difference between the controls that were dragged from the Field List
window and the controls that were created from the Controls group. The Field List window con-
trols are bound to a field in tblProducts and are appropriately labeled and named. The controls
created from the Controls group are unbound and have default names. The default names are auto-
matically assigned a number according to the type of control.

Later, you learn how to change the control names, captions, and other properties. Using properties
speeds the process of naming controls and binding them to specific fields. If you want to see
the differences between bound and unbound controls, switch to Form View using the View
command in the ribbon’s View group. The Description, Category, RetailPrice, and
AuctionEndDate controls display data since they’re bound to tblProducts. The other three
controls don’t display data because they aren’t bound to any data source.

If a form’s Record Source property isn’t set, you will not see a Field List window. You’ll
learn more about form properties in Chapter 8.

If you first select a control type in the Controls group and then drag a field from the
Field List, a control is created (using the selected control type) that is automatically

bound to the data field in the Field List.

Which method to use
The deciding factor of whether to use the field list or the Controls group is this: Does the field exist
in the table/query or do you want to create an unbound or calculated expression? By using the
Field List window and the Controls group together, you can create bound controls of nearly any
type. You will find, however, that some data types don’t allow all the control types found in the
Controls group. For example, if you select the Chart control type from the Controls group and drag
a single field to the form, a text box control is added instead of a chart control.

The following properties always inherit their settings from the field’s table definition:

n Format

n Decimal Places

n Status Bar Text (from the field Description)

n Input Mask

n Default Value

n Validation Rule

n Validation Text

TIPTIP

NOTENOTE

TIPTIP

251

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 251

Changes made to a control’s properties don’t affect the field properties in the source
table.

Each type of control has a different set of properties, as do objects such as forms, reports, and sec-
tions within forms or reports. In the next few chapters, you learn about many of these properties as
you use each of the control types to create more complex forms and reports.

Selecting Controls
After you add a control to the form, you can resize, move, or copy it. The first step is to select one
or more controls. Depending on its size, a selected control may show from four to eight handles
(small squares called moving and sizing handles) around the control — at the corners and midway
along the sides. The Move handle in the upper-left corner is larger than the other handles and you
use it to move the control. You use the other handles to size the control. Figure 7-11 displays some
selected controls and their moving and sizing handles.

FIGURE 7-11

A conceptual view of selecting controls and their moving and sizing handles

The Select command (top leftmost command) in the Controls group must be on for you to select a
control. The pointer appears as an arrow pointing diagonally toward the upper-left corner. If you
use the Controls group to create a single control, Access automatically reselects the pointer as the
default.

Attached Label

Text Box

Selecting Multiple Controls

Move Handles

Sizing Handles

NOTENOTE

252

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 252

Selecting a single control
Select any single control by clicking anywhere on the control. When you click a control, the han-
dles appear. If the control has an attached label, the Move handle for the label also appears. If you
select a label control that is part of an attached control, all the handles for the label control are dis-
played, and only the Move handle appears in the attached control.

Selecting multiple controls
You can select multiple controls in these ways:

n Click each desired control while holding down the Shift key.

n Drag the pointer through or around the controls that you want to select.

n Click and drag in the ruler to select a range of controls.

Figure 7-11 shows selecting the multiple bound controls graphically. When you select multiple
controls by dragging the mouse, a rectangle appears as you drag the mouse. Be careful to only drag
the rectangle through the controls you want to select. Any control you touch with the rectangle or
enclose within it is selected. If you want to select labels only, make sure that the selection rectangle
only encloses the labels.

If you find that controls are not selected when the rectangle passes through the control,
you may have the Selection behavior global property set to fully enclosed. This means

that a control is selected only if the selection rectangle completely encloses the entire control. The
normal default for this option is partially enclosed. Change this option by clicking the Microsoft
Office Button and selecting Access Options. Then select Object Designers and set the Forms/Reports
Selection behavior to Partially Enclosed.

By holding down the Shift key, you can select several noncontiguous controls. This lets you select
controls on totally different parts of the screen. Using Shift to select controls is different from using
Shift to select files in Windows Explorer and fields in the Field List. You have to Shift+click on
each control to add it to the selection.

Click on the form in Design View and then press Ctrl+A to select all the controls on the
form. Press Shift and click on any selected control to remove it from the selection.

Deselecting controls
Deselect a control by clicking an unselected area of the form that doesn’t contain a control. When
you do so, the handles disappear from any selected control. Selecting another control also deselects
a selected control.

TIPTIP

TIPTIP

253

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 253

Manipulating Controls
Creating a form is a multistep process. The next step is to make sure that your controls are prop-
erly sized and moved to their correct positions. The Arrange tab of the ribbon — shown in Figure
7-12 — contains commands used to assist you in manipulating controls.

FIGURE 7-12

The Arrange tab lets you work with moving and sizing control, as well as control the overall layout of the
form.

Resizing a control
You can resize controls by using any of the smaller handles on the control. The handles in the con-
trol corners let you make the field larger or smaller in both width and height — and at the same
time. Use the handles in the middle of the control sides to size the control larger or smaller in one
direction only. The top and bottom handles control the height of the control; the left and right han-
dles change the control’s width.

When the mouse pointer touches a corner handle of a selected control, the pointer becomes a diag-
onal double arrow. You can then drag the sizing handle until the control is the desired size. If the
mouse pointer touches a side handle in a selected control, the pointer changes to a horizontal or
vertical double-headed arrow. Figure 7-13 shows the Description control after being resized.
Notice the double-headed arrow in the corner of the Description control.

FIGURE 7-13

Resizing a control

254

Access Building BlocksPart I

11_046732 ch07.qxp 11/27/06 4:28 PM Page 254

You can resize a control in very small increments by holding the Shift key and pressing
the arrow keys. This technique also works with multiple controls selected. Using this

technique, a control changes by only 1 pixel at a time (or moves to the nearest grid line if Snap to
Grid is selected in the Layout ribbon’s Control Layout group).

When you double-click on any of the sizing handles, Access resizes a control to a best fit for the
text in the control. This is especially handy if you increase the font size and then notice that the
text is cut off either at the bottom or to the right. For label controls, note that this best-fit sizing
adjusts the size vertically and horizontally, though text controls are resized only vertically. This is
because when Access is in form-design mode, it can’t predict how much of a field to display — the
field name and field contents can be radically different. Sometimes, Access doesn’t correctly resize
the label.

Sizing controls automatically
The Size group on the Layout ribbon has several commands that help size controls based on the
value of the data, the grid, or other controls. Here are the Size commands:

n To Fit: Adjusts control height and width for the font of the text they contain.

n To Tallest: Makes selected controls the height of the tallest selected control.

n To Shortest: Makes selected controls the height of the shortest selected control.

n To Grid: Moves all sides of selected controls in or out to meet the nearest points on the
grid.

n To Widest: Makes selected controls the width of the widest selected control.

n To Narrowest: Makes selected controls the height of the narrowest selected control.

You can access many commands by right-clicking after selecting multiple controls.
When you right-click on multiple controls, a shortcut menu displays choices to size and

align controls.

Moving a control
After you select a control, you can easily move it, using either one of these methods:

n Click on the control and hold the mouse button down; the cursor changes to a four-
directional arrow. Drag the mouse to move the control to a new location.

n Click once to select the control and move the mouse over any of the highlighted edges;
the cursor changes to a four-directional arrow. Drag the mouse to move the control to a
new location.

n Select the control and use the arrow keys on the keyboard to move the control. Using this
technique, a control changes by only 1 pixel at a time (or moves to the nearest grid line if
Snap to Grid is selected in the Layout ribbon’s Control Layout group).

TIPTIP

TIPTIP

255

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 255

When an attached label is created automatically with another control, it is called a compound con-
trol. If a control has an attached label, the label and control move together; it doesn’t matter
whether you click the control or the label.

You can move a control separately from an attached label by pointing to the Move handle of the
control and then dragging it. Move the label control separately from the other control by pointing
to the Move handle of the label control and dragging it separately.

Figure 7-14 shows a Label control that has been separately moved to the top of the Text Box con-
trol. The four-directional arrow cursor indicates that the controls are ready to be moved together.
To see this cursor, the control(s) must already be selected.

FIGURE 7-14

Moving a control

Press Esc before you release the mouse button to cancel a moving or a resizing operation. After a
move or resizing operation is complete, click the Undo button on the Quick Access toolbar to
undo the changes.

Aligning controls
You may want to move several controls so that they are all aligned (lined up). The Layout ribbon’s
Control Alignment group has several options described in the following list:

n Left: Aligns the left edge of the selected controls with that of the leftmost selected control.

n Right: Aligns the right edge of the selected controls with that of the rightmost selected
control.

n Top: Aligns the top edge of the selected controls with that of the topmost selected control.

Move Handle for Label

Move Cursor

Move Handle for Text Box

256

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 256

n Bottom: Aligns the bottom edge of the selected controls with that of the bottommost
selected control.

n To Grid: Aligns the top-left corners of the selected controls to the nearest grid point.

You can align any number of selected controls by selecting a command from the Control Alignment
group. When you choose one of the commands, Access uses the control that is the closest to the
desired selection as the model for the alignment. For example, suppose that you have three con-
trols and you want to left-align them. They are aligned on the basis of the control farthest to the
left in the group of the three controls.

Figure 7-15 shows several sets of controls. The first set of controls is not aligned. The Label con-
trols in the second set of controls have been left-aligned. The Text Box controls in the second set
have been right-aligned. Each label, along with its attached text box, has been bottom-aligned.

FIGURE 7-15

An example of unaligned and aligned controls on the grid

Each type of alignment must be done separately. In this example, you can left-align all the labels or
right-align all the text boxes at once. However, you must bottom-align each label and its text con-
trol separately (three separate alignments).

The series of dots in the background of Figure 7-15 is the grid. The grid can assist you in aligning
controls. Hide or display the grid by selecting the Show Grid command from the Layout ribbon’s
Show/Hide group. You can also hide or display the ruler using the Ruler command in the
Show/Hide group.

Use the Snap to Grid command in the Layout ribbon’s Control Layout group to align new controls
to the grid as you draw or place them on a form. It also aligns existing controls to the grid when
you move or resize them. Snap to Grid is on when it appears selected in the ribbon.

When Snap to Grid is on and you draw a new control by clicking on the form and dragging to size
the control, Access aligns the four corners of the control to points on the grid. When you place a
new control by clicking the control in the Field List and then dragging it to the form, only the
upper-left corner is aligned.

257

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 257

As you move or resize existing controls, Access 2007 lets you move only from grid point to grid
point. When Snap to Grid is off, Access 2007 ignores the grid and lets you place a control any-
where on the form or report.

You can temporarily turn Snap to Grid off by pressing the Ctrl key before you create a
control (or while sizing or moving it). You can change the grid’s fineness (number of

dots) from form to form by using the Grid X and Grid Y Form properties. (Higher numbers indicate
greater fineness.) You’ll learn more about Form properties in Chapter 8.

The Layout ribbon’s Position group contains commands to adjust the space between multiple con-
trols. These commands change the space between controls on the basis of the space between the
first two selected controls. If the controls are across the screen, use horizontal spacing. If they are
down the screen, use vertical spacing. These commands are as follows:

n Equal Horizontal: Makes the horizontal space between selected controls equal. You must
select three or more controls for this command to work.

n Increase Horizontal: Increases the horizontal space between selected controls by one
grid unit.

n Decrease Horizontal: Decreases the horizontal space between selected controls by one
grid unit.

n Equal Vertical: Makes the vertical space between selected controls equal. You must select
three or more controls for this command to work.

n Increase Vertical: Increases the vertical space between selected controls by one grid unit.

n Decrease Vertical: Decreases the vertical space between selected controls by one grid
unit.

Aligning controls aligns the control boxes only. If you want to align the text within the
controls (also known as justifying the text), you must use the Design ribbon’s Font group

and select the Left, Right, or Center commands.

Modifying the appearance of a control
To modify the appearance of a control, select the control and click on commands that modify that
control, such as commands in the Font group or Controls group. To change the text color and font
of the Description label, follow these steps:

1. Click Description label on the form.

2. In the Design ribbon’s Font group, change the Font Size to 14, click the Bold com-
mand, and change the Font Color to blue.

3. Resize the Description label so the larger text fits (remember, you can double-
click any of the sizing handles to autosize the label).

TIPTIP

TIPTIP

258

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 258

Modifying the appearance of multiple controls
To modify the appearance of multiple controls at once, select the controls and click on commands
to modify the controls, such as commands in the Font group or Controls group. To change the text
color and font of the Description, Category, and Cost labels and text boxes, follow these
steps:

1. Select the three labels and three text boxes by dragging a selection box through
them (refer to Figure 7-11).

2. In the Design ribbon’s Font group, change the Font Size to 14, click the Bold com-
mand, and change the Font Color to blue.

3. Resize the labels and text boxes so the larger text fits (remember, you can double-
click any of the sizing handles to autosize the controls).

As you click the commands, the controls’ appearances change to reflect the new selec-
tions (shown in Figure 7-16). The fonts in each control increase in size, become bold,
and turn blue. Any changes you make apply to all selected controls.

FIGURE 7-16

Changing the appearance of multiple controls at the same time

When multiple controls are selected, you can also move the selected controls together. When the
cursor changes to the four-directional arrow, click and drag to move the selected controls. You can
also change the size of all the controls at once by resizing one of the controls in the selection. All
the selected controls increase or decrease by the same number of units.

Grouping controls
If you routinely change properties of multiple controls, you may want to group them together. To
group controls together, select the controls by holding down the Shift key and clicking them or
dragging the selection box through them. After the desired controls are selected, select the Group
command from the Layout ribbon’s Control Layout group. A box appears around the selected con-
trols, as shown in Figure 7-17, indicating they’re grouped together.

259

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 259

FIGURE 7-17

Grouping multiple controls together

After you’ve grouped the controls together, whenever you click any of the controls inside the
group, the entire group is selected. Double-click on a control to select just that one control. After
a single control in the group is selected, you can click on any other control to select it.

To resize the entire group, put your mouse on the side you want to resize. After the double arrow
appears, click and drag until you reach the desired size. Every control in the group changes in size.
To move the entire group, click and drag the group to its new location. With grouped controls, you
don’t have to select all the controls every time you change something about them.

To remove a group, select the group by clicking any field inside the group, then select the Ungroup
command from the Layout ribbon’s Control Layout group.

Deleting a control
You can delete a control by simply selecting it in the form’s Design View and pressing the Delete
key on your keyboard. The control and any attached labels will disappear. You can bring them
back by immediately selecting Undo from the Quick Access toolbar. You can also select Cut from
the Home ribbon’s Clipboard group or Delete from the Home ribbon’s Records group.

You can delete more than one control at a time by selecting multiple controls and pressing Delete.
You can delete an entire group of controls by selecting the group and pressing Delete. If you have
a control with an attached label, you can delete only the label by clicking the label itself and then
selecting one of the delete methods. If you select the control, both the control and the label are
deleted. To delete only the label of the Description control, follow the next set of steps (this exam-
ple assumes that you have the Description text box control in your Form Design window):

1. Select the Description label control only.

2. Press Delete to remove the label from the form.

Attaching a label to a control
If you accidentally delete a label from a control, you can reattach it. To create and then reattach a
label to a control, follow these steps:

260

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 260

1. Click the Label button on the Controls group.

2. Place the mouse pointer in the Form Design window.

The mouse pointer becomes the Text Box button.

3. Click and hold down the mouse button where you want the control to begin; drag
the mouse to size the control.

4. Type Description: and click outside the control.

5. Select the Description label control.

6. Select Cut from the Home ribbon’s Clipboard group.

7. Select the Description text box control.

8. Select Paste from the Home ribbon’s Clipboard group to attach the label control to
the text box control.

Another way to attach a label to a control is to click the informational icon next to the label, shown
in Figure 7-18. This informational icon lets you know that this label is unassociated with a control.
Click the Associate Label with a Control command from the menu, and then select the control you
want to associate the label with.

FIGURE 7-18

Associating a label with a control

Copying a control
You can create copies of any control by copying it to the Clipboard and then pasting the copies
where you want them. If you have a control for which you have entered many properties or speci-
fied a certain format, you can copy it and revise only the properties (such as the control name and
bound field name) to make it a different control. This capability is useful with a multiple-page
form when you want to display the same values on different pages and in different locations, or
when copying a control from one form to another.

261

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 261

Changing the control type
In Figure 7-19, the Complete control is a check box. Although there are times you may want to use
a check box to display a Boolean (Yes/No) data type, there are other ways to display the value, such
as a toggle button. A toggle button is raised if it’s true and depressed (or at least very unhappy) if
it’s false.

FIGURE 7-19

Become a magician and turn a check box into a toggle button.

Use these steps to turn the check box into a toggle button:

1. Select the Complete label control (just the label control, not the check box).

2. Press the Delete key to delete the label control because it is not needed.

3. Right-click the Complete check box, and choose Change To ➪ Toggle Button from
the pop-up menu.

4. Resize the toggle button and click inside it to get the blinking cursor; then type
Complete on the button as its caption (shown on the right of Figure 7-19).

Understanding Properties
Properties are named attributes of controls, fields, or database objects that are used to modify the
characteristics of a control, field, or object. Examples of these attributes are the size, color, appear-
ance, or name of an object. A property can also modify the behavior of a control, determining, for
example, whether the control is read-only or editable and visible or not visible.

Properties are used extensively in forms and reports to change the characteristics of controls. Each
control on the form has properties. The form itself also has properties, as does each of its sections.
The same is true for reports; the report itself has properties, as does each report section and individ-
ual control. The label control also has its own properties, even if it is attached to another control.

262

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 262

Everything from moving and resizing controls to changing fonts and colors that you do with the
ribbon commands can be done by setting properties. In fact, all these commands do is change
properties of the selected controls.

Displaying the Property Sheet
Properties are displayed in a Property Sheet (sometimes called a Property window). To display the
Property Sheet for the Description text box, follow the steps below. You will be creating a new
blank form.

1. Drag the first five fields, ProductID through Cost, from the Field List window to
the form’s Design View.

2. Click the Description text box control to select it.

3. Click the Property Sheet command in the Design ribbon’s Tools group to display the
Property Sheet — which appears docked to the right side of the Access window, tak-
ing the place of the Field List.

The screen should look like the one shown in Figure 7-20.

FIGURE 7-20

Change an object’s properties with the Property Sheet

Selected Control

Property Names

Property Settings

Tabs

Property Sheet

263

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 263

Because the Property Sheet is a window, it can be undocked, moved, and resized. It does not, how-
ever, have Maximize or Minimize buttons. There are several ways to display a control’s Property
Sheet if it’s not visible:

n Select a control and click the Property Sheet command in the Design ribbon’s Tools
group.

n Double-click any control.

n Right-click any control and select Properties from the pop-up menu.

Understanding the Property Sheet
With the Property Sheet displayed, click on any control in Design View to display the properties
for that control. Select multiple controls to display similar properties for the selected controls.

In Figure 7-20, the Property Sheet has been sized to fit the screen. By widening the Property Sheet,
you can see more of its values; by increasing the length, you can see more controls at one time. The
vertical scroll bar lets you move between various properties.

The Property Sheet has an All tab that lets you see all the properties for a control. Or you can
choose another tab to limit the view to a specific group of properties. The specific tabs and groups
of properties are as follows:

n Format: These properties determine how a label or value looks: font, size, color, special
effects, borders, and scroll bars.

n Data: These properties affect how a value is displayed and the data source it is bound to:
control source, input masks, validation, default value, and other data type properties.

n Event: Event properties are named events, such as clicking a mouse button, adding a
record, pressing a key for which you can define a response (in the form of a call to a
macro or a VBA procedure), and so on.

n Other: Other properties show additional characteristics of the control, such as the name
of the control or the description that displays in the status bar.

The number of properties available in Access has increased greatly since early versions
of Access. The most important properties are described in various chapters of this book.

For a discussion of Event properties and Event procedures, see Part II of this book.

Figure 7-20 shows the Property Sheet for the Description text box. The first column lists the prop-
erty names; the second column is where you enter or select property settings or options.

Changing a control’s property setting
There are many different methods for changing property settings, including the following:

n Entering or selecting the desired value in a Property window

n Changing a property directly by changing the control itself, such as changing its size

CROSS-REFCROSS-REF

264

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 264

n Using inherited properties from the bound field or the control’s default properties

n Entering color selections for the control by using the ribbon commands

n Changing label text style, size, color, and alignment by using the ribbon commands

You can change a control’s properties by clicking a property and typing the desired value.

In Figure 7-21, you can see a down arrow and a button with three dots to the right of the Control
Source property-entry area. Some properties display a drop-down arrow in the property-entry area
when you click in the area. The drop-down arrow tells you that Access has a list of values from
which you can choose. If you click the down arrow in the Control Source property, you find that
the drop-down list displays a list of all fields in the data source —tblProducts. Setting the
Control Source property to a field in a table creates a bound control.

FIGURE 7-21

The Property Sheet undocked

Some properties have a list of standard values such as Yes or No; others display varying lists of
fields, forms, reports, or macros. The properties of each object are determined by the object itself
and what the object is used for.

A nice feature in Access 2007 is the capability to cycle through property choices by repeatedly
double-clicking on the choice. For example, double-clicking on the Display When property
alternately selects Always, Print Only, and Screen Only.

The Builder button contains an ellipsis (three dots) and opens one of the many builders in Access —
including the Macro Builder, the Expression Builder, and the Module Builder. When you open a
builder and make some selections, the property is filled in for you. You will learn about builders
later in this book.

Control Source Property

Drop-Down List

Builder Button

265

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 265

Each type of object has its own property window and properties. These include the form itself,
each of the form sections, and each of the form’s controls. You display each of the property win-
dows by clicking on the object first. The property window will instantly change to show the prop-
erties for the selected object.

Naming control labels and their captions
You might notice that each of the data fields has a Label control and a Text Box control. Normally,
the label’s Caption property is the same as the text box’s Name property. The text box’s Name
property is usually the same as the table’s field name — shown in the Control Source property.
Sometimes, the label’s Caption is different because a value was entered into the Caption prop-
erty for each field in the table.

When creating controls on a form, it’s a good idea to use standard naming conventions when set-
ting the control’s Name property. Name each control with a prefix followed by a meaningful name
that you’ll recognize later (for example, txtTotalCost, cboState, lblTitle). Table 7-2
shows the naming conventions for form and report controls. You can find a very complete, well-
established naming convention online by searching for “Reddick Naming Convention.”

TABLE 7-2

Form/Report Control Naming Conventions

Prefix Object

frb Bound Object frame

cht Chart (Graph)

chk Check Box

cbo Combo Box

cmd Command Button

ocx ActiveX Custom Control

det Detail (section)

gft[n] Footer (group section)

fft Form Footer section

fhd Form Header section

ghd[n] Header (group section)

hlk Hyperlink

img Image

lbl Label

lin Line

266

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 266

Prefix Object

lst List Box

opt Option Button

grp Option Group

pge Page (tab)

brk Page break

pft Page Footer (section)

phd Page Header (section)

shp Rectangle

rft Report Footer (section)

rhd Report Header (section)

sec Section

sub Subform/Subreport

tab Tab Control

txt Text Box

tgl Toggle Button

fru Unbound Object Frame

The properties displayed in Figure 7-21 are the specific properties for the Description text box.
The first two properties, Name and Control Source, are set to Description.

The Name is simply the name of the field itself. When a control is bound to a field, Access auto-
matically assigns the Name property to the bound field’s name. Unbound controls are given names
such as Field11 or Button13. However, you can give the control any name you want.

With bound controls, the Control Source property is the name of the table field to which the con-
trol is bound. In this example, Description refers to the field with the same name in tblProducts.
An unbound control has no control source, whereas the control source of a calculated control is the
actual expression for the calculation, as in the example =[SalePrice] - [Cost].

Summary
In this chapter, you learned how to add different types of forms to your database using the Create
ribbon’s Form group. You learned about the different types of controls and how to add them to the
form. Then you learned how to move and resize these controls.

267

Creating Basic Access Forms 7

11_046732 ch07.qxp 11/21/06 9:39 AM Page 267

You also learned how properties are the building blocks of an object. The Property Sheet contains
every attribute of the control, from where it’s located on the form to what data it displays to what
font it’s displayed in. You learned how to display the Property Sheet and how to change a few prop-
erties, including the Name property using naming conventions.

268

Access Building BlocksPart I

11_046732 ch07.qxp 11/21/06 9:39 AM Page 268

In Chapter 7, you learned about the tools necessary to create and display
a form — Design View, bound and unbound controls, the Field List, and
the ribbon’s Controls group. In this chapter, you learn how to work with

data on the form, view and change the form’s properties, and use Access’s
new Layout View.

In this chapter, you use tblProducts in the
Chapter08.accdb database to provide the data necessary

to create the examples used in this chapter.

Using Form View
Form View is where you actually view and modify data. Working with data in
Form View is similar to working with data in a table or query’s Datasheet
View. Form View presents the data in a user-friendly format, which you cre-
ate and design.

For more information on working in Datasheet View, see
Chapter 6.

To demonstrate the use of the Form View, follow these steps to create a new
form based on tblProducts:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon.

3. Click on the Form command in the Form group.

4. Click the Form View button on the Home tab’s Views group to
switch from Layout View to Form View.

CROSS-REFCROSS-REF

ON the CD-ROMON the CD-ROM

269

IN THIS CHAPTER
Using Form View

Navigating in a form

Editing data in a form

Entering pictures and data into
OLE fields and Memo fields

Using the date picker

Switching views

Printing a form

Understanding form properties

Changing the form’s layout

Setting the tab order

Using the Field List

Creating a calculated control

Working with Data on
Access Forms

12_046732 ch08.qxp 11/21/06 8:49 AM Page 269

Figure 8-1 shows the Access window with the newly created form displayed in Form View. This
view has many of the same elements as Datasheet View. At the top of the screen, you see the Access
title bar, Quick Access toolbar, and the ribbon. The form in the center of the screen displays your
data, one record at a time.

If the form contains more fields than can fit on-screen at one time, Access 2007 automatically dis-
plays a horizontal and/or vertical scroll bar that can be used to see the remainder of the data. You
can also see the rest of the data by pressing the PgDn key. If you’re at the bottom of a form, or the
entire form fits on the screen, and press PgDn, you’ll move to the next record.

The status bar at the bottom of the window displays the active field’s Field Description that you
defined when you created the table (or form). If no Field Description exists for a specific field,
Access displays the words Form View. Generally, error messages and warnings appear in dialog
boxes in the center of the screen (rather than in the status bar). The navigation buttons, search
box, and view shortcuts are found at the bottom of the screen. These features lets you move
quickly from record to record, find data quickly, or switch views.

FIGURE 8-1

A form in Form View

Status bar

View Shortcuts

Navigation buttonsView button Close button

Caption
(Form Title Bar)

Record selector

Search box Form

270

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 270

The Form ribbon
The Form ribbon (shown in Figure 8-2) provides a way to work with the data. The Home tab has
some familiar objects on it, as well as some new ones. This section provides an overview of the
form’s Home tab; the individual commands will be described in more detail later in this chapter.

FIGURE 8-2

The Form ribbon’s Home tab

The first group is the View group, which allows you to switch between Form View, Datasheet View,
PivotTable View, PivotChart View, Layout View, and Design View. You can see all six choices by
clicking the command’s down-arrow. Clicking Form View lets you manipulate data on the form.
Datasheet View shows the data in a row-and-column format. Design View permits you to make
changes to the form’s design. Layout View lets you change the form’s design while viewing data.
PivotTable View and PivotChart View let you create PivotTables and PivotCharts based on the form’s
data. All these commands may not be available on all forms. By setting the form’s properties, you
can limit which views are available. You’ll learn more about form properties later in this chapter.

The Clipboard group contains the Cut, Copy, and Paste commands. These commands work like
the commands in other applications (Word, Excel, and so on). The Paste command’s down arrow
gives you three choices: Paste, Paste Special, and Paste Append. Paste Special gives you the option
of pasting the contents of the Clipboard in different formats (Text, CSV, Records, etc.) Paste
Append pastes the contents of the Clipboard as a new record — provided a record with a similar
structure was copied.

The Font group lets you change the look of the datasheet in Datasheet View. Use these commands
to change the font, size, bold, italic, color, and so on. Use the Align Left, Align Right, and Align
Center commands to justify the data in the selected column. Click the Gridlines command to tog-
gle gridlines on and off. Use the Alternate Fill/Back Color command to change the colors of alter-
nating rows, or make them all the same. When modifying text in a memo field with the Text
Format property set to Rich Text, you can use these commands to change the fonts, colors, and
so on.

The Rich Text group lets you change a memo field’s data if the field’s Text Format property is set
to Rich Text. Use these commands to add bullets or numbered lists and change the indentation
levels.

Tabs

Groups

271

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 271

The Records group lets you save, delete, or add a new record to the form. It also contains com-
mands to show totals, check spelling, freeze and hide columns, and change the row height and cell
width in Datasheet View.

The Sort & Filter group lets you change the order of the records, as well as limit the records being
displayed — based on criteria you want.

The Find group lets you find and replace data and go to specific records in the datasheet. Use the
select command to select a record or all records.

Navigating between fields
Navigating a form is nearly identical to navigating a datasheet. You can easily move around the
form window by clicking the field that you want and making changes or additions to your data.
Because the form window displays only as many fields as can fit on-screen, you need to use various
navigational aids to move within your form or between records.

Table 8-1 displays the navigational keys used to move between fields within a form.

TABLE 8-1

Navigating in a Form

Navigational Direction Keystrokes

Next field Tab, right-arrow (→) or down-arrow (↓) key, or Enter

Previous field Shift+Tab, left-arrow (←), or up arrow (↑)

First field of current record Home or Ctrl+Home

Last field of current record End or Ctrl+End

Next page PgDn or Next Record

Previous page PgUp or Previous Record

If you have a form with more than one page, a vertical scroll bar displays. You can use the scroll
bar to move to different pages on the form. You can also use the PgUp and PgDn keys to move
between form pages. You can move up or down one field at a time by clicking the scroll-bar
arrows. With the scroll-bar button, you can move past many fields at once.

272

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 272

Moving between records in a form
Although you generally use a form to display one record at a time, you still need to move between
records. The easiest way to do this is to use the Navigation buttons, as shown in Figure 8-3. The
Navigation buttons let you move to the desired record.

The Navigation buttons (shown in Figure 8-3) are the six controls located at the bottom of the
Form window, which you click to move between records. The two leftmost controls move you to
the first record or the previous record in the form. The three rightmost controls position you on
the next record, last record, or new record in the form. If you know the record number (the row
number of a specific record), you can click the Record Number box, enter a record number, and
press Enter.

FIGURE 8-3

The Navigation buttons of a form

The record number between the Navigation buttons is a virtual record number. The number is not
attached to any specific record — it’s just an indicator as to the record number you’re on given the
current filter or sort. It will change with each time you filter or sort the records. The number to the
right of the record number displays the number of records in the current view. The number of
records displayed might not be the total number of records in the underlying table or query; this
number changes when you filter the data on the form.

You can also press PgDn to move to the current field in the next record, or PgUp to
move to the current field in the preceding record.

Changing Values in a Form
Earlier in the book, you learned techniques to add, change, and delete data within a table by using
a datasheet. These techniques are the same ones you use within a form. Table 8-2 summarizes
these techniques.

TIPTIP

First

Previous

Record Number Box Next

Last

New

273

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 273

TABLE 8-2

Editing Techniques

Editing Technique Keystrokes

Move insertion point within a control Press the right-arrow (→) and left-arrow (←) keys

Insert a value within a control Select the insertion point and type new data

Select the entire text in a control Press F2

Replace an existing value with a new value Select the entire field and type a new value

Replace value with value of preceding field Press Ctrl+’ (single quotation mark)

Replace current value with default value Press Ctrl+Alt+Spacebar

Insert current date into a control Press Ctrl+; (semicolon)

Insert current time into a control Press Ctrl+: (colon)

Insert a line break in a Text or Memo control Press Ctrl+Enter

Insert new record Press Ctrl++ (plus sign)

Delete current record Press Ctrl+- (minus sign)

Save current record Press Shift+Enter or move to another record

Toggle values in a check box or option button Spacebar

Undo a change to the current control Press Esc or click the Undo button

Undo a change to the current record Press Esc or click the Undo button a second time after you
Undo the current control

Controls that you can’t edit
Some controls can’t be edited, such as:

n Controls displaying AutoNumber fields: Access maintains AutoNumber fields auto-
matically, calculating the values as you create each new record.

n Calculated controls: Access uses calculated control in forms or queries; these values are
not actually stored in your table.

n Locked or disabled fields: You can set certain properties to prevent editing for specific
controls.

n Controls in multiuser locked records: If another user locks the record, you can’t edit
any controls in that record.

Working with pictures and OLE objects
OLE (Object Linking and Embedding) objects are objects not part of an Access database. These
commonly include pictures but an OLE field can also contain links to objects such as Word

274

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 274

documents, Excel spreadsheets, and audio files such as .mp3, .wav, or .wmv files. You can also
include video files such as .mpg or .avi files.

In Datasheet View, you can’t view a picture or any OLE object without accessing the OLE server
(such as Word, Excel, or the Microsoft Media Player). In Form View, however, you can size the
OLE control area to be large enough to display a picture, business graph, or any visual OLE object.
You can also size text-box controls on forms so that you can see the data within the field — you
don’t have to zoom in on the value, as you do with a datasheet field.

Any object supported by an OLE server can be stored in an Access OLE field. OLE objects are
entered into a form so that you can see, hear, or use the value. As with a datasheet, you have two
ways to enter OLE fields into a form:

n Paste them in from the commands in the ribbon’s Clipboard group.

n Right-click on the OLE field and click Insert Object from the pop-up menu to display the
Insert Object dialog box, shown in Figure 8-4.

FIGURE 8-4

The Insert Object dialog box

Use the Insert Object dialog box to add a new object to the OLE field, or add an object from an
existing file. Choose the Create from File option button to add a picture or other OLE object from
a file that already exists.

When displaying a picture in an OLE control, set the Size Mode property to control how the pic-
ture is displayed. The settings for this property are:

n Clip: Keeps the picture at its original size and truncates any portion of the picture that
doesn’t fit in the control.

n Zoom: Fits the picture in the control and keeps it in its original proportion, which may
result in extra white space.

n Stretch: Sizes picture to fit exactly between the frame borders; this setting may distort the
picture.

275

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 275

Memo field data entry
The Features field in the form shown in Figure 8-1 is a Memo data type. This type of field
allows up to 65,535 bytes of text for each field. The first two sentences of data appear in the text
box. When you click in this text box, a vertical scroll bar appears. Using this scrollbar, you can
view the rest of the data in the control.

Better yet, you can resize the Memo control in the form’s Design View if you want to make it larger
to see more data. You can also press Shift+F2 and display a Zoom dialog box, as shown in Figure
8-5, which lets you see more data.

FIGURE 8-5

The Zoom dialog box

Date field data entry
The AuctionEndDate field in the form shown in Figure 8-5 is a Date/Time data type. This field
is formatted to accept and show date values. When you click in this text box, a Date Picker icon
appears next to it, as shown in Figure 8-6. Click the Date Picker to display a calendar from which
you can choose a date.

If the Date Picker doesn’t appear, switch to Design View and change the control’s Show Date
Picker property to For dates. Set the Show Date Picker property to Never if you don’t
want to use the Date Picker.

276

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 276

FIGURE 8-6

Using the Date Picker, new to Access 2007

Using option groups
Option groups let you choose values from option buttons (sometimes called radio buttons). Option
buttons let you select one value while deselecting the previous value. Option groups work best
when you have a small number of choices to select from. Figure 8-7 shows an option group next to
the Auction check box; both controls perform the same operation.

FIGURE 8-7

Using an option group to select a numeric value

The easiest and most efficient way to create option groups is with the Option Group Wizard. You
can use it to create option groups with multiple option buttons, toggle buttons, or check boxes.
When you’re through, all your control’s property settings are correctly set. This wizard greatly sim-
plifies the process and enables you to create an option group quickly. To create an option group,
switch to Design View and select the Option Group command from the Design tab’s Controls
group. Make sure the Use Control Wizards command is selected.

277

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 277

Option groups can only be bound to numeric fields. When creating an option group for
a Yes/No field (which is numeric), set the Yes value to –1 and the No value to 0.

Using combo boxes and list boxes
Access has two types of controls — list boxes and combo boxes — that enable you to show lists of
data from which a user can select. The list box is always open and ready for selection, whereas the
combo box has to be clicked to open the list for selection. Also the combo box enables you to enter
a value that is not on the list and takes up less room on the form.

You may want to replace the Category text box with a combo box containing values from
tblCategories, as shown in Figure 8-8. The easiest way to do this is with the Combo Box
Wizard. This wizard walks you through the steps of creating a combo box that looks up values in
another table. To create a combo box, switch to Design View and select the Combo Box command
from the Design tab’s Controls group. Make sure the Use Control Wizards command is selected.

FIGURE 8-8

Using a combo box to select value from a list

After you create the combo box, examine the Row Source Type, Row Source, Column Count,
Column Heads, Column Widths, Bound Column, List Rows, and List Width properties.
Once you become familiar with setting these properties, you can right-click a text box, select
Change To ➪ Combo Box, and set the combo box’s properties manually.

Switching to Datasheet View
While in the form, you can display a Datasheet View of your data by using one of the following
methods:

TIPTIP

278

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 278

n Click the Datasheet View command in the Home tab’s Views group.

n Click the Datasheet View button in the View Shortcuts section at the bottom-right of the
Access window.

n Right-click on the form’s title bar — or any blank area of the form — and choose
Datasheet View from the pop-up menu.

The datasheet is displayed with the cursor on the same field and record that it occupied in the
form. If you move to another record and field and then redisplay the form, the form appears with
the cursor on the field and with the record it last occupied in the datasheet.

To return to Form View — or any other view — select the desired view from the Views group, the
View Shortcuts, or the pop-up menu.

Saving a record
Access saves each record when you move off it. Pressing Shift+Enter or selecting Save from the rib-
bon’s Records group saves a record without moving off it. Closing the form also saves a record.

Printing a Form
You can print one or more records in your form exactly as they appear on-screen. (You learn how
to produce formatted reports in Chapter 9.) The simplest way to print is to click the Print icon in
the Quick Access toolbar. This prints the form to the Windows default printer. Click on the
Microsoft Office Button to view other print options.

Printing a form is like printing anything else; you’re in a WYSIWYG (“What You See Is What You
Get”) environment, so what you see on the form is essentially what you get in the printed hard
copy. If you added page headers or page footers, they’re printed at the top or bottom of the page.
The printout contains any formatting that you specified in the form (including lines, boxes, and
shading) and converts colors to grayscale if you’re using a monochrome printer.

The printout includes as many pages as necessary to print all the data. If your form is wider than a
single printer page, you need multiple pages to print your form. Access breaks up the printout as
necessary to fit on each page.

You can also control printing from the Print dialog box, which you open by clicking the Microsoft
Office Button, and then clicking on Print. From this dialog box, customize your printout by select-
ing from several options:

n Print Range: Prints the entire form or only selected pages or records

n Copies: Determines the number of copies to be printed

n Collate: Determines whether multiple copies are collated

You can also click the Properties button and set options for the selected printer or select the printer
itself to change the type of printer. The Setup button allows you to set margins and print headings.

279

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 279

Using the Print Preview window
Although you may have all the information in the form ready to print, but you aren’t sure whether
that information will print on multiple pages or fit on one printed page. To preview your print job,
click the Print Preview command under the Print menu to display the Print Preview window. The
default view is the first page in single-page preview. Use the ribbon commands to select different
views and zoom in and out. Click Print to print the form to the printer. Click the Close Print
Preview command on the right side of the ribbon to return to Form View.

Working with Form Properties
You use form properties to change the way the entire form is displayed. This includes properties
such as the form’s background color or picture, the form’s width, and so on. Tables 8-3 through 8-5
later in this chapter discuss some of the more important properties. Changing default properties is
relatively easy: You select the property in the Property Sheet and set a new value. Following are
some of the more important form properties that you may want to be aware of and may want to set.

The form selector is the area where the rulers meet; a small black square appears when
the form is selected, as shown in Figure 8-9.

FIGURE 8-9

Using the form selector to display the form’s Property Sheet

To set a form’s properties, you have to show the Property Sheet for the form. Switch to Design View
and use one of the following methods to display the form’s Property Sheet:

n Click the form selector so a small black square appears, then click the Property Sheet
command in the Design tab’s Tools group.

n Click the Property Sheet command in the Design tab’s Tools group, then select Form from
the drop-down at the top of the Property Sheet.

Form Selector

NOTENOTE

280

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 280

n Double-click the form selector.

n Right-click the form selector and select Properties from the pop-up menu.

The form’s Property Sheet appears docked to the right-side of the Access window. Because the
Property Sheet is a window, it can be undocked, moved, and resized. It does not, however, have
Maximize or Minimize buttons.

For more information on working with the Property Sheet, see Chapter 7.

Changing the title bar text with the Caption
property
Normally, the title bar displays the name of the form after it is saved. By changing the Caption
property, you can display a different title on the title bar when the form is in Form View. To change
the title bar text, follow these steps:

1. Click the form selector to make sure the form itself is selected.

2. Click the Property Sheet command in the Design tab’s Tools group.

3. Click the Caption property in the Property Sheet.

4. Type Products, as shown in Figure 8-10.

5. Click any other property or press Enter.

FIGURE 8-10

Change the Caption property in the form’s Property Sheet.

CROSS-REFCROSS-REF

281

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 281

Switch to Form View to see the form’s new title bar text. The caption you enter in the form’s prop-
erties overrides the name of the saved form.

Creating a bound form
A bound form is one that places data into a table when the record is saved. Forms can be bound or
unbound. To create a bound form, you must specify a data source in the form’s Record Source
property. In Figure 8-10, you can see the form’s Property Sheet where the very first property is
Record Source. If you want your form bound to a data source, this is where the name of the
data source goes. Figure 8-10 shows the Record Source property set to tblProducts.

The data source can be on of three choices:

n Table: The name of a table from the current database file. The table can be a local table
(stored in the database itself) or it can be linked to another Access database or an outside
data source such as SQL Server.

n Query: The name of a query that references one or more tables from the current
database file.

n SQL Statement: A SQL SELECT Statement that contains the name of a table or query.

If a form is unbound — the Record Source property is blank — you can’t have any bound con-
trols on the form (bound controls have their Control Source property set to a field in a table). If
you add fields from the Field List and the Record Source property is blank, Access will set the
Record Source property based on the fields you add.

For more information on adding bound controls with the Field List, see Chapter 7.

Specifying how to view the form
Access 2007 uses several properties to determine how a form is viewed. The most common one is
the Default View. The Default View property determines how the data is displayed when the
form is first opened in Form View. There are six choices:

n Single Form: Displays one record at a time

n Continuous Forms: Shows more than one record at a time

n Datasheet: Row and column view like a spreadsheet or the standard query Datasheet
View

n PivotTable: A datasheet with movable columns that can be swapped with rows

n PivotChart: A graph made from a PivotTable

n Split Form: A new feature in Access 2007 that gives you two views of the data at the
same time, letting you select a record from a datasheet in the upper section and edit the
information in a form in the lower section

CROSS-REFCROSS-REF

282

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 282

Single Form is the default and displays one record per form page, regardless of the form’s size.
Continuous Forms tells Access to display as many detail records as will fit on-screen. Normally,
you would use this setting to define the height of a very small form and to display many records at
one time. Figure 8-11 shows such a continuous form with many records. The records have a small
enough height that you can see a number of them at once.

FIGURE 8-11

The Continuous Forms setting of the Default View property shows multiple records at once. The Multiple
Items form has its Default View set to Continuous Forms.

In Figure 8-11, you can see the form’s Property Sheet with the choices for the Default View
property.

A PivotTable form can display a field’s values horizontally or vertically and then calculate the total
of the row or column. Similar to this is the PivotChart, which displays a graphical analysis of data
stored in a table, query, or form.

There are five separate properties to allow the developer to determine if the user can change the
default view. These include Allow Form View, Allow Datasheet View, Allow PivotTable
View, Allow PivotChart View, and Allow Layout View. The default settings are Yes to all
of these properties, which lets you switch between Form View and Datasheet View, as well as
PivotTable View and PivotChart View. If you set the Allow Datasheet View property to No, the
Datasheet View commands (in the ribbon’s Views group, the form’s View Shortcuts, and right-click
pop-up menu) won’t be available; the data can be viewed only as a form. If you set the Allow
Form View property to No, the Form View commands won’t be available; the data can be viewed
only as a datasheet.

283

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 283

Eliminating the Record Selector bar
The Record Selectors property determines whether the Record Selector bar (the vertical bar
shown in Figure 8-1 on the left side of a form with a right-pointing arrow indicating the selected
record) is displayed. The Record Selector bar is very important in multiple-record forms or
datasheets because it’s highlighted to indicate the current record and a pencil indicates that the
record is being edited. Though the Record Selector bar is important for datasheets, you probably
won’t want it for a single record form. To eliminate it, simply change the form’s Record
Selectors property from Yes to No.

Set the Record Selectors property to No for your form.

Other form properties
Tables 8-3 through 8-5 list the most commonly used form properties and offers brief descriptions
of each. You will learn more about many of these when they are used in examples throughout the
chapters. Event properties are covered in Part II.

TABLE 8-3

Form Format Properties

Property Description Options

Caption Displayed on the title bar of the N/A
displayed form.

Default View Determines the type of view when Single Form: One record per
the form is run. page.

Continuous Forms: (Default) As
many records per page as will
fit.
Datasheet: Standard row and
column Datasheet View.
PivotTable: Displays a field’s
values horizontally or vertically;
then calculates the total of the
row or column.
PivotChart: Graphical analysis of
data.
Split Form: Displays a datasheet
in the upper portion and a form
in the lower portion.

Allow Form View Form View allowed (Yes/No). N/A

284

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 284

Property Description Options

Allow Datasheet View Datasheet View allowed (Yes/No). N/A

Allow PivotTable View PivotTable View allowed (Yes/No). N/A

Allow PivotChart View PivotChart View allowed (Yes/No). N/A

Allow Layout View Layout View allowed (Yes/No). N/A

Scroll Bars Determines whether any scroll bars Neither: No scroll bars are
are displayed. displayed.

Horizontal Only: Displays only
horizontal scroll bar.
Vertical Only: Displays only
vertical scroll bar.
Both: Displays both horizontal
and vertical scroll bars.

Record Selectors Determines whether vertical Record N/A
Selector bar is displayed (Yes/No).

Navigation Buttons Determines whether navigation buttons N/A
are visible (Yes/No).

Dividing Lines Determines whether lines between form N/A
sections are visible (Yes/No).

Auto Resize Form is opened to display a complete N/A
record (Yes/No).

Auto Center Centers form on-screen when it’s N/A
opened (Yes/No).

Border Style Determines form’s border style. None: No border or border
elements (scrollbars, navigation
buttons).
Thin: Thin border, not resizable.
Sizable: Normal form settings.
Dialog: Thick border, title bar
only, cannot be sized; use for
dialog boxes.

Control Box Determines whether control menu N/A
(Restore, Move Size) is available (Yes/No).

Min Max Buttons Specifies whether the “Min” and “Max” None: No buttons displayed in
buttons appear in the form’s title bar upper-right corner of form.

Min Enabled: Displays only
Minimize button.
Max Enabled: Displays only
Maximize button.
Both Enabled: Displays
Minimize and Maximize buttons.

continued

285

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 285

TABLE 8-3 (continued)

Property Description Options

Close Button Determines whether to display Close N/A
button in upper-right corner and a close
menu item on the control menu (Yes/No).

Width Displays the value of the width of the form; N/A
can be entered or Access fills it in as you
adjust the width of the work area.

Picture Enter the name of a bitmap file for the N/A
background of the entire form.

Picture Type Determines whether picture is Embedded: Picture is embedded
embedded or linked. in the form and becomes a part

of the database file.
Linked: Picture is linked to the
form. Access stores the location
of the picture and retrieves it
every time the form is opened.

Picture Size Mode Determines how the picture is displayed. Clip: Displays the picture at its
actual size.
Stretch: Fits picture to form size
(non-proportional).
Zoom: Fits picture to form size
(proportional); this may result in
the picture not fitting in one
dimension (height or width).

Picture Alignment Determines picture alignment. Top Left: The picture is displayed
in the top-left corner of the form,
report window, or image control.
Top Right: The picture is displayed
in the top-right corner of the form,
report window, or image control.
Center: (Default) The picture is
centered in the form, report
window, or image control.
Bottom Left: The picture is
displayed in the bottom-left
corner of the form, report
window, or image control.
Bottom Right: The picture is
displayed in the bottom-right
corner of the form, report
window, or image control.
Form Center: The form’s picture is
centered horizontally in relation to
the width of the form and vertically
in relation to the topmost and
bottommost controls on the form.

286

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 286

Property Description Options

Picture Tiling Used when you want to overlay multiple N/A
copies of a small bitmap; for example,
a single brick can become a wall (Yes/No).

Grid X Displays setting for number of points per N/A
inch when X grid is displayed.

Grid Y Displays setting for number of points per N/A
inch when Y grid is displayed.

Layout for Print Determines whether form uses screen Yes: Printer Fonts.
fonts or printer fonts. No: Screen Fonts.

Sub-datasheet Height Determines the height of a sub-datasheet NA
when expanded.

Sub-datasheet Expanded Determines the saved state of all Yes: The saved state of
subdatasheets in a table or query. subdatasheets is expanded.

No: The saved state of
subdatasheets is closed.

Palette Source The palette for a form or report (Default): Indicates the default
Access color palette.
You can also specify other
Windows palette files (.pal),
.ico, .bmp, .db, and .wmf
files.

Orientation Determines View Orientation. Right-to-Left: Appearance and
functionality move from right to
left.
Left-to-Right: Appearance and
functionality move from left to
right.

Moveable Determines whether the form can be N/A
moved (Yes/No).

Split Form Orientation Determines the look of a form in Datasheet on Top: Datasheet
Split Form View. appears at the top of the form.

Datasheet on Bottom: Datasheet
appears at the bottom of the
form.
Datasheet on Left: Datasheet
appears to the left of the form.
Datasheet on Right: Datasheet
appears to the right of the form.

Split Form Datasheet Determines whether data can be edited Allow Edits: Edits are allowed.
in the datasheet of a Split Form. Read Only: Data is read-only

and cannot be changed.

continued

287

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 287

TABLE 8-3 (continued)

Property Description Options

Split Form Splitter Bar Determines whether there’s a splitter bar N/A
on a Split Form (Yes/No).

Save Splitter Bar Position Determines whether the position of the N/A
Splitter Bar should be saved (Yes/No).

Split Form Size Size of the form part of the Split Form. N/A

Split Form Printing Determines which section of a Split Form Form Only: Prints the form
to print. portion.

Datasheet Only: Prints the
datasheet section.

Navigation Caption Overrides the word Record in the form’s N/A
navigation buttons.

TABLE 8-4

Form Data Properties

Property Description Options

Record Source Determines where the data to be displayed N/A
in the form is coming from, or where the
data is going when you create a new record.
Can be a table or a query.

Filter Used to specify a subset of records to be N/A
displayed when a filter is applied to a form.
Can be set in the form properties, a macro,
or through VBA.

Filter on Load Apply filter at form/report startup (Yes/No). N/A

Order By Specifies the field or fields used to order N/A
the data in the view.

Order By on Load Apply sort at form/report startup (Yes/No). N/A

Allow Filters Determines whether a user will be able to N/A
display a filtered form (Yes/No).

Allow Edits Determines whether a user will be able to N/A
edit data, making the form editable or
read only (Yes/No).

Allow Deletions Determines whether a user will be able N/A
to delete records (Yes/No).

288

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 288

Property Description Options

Allow Additions Determines whether a user will be able to N/A
add records (Yes/No).

Data Entry Determines whether form opens to a N/A
new blank record, not showing any
saved records (Yes/No).

Recordset Type Used to determine whether multi-table Dynaset: Only default table field
forms can be updated. controls can be edited.

Dynaset (Inconsistent Updates):
All tables and fields are editable.
Snapshot: No fields are editable
(Read Only in effect).

Record Locks Used to determine default multiuser No Locks: Record is locked only
record locking on bound forms. as it is saved.

All Records: Locks entire form’s
records while using the form.
Edited Record: Locks only
current record being edited.

Fetch Defaults Determines whether default values N/A
should be retrieved (Yes/No).

TABLE 8-5

Form “Other” Properties

Property Description Option Definition

Pop Up Form is a pop-up that floats above all N/A
other objects (Yes/No).

Modal For use when you must close the form N/A
before doing anything else. Disables
other windows. When Pop Up set to Yes,
Modal disables menus and toolbar,
creating a dialog box (Yes/No).

Cycle Determines how Tab works in the last All Records: Tabbing from the
field of a record. last field of a record moves to

the next record.
Current Record: Tabbing from
the last field of a record moves
to the first field of that record.
Current Page: Tabbing from the
last field of a record moves to
the first field of the current page.

continued

289

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 289

TABLE 8-5 (continued)

Property Description Option Definition

Menu Bar Used to specify an alternate menu bar. N/A

Toolbar Use this property to specify the toolbar to N/A
use for the form. You can create a toolbar
for your form by selecting the Customize
option under the Toolbar command in the
View menu.

Custom Ribbon ID Name of loaded Ribbon customization N/A
to apply on open.

Shortcut Menu Determines whether shortcut (right-click) N/A
menus are active (Yes/No).

Shortcut Menu Bar Used to specify an alternate shortcut N/A
menu bar.

Fast Laser Printing Prints rules instead of lines and rectangles N/A
(Yes/No).

Help File Name of compiled Help file to assign N/A
custom help to the form.

Help Context Id ID of context-sensitive entry point in the N/A
Help file to display.

Tag Use this property to store extra information N/A
about your form.

Has Module Use this property to show if your form N/A
has a class module. Setting this property to
No can improve the performance and
decrease the size of your database.

Use Default Paper Size Use the default paper size when printing N/A
(Yes/No).

Display on SharePoint Site Determines whether the form should be Do Not Display: Don’t display
displayed on Microsoft Windows on SharePoint Services.
SharePoint Services? Follow Table Setting: Use the

form’s underlying table setting.

Adding a Form Header or Footer
Although the form’s Detail section usually contains the majority of the controls that display data,
there are other optional sections in a form that you can add:

290

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 290

n Form Header: Displayed at the top of each page when viewed and at the top when the
form is printed.

n Page Header: Displayed only when the form is printed; prints after the form header.

n Page Footer: Appears only when the form is printed; prints before the form footer.

n Form Footer: Displayed at the bottom of each page when viewed and at the bottom of
the form when the form is printed.

A Form Header appears at the top of the form, while a Form Footer appears at the bottom. The
Form Header and Footer remain on the screen, while any controls in the Detail section can scroll
up and down.

Page Headers and Page Footers are displayed only if the form is printed. They do not
appear when the form is displayed.

You can select the Form Header/Footer or Page Header/Footer commands from the Arrange tab’s
Show/Hide group in the form’s Design View. These commands will place a Form Header/Footer or
Page Header/Footer on the form.

Changing the Layout
In this section, you’ll learn how to change a form’s layout using Access’s new Layout View. You’ll
add, move, and resize controls, as well as change a few other characteristics while viewing the
form’s data.

In the Home tab’s Views group, click the Layout View command to switch to Layout View. Click on
the ribbon’s Arrange tab (shown in Figure 8-12) to show commands available to change the form
while viewing data.

FIGURE 8-12

The Form ribbon’s Arrange tab for Layout View

Changing a control’s properties
In previous versions of Access, you had to make changes to the form in Design View. In Layout
View, you can change these properties while looking at the data instead of the Control Source.
Click the Property Sheet command in the Arrange tab’s Tools group to display the Property Sheet
for a selected Control.

NOTENOTE

291

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/27/06 4:34 PM Page 291

For more information on changing control properties with the Property Sheet, see
Chapter 7.

Setting the Tab Order
If you move controls around or add a new control in between existing controls, you may notice
that when you use Tab to move from control to control, the cursor jumps around the screen, skip-
ping some control and moving fairly randomly around the screen. This route may seem strange,
but that is the original order in which the controls were added to the form.

The tab order of the form is the order in which you move from control to control when you press
Tab. The form’s default tab order is always the order in which the controls were added to the form.
If you move the controls around or even delete one control and re-add it for any reason, you’ll
probably need to change the tab order. Even though you may make heavy use of the mouse when
designing your forms, the average data-entry person still uses the keyboard to move from control
to control.

When you need to change the tab order of a form, select the Tab Order command from the
Arrange tab’s Control Layout group to display the Tab Order dialog box, shown in Figure 8-13.
This dialog box shows the controls in the form that you can tab to; controls such as labels, lines,
and other non-data controls don’t appear.

FIGURE 8-13

The Tab Order dialog box

The Tab Order dialog box lets you select either one row or multiple rows at a time. Multiple con-
tiguous rows are selected by clicking the first Selection bar and dragging down to select multiple
rows. After the rows are highlighted, the selected rows can be dragged to their new positions.

CROSS-REFCROSS-REF

292

Access Building BlocksPart I

12_046732 ch08.qxp 11/27/06 4:34 PM Page 292

The Tab Order dialog box has several buttons at the bottom of the window. The Auto Order button
places the controls in order from left to right and from top to bottom, according to their position in
the form. This button is a good place to start when you have significantly rearranged the controls.
The OK button applies the changes to the form; the Cancel button closes the dialog box without
changing the tab order.

Each control has two properties related to the Tab Order dialog box. The Tab Stop property
determines whether pressing the Tab key lands you on the control. The default is Yes; changing the
Tab Stop property to No removes the control from the tab order. When you set the tab order, you
are setting the Tab Index property values. Moving the fields around in the Tab Order dialog box
changes the Tab Index properties of those (and other) controls.

Aligning controls
You may want to move several controls so that they are all aligned (lined up). The Layout ribbon’s
Control Alignment group has several options for aligning controls: Left, Right, Top, and Bottom.
These commands work the same as the Control Alignment commands described in Chapter 7,
with the exception of aligning controls to the grid, which isn’t available in Layout View.

Modifying the format of text in a control
To modify the formatting of text within a control, select the control by clicking it, then select a for-
matting style to apply to the control. The Layout View ribbon’s Design tab — shown in Figure 8-14 —
contains additional commands for changing the format of a control.

FIGURE 8-14

The Form ribbon’s Design tab for Layout View

To change the fonts for the Category control, make sure you’re in Layout View, then follow these
steps:

1. Select the Category control by clicking on it.

2. Change the Font Size to 14, and then click on the Bold button in the Design tab’s
Font group.

You probably can only see a portion of the label. The label control now needs to be
resized to display all the text.

293

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 293

Using the Field List to add controls
The Field List displays a list of fields from table or query the form is based on. You add bound con-
trols to the form by dragging fields from the Field List onto the form. Select and drag them one at a
time, or select multiple fields by using the Ctrl key or Shift key. The Field List in Layout View
works the same as the Field List in Design View, which is described in detail in Chapter 7.

Click the Add Existing Fields command in the Design tab’s Controls group to display the Field List.
By default, the Field List appears docked on the right of the Access window, shown in Figure 8-15.
This window is movable and resizable and displays a vertical scrollbar if it contains more fields
than can fit in the window.

To add fields from the Field List to a new form, follow these steps:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, and then click on the Blank Form command in
the Form group to display a new form in Layout View.

3. If the Field List isn’t displayed, click on the ribbon’s Design tab, and then click the
Add Existing Fields command from the Controls group.

4. Click the ProductID field in the Field List.

5. Hold the Shift key and click the Cost field in the Field List.

6. Drag the selected fields from the Field List to the Form, as shown in Figure 8-15.

FIGURE 8-15

Adding fields from the Field List in a form’s Layout View

294

Access Building BlocksPart I

12_046732 ch08.qxp 11/27/06 4:34 PM Page 294

You can select noncontiguous fields in the list by clicking each field while holding down
the Ctrl key. Each highlighted field can be dragged (as part of the group) to the form’s

Layout View.

Creating a Calculated Control
A calculated control displays a value that isn’t stored in the form’s underlying Record Source. To
understand creation of a calculated control, you will now create one as follows:

1. Select tblProducts in the Navigation Pane.

2. Click the Create tab on the ribbon, then click on the Blank Form command in the
Form group to display a new form in Layout View.

3. Drag the Cost and SalePrice fields from the Field List onto the form.

4. Switch the form to Design View.

5. Click on the Text Box command in the Controls group and draw it on the form.

6. Set the Name property to txtProfit.

The txt prefix means the control is a text box.

7. Set the Control Source property to =[SalePrice]-[Cost].

8. Change the Format property to Currency.

9. Change the Decimal Places property to 2.

10. Change the label’s Caption property to Profit:.

11. Switch to Form View to test the calculation.

Your screen should look like one shown in Figure 8-16. The txtProfit control shows
the difference between the SalePrice and Cost.

FIGURE 8-16

Creating a calculated control

TIPTIP

295

Working with Data on Access Forms 8

12_046732 ch08.qxp 11/21/06 8:49 AM Page 295

Converting a Form to a Report
By opening a form in Design View, clicking the Microsoft Office Button, and selecting Save As, you
can save a form as a report. The entire form is placed in the report. If the form has form headers or
footers, these are placed in the Report Header and Report Footer sections. If the form has page
headers or page footers, these are placed in the Page Header and Page Footer sections in the report.
After the design is in the Report Design window, it can be enhanced using the report design fea-
tures. This allows you to add group sections and additional totaling in a report without having to
re-create a great layout. You’ll learn more about reports in later chapters.

Summary
In this chapter, you learned that working with data in Form View is similar to working with data in
a table or query’s Datasheet View. You learned how to navigate between fields and records and how
to use controls such as option groups and combo boxes to facilitate data entry.

You also learned about a form’s properties, including the different groupings and each property set-
ting. You learned how setting some of these properties affects a form’s appearance. You added a
form header and footer and worked with the new Layout View, which lets you manipulate a form
and its controls while viewing live data.

296

Access Building BlocksPart I

12_046732 ch08.qxp 11/21/06 8:49 AM Page 296

R eports provide the most flexible way of viewing and printing sum-
marized information. Reports display information with the desired
level of detail, while enabling you to view or print your information

in almost any format. You can add multilevel totals, statistical comparisons,
and pictures and graphics to a report. In this chapter, you learn to use
Report Wizards as a starting point. You also learn how to create reports and
what types of reports you can create with Access.

In this chapter, you create new reports using the report wiz-
ards and by creating a blank report without using a wizard.

You use tables created in previous chapters. The Chapter09.accdb database
file on the book’s CD-ROM contains the completed reports described in this
chapter.

Understanding Reports
Reports present a customized view of your data. Report output is viewed on-
screen or printed to provide a hard copy of the data. Reports provide sum-
maries of the information contained in the database. Data can be grouped
and sorted in any order and can create totals that add numbers, calculate
averages or other statistics, and graphically display data. Reports can include
pictures and other graphics as well as memo fields in a report. If you can
think of a report you want, Access probably supports it.

Understanding report types
Four basic types of reports are used by businesses:

ON the CD-ROMON the CD-ROM

297

IN THIS CHAPTER
Understanding the different
types of Access reports

Knowing the differences
between reports and forms

Understanding the process of
building reports

Creating reports with a Report
Wizard

Viewing reports on screen

Printing reports

Saving reports

Understanding the 11 tasks
necessary to create a great report

Creating a report from a blank
form

Sorting and grouping data

Adding label and text controls to
your report

Modifying the appearance of
text and label controls

Adding page breaks

Copying an existing report

Presenting Data with
Access Reports

13_046732 ch09.qxp 11/21/06 8:50 AM Page 297

n Tabular reports: These print data in rows and columns with groupings and totals.
Variations include summary and group/total reports.

n Columnar reports: These print data as a form and can include totals and graphs.

n Mail-merge reports: These create form letters.

n Mailing labels: These create multicolumn labels or snaked-column reports.

n Graphs: Visual representation of your data in a form such as a bar or a pie chart.

Tabular reports
Figure 9-1 is a typical tabular-type report (rptProductsSummary) displayed in print preview.
Tabular reports (also known as groups/totals reports) are similar to a table that displays data in neat
rows and columns. Tabular reports, unlike forms or datasheets, usually group data by one or more
fields. Often, tabular reports calculate and display subtotals or statistical information for numeric
fields in each group. Some reports include page totals and grand totals. You can even have multiple
snaked columns so that you can create directories (such as telephone books). These types of reports
often use page numbers, report dates, or lines and boxes to separate information. Reports may
have color and shading and display pictures, business graphs, and memo fields. A special type of
summary tabular report can have all the features of a detail tabular report but omit record details.

FIGURE 9-1

A tabular report (rptProductsSummary) displayed in Print Preview

Columnar reports
Columnar reports generally display one or more records per page, but do so vertically. Columnar
reports display data very much as a data-entry form does but are used strictly for viewing data and
not for entering data. Figure 9-2 shows part of a columnar report (rptProducts) in Print Preview.

298

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 298

FIGURE 9-2

A columnar report showing report controls distributed throughout the entire page

Another type of columnar report displays one main record per page (like a business form) but can
show many records within embedded subforms. An invoice is a typical example. This type of
report can have sections that display only one record and at the same time have sections that dis-
play multiple records from the many side of a one-to-many relationship — and even include totals.

Figure 9-3 shows an invoice report (rptInvoice) from the Access Auto Auctions database system in
Report view.

In Figure 9-3, the information in the top portion of the report is on the “main” part of the report,
whereas the product details near the bottom of the figure are contained in a subreport embedded
within the main report.

Mailing labels
Mailing labels are also a type of report. You can easily create mailing labels, shown in Figure 9-4,
using the Label Wizard to create a report in Access. The Label Wizard enables you to select from a
long list of Avery label (and other vendors) paper styles, after which Access correctly creates a
report design based on the data you specify to create your label. After the label is created, you can
open the report in Design mode and customize it as needed.

299

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 299

FIGURE 9-3

An invoice report (rptInvoice)

FIGURE 9-4

rptCustomerMailingLabels, a typical mailing-label report

Distinguishing between reports and forms
The main difference between reports and forms is the purpose of the output. Whereas forms are
primarily for data entry and interaction with the users, reports are for viewing data (either on-
screen or in hard copy form). Calculated fields can be used with forms to display an amount based
on other fields in the record. With reports, you typically perform calculations on a group of

300

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 300

records, a page of records, or all the records processed during the report. Anything you can do
with a form — except input data — can be duplicated by a report. In fact, you can save a form as a
report and then customize the form controls in the Report Design window.

Understanding the process of creating a report
Planning a report begins long before you actually create the report design. The report process
begins with your desire to view your data in a table, but in a way that differs from datasheet dis-
play. You begin with a design for this view; Access begins with raw data. The purpose of the report
is to transform the raw data into a meaningful set of information. The process of creating a report
involves several steps:

n Defining the report layout

n Assembling the data

n Creating the report design using the Access Report Design window

n Printing or viewing the report

Defining the report layout
You should begin by having a general idea of the layout of your report. You can define the layout in
your mind, on paper, or interactively using the Access Report Designer. Good reports can first be
laid out on paper, showing the controls needed and the placement of the controls. Very often, an
Access report is expected to duplicate an existing paper report used by the application’s consumers.

Assembling the data
After you have a general idea of the report layout, you should assemble the data needed for the
report. Access reports use data from two primary sources: a single database table, or a recordset pro-
duced by the query. You can join many tables in a query and use the query’s recordset as the record
source for your report. A query’s recordset appears to an Access report as if it were a single table.

As you learned earlier in this book, you specify the fields, records, and sort order of the records in
a query. Access treats this recordset data as a single table (for processing purposes) in datasheets,
forms, and reports. The recordset becomes the source of data for the report and Access processes
each record to create the report. When the report is run, Access matches data from the recordset or
table against the fields specified in the report and uses the data available at that moment to pro-
duce the report.

In this example, you use data from tblProducts to create a relatively simple tabular report.

Creating a Report with Report Wizards
Access enables you to create virtually any type of report. Some reports, however, are easier to cre-
ate than others, especially when a Report Wizard is used as a starting point. Like Form Wizards,
Report Wizards give you a basic layout for your report, which you can then customize.

301

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 301

Report Wizards simplify the layout process of your controls by visually stepping you through a
series of questions about the type of report that you want to create and then automatically creating
the report for you. In this chapter, you use Report Wizards to create tabular and columnar reports.

Creating a new report
The Access ribbon contains several commands for creating new reports for your applications. That
Create tab of the ribbon includes a grouping called Reports containing several options such as
Report, Labels, and Report Wizard. For this exercise, use the Report Wizard button to create a new
report from tblProducts. Begin by clicking the Report Wizard button in the Reports group of the
Create ribbon tab. The Report Wizard dialog opens, as shown in Figure 9-5.

FIGURE 9-5

The first screen of the Report Wizard after selecting a data source and fields

In Figure 9-5, tblProducts has been selected as the data source for the new report. Under the data
source selection drop-down list is a list of available fields. Clicking on a field in this list and press-
ing the right pointing arrow moves the field from the Available Fields list to the Selected Field list,
adding it to the report. For this exercise, select Product ID, Description, QtyInStock, RetailPrice,
and SalePrice.

Double-click any field in the Available Fields list to add it to the Selected Fields list. You
can also double-click any field in the Selected Fields list to remove it from the box.

Access then moves the field back to the Available Fields list.

You are limited to selecting fields from the original record source you started with. You can select
fields from other tables or queries by using the Tables/Queries drop-down list in the Report
Wizard. As long as you have specified valid relationships so that Access properly links the data,
these fields are added to your original selection and you use them on the report. If you choose

TIPTIP

302

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 302

fields from unrelated tables, a dialog box asks you to edit the relationship and join the tables. Or,
you can return to the Report Wizard and remove the fields.

After you have selected your data, click the Next button to go to the next wizard dialog box.

Selecting the grouping levels
The next dialog box enables you to choose which field(s) to use for grouping data. Figure 9-6
shows the Category field selected as the data grouping field for the report. The field selected for
grouping determines how data appears on the report, and the grouping fields appear as group
headers and footers in the report. Groups are most often used to combine data that are logically
related. For instance, you may choose to group on CustomerID so that each customer’s sales his-
tory appears as a group on the report. You use the report’s group headers and footers to display the
customer name and any other information specific to each customer.

The Report Wizard lets you specify as many as four group fields for your report. You use the
Priority buttons to change the grouping order on the report. The order you select for the group
fields is the order of the grouping hierarchy.

Select the Category field as the grouping field and click (>) to specify a grouping based on category
values. Notice that the picture changes to show Category as a grouping field, as shown in Figure
9-6. Each of the other fields (ProductID, Description, QtyInStock, RetailPrice, and SalesPrice)
selected for the report will appear within the Category groups.

FIGURE 9-6

Specifying the report’s grouping

303

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 303

Defining the group data
After you select the group field(s), click the Grouping Options button at the bottom of the dialog
box to display another dialog box, which enables you to further define how your report uses the
group field.

For instance, you can choose to group by only the first character of a field chosen for grouping.
This means that all records with the same first character in the grouping field are included as a sin-
gle group. If you group a customers table by the CustomerName, and specify to group on the first
character of the CustomerName field, a group header and footer appears for the set of all cus-
tomers whose name begins with the same character. There would be a group for all records with a
CustomerName beginning with the letter A, another group for all records with CustomerName
beginning with the letter B, and so on.

The Grouping Options dialog box, which is displayed when you click the Grouping Options but-
ton in the lower-left corner of the Report Wizard screen, enables you to further define the group-
ing. This selection can vary in importance, depending on the data type.

The Grouping intervals list box displays different values for the various data types:

n Text: Normal, 1st Letter, 2 Initial Letters, 3 Initial Letters, 4 Initial Letters, 5 Initial letters

n Numeric: Normal, 10s, 50s, 100s, 500s, 1000s, 5000s, 10000s, 50000s, 100000s.

n Date: Normal, Year, Quarter, Month, Week, Day, Hour, Minute.

Normal means that the grouping is on the entire field. In this example, use the entire Customer
Name field.

In this example, the default text-field grouping option of Normal is acceptable.

If you displayed the Grouping Options dialog box, click the OK button to return to the Grouping
levels dialog box.

Click the Next button to move to the Sort order dialog box.

Selecting the sort order
By default, Access automatically sorts the grouped records in an order that helps the grouping
make sense. For instance, after you have chosen the Customer Name field to group customer
records, Access arranges the groups in alphabetical order by the CustomerName. However, for
your purposes, it may be useful to specify a sort within each group. As an example, your users may
want to see the customer records sorted by Order Date in descending order so that the newest
orders appear near the top of for each customer group.

In our example, Access sorts data by the Category field. As Figure 9-7 shows, the data is also
sorted by Description within each group.

The sort fields are selected by the same method you use for grouping fields in the report. You can
select fields that you have not already chosen to group and use these as sorting fields. The fields

304

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 304

chosen in this dialog box do not affect grouping. Instead, they affect only the sorting order in the
Detail section fields. You select ascending or descending sort by clicking the button to the right of
each sort field.

FIGURE 9-7

Selecting the field sorting order

Selecting summary options
At the bottom of the sorting dialog box is a Summary Options button. Clicking this button dis-
plays the dialog box shown in Figure 9-8. This dialog box provides additional display options for
numeric fields. As you can see in Figure 9-8, all of the numeric and currency fields are displayed
and specified to be summed. Additionally, you can display averages, minimums, and maximums.

FIGURE 9-8

Selecting the summary options

305

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 305

You can also decide whether to show or hide the data in the Detail section. If you select Detail and
Summary, the report shows the detail data, whereas selecting Summary Only hides the Detail sec-
tion and shows only totals in the report.

Finally, checking the Calculate percent of total for sums box adds the percentage of the entire
report that the total represents below the total in the group footer. If, for example, you have three
products and their totals are 15, 25, and 10, respectively, 30%, 50%, and 20% shows below their
total (that is, 50) — indicating the percentage of the total sum (100%) represented by their sum.

Clicking the OK button in this dialog box returns you to the Sorting dialog box. There you can
click the Next button to move to the next wizard dialog box.

Selecting the layout
Two more dialog boxes affect the look of your report. The first (shown in Figure 9-9) enables you
to determine the basic layout of the data. The Layout area provides six layout choices that tell
Access whether to repeat the column headers, indent each grouping, and add lines or boxes
between the detail lines. As you select each option, the picture on the left changes to show how the
choice affects the report’s appearance.

You choose between Portrait (up-and-down) and Landscape (across-the-page) layout for the report
in the Orientation area. Finally, the Adjust the field width so all fields fit on a page check box
enables you to cram a lot of data into a little area. (A magnifying glass may be necessary!)

For this example, choose Stepped and Landscape, as shown in Figure 9-9. Then click the Next
button to move to the next dialog box.

FIGURE 9-9

Selecting the page layout

306

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 306

Choosing the style
After you choose the layout, select the style of your report from the dialog shown in Figure 9-10.
Each style has different background shadings, font size, typeface, and other formatting. As each is
selected, the picture on the left changes to show a preview. For this example, choose Opulent.
Finally, click the Next button to move to the last dialog box.

FIGURE 9-10

Choosing the style of your report

You can customize the styles, or add your own with the AutoFormat option in the
Arrange tab of the Access ribbon with a report open in Design view.

Opening the report design
The final Report Wizard dialog box contains a checkered flag, which lets you know that you’re at
the finish line. The first part of the dialog box enables you to enter a title for the report. This title
appears only once, at the very beginning of the report, not at the top of each page. The report title
also serves as the new report’s name. The default titles is the name of the table or query you ini-
tially specified as the report’s data source. The report just created in Chapter09.accdb is named
rptProducts_Wizard.

Next, choose one of the option buttons at the bottom of the dialog box:

n Preview the report

n Modify the report’s design

For this example, leave the default selection intact to preview the report. Clicking the Finish but-
ton displays the report in Report view. Click Finish to complete the Report Wizard and view the
report (see Figure 9-11).

TIPTIP

307

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/27/06 4:42 PM Page 307

FIGURE 9-11

rptProducts_Wizard displayed in Report View

Report view provides an overall view of the report, but it does not show the margins, page num-
bering, and how the report will look when printed on a piece of paper. To get a good idea of how a
report will look when printed, right-click the report’s title bar and select Print Preview from the
shortcut menu that appears.

Using the Print Preview window
Figure 9-12 shows the Print Preview window in a zoomed view of rptProducts_Wizard. This view
displays your report with the actual fonts, shading, lines, boxes, and data that will be on the
printed report. Clicking the left mouse button changes the view to a page preview that shows the
entire page.

The Access ribbon transforms to display controls relevant to viewing and printing the report. The
Print Preview tab of the Access ribbon includes controls for adjusting the size, page orientation
(Portrait or Landscape), and other viewing options. The Print Preview tab also includes a handy
Print button for printing the report.

You can move around the page by using the horizontal and vertical scrollbars. Use the Page con-
trols (at the bottom-left corner of the window) to move from page to page. These controls include
VCR-like navigation buttons to move from page to page or to the first or last page of the report.
You can also go to a specific page of the report by entering a value in the text box between the pre-
vious and next controls.

Right-clicking on the report and selecting the Multiple Pages option lets you view more than one
page of the report in a single view. Figure 9-13 shows a view of the report in the Print Preview’s
multipage mode. Use the navigation buttons (in the lower-left section of the Print Preview window)
to move between pages, just as you would to move between records in a datasheet. The Print
Preview window has a toolbar with commonly used printing commands.

308

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 308

FIGURE 9-12

Displaying rptReport_Wizard in the zoomed preview mode

FIGURE 9-13

Displaying multiple pages of a report in Print Preview’s page preview mode

If, after examining the preview, you are satisfied with the report, click the Printer button on the
toolbar to print the report. If you are dissatisfied, select the Close button to switch to the Report
Design window and make further changes.

309

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 309

Viewing the Report Design window
Right-clicking the report’s title bar and selecting Design View opens the Access Report Designer on
the report. As shown in Figure 9-14, the report design reflects the choices you made using the
Report Wizard.

FIGURE 9-14

The Report Design window

Return to the Print Preview mode by selecting the Print Preview button on the Report Design tool-
bar or by selecting the Print Preview option from the File menu. You can also select Print or Page
Setup from the File menu. This menu also provides options for saving your report.

Printing a Report
There are several ways to print your report:

n Click the Print button in the Print Preview tab of the Access ribbon.

n Click File ➪ Print in the main Access window (with a report highlighted and the
Navigation Pane).

Selecting File ➪ Print opens the standard Windows Print dialog box. You use this dialog to select
the print range, number of copies, and print properties.

Clicking the Print button in the Access ribbon immediately sends the report to the default printer
without displaying a Print dialog box.

310

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 310

Saving the Report
Save the report design at any time by selecting File ➪ Save, File ➪ Save As, or File ➪ Export from
the Report Design window, or by clicking the Save button on the Quick Access Toolbar. The first
time you save a report (or any time you select Save As or Export), a dialog box enables you to
select or type a name.

Starting with a Blank Form
Previous chapters about forms introduced you to all the tools available in the Report Design win-
dow. When you create reports, you use some of these tools in a slightly different manner from the
way you used them to create forms. Therefore, it is important to review some of the unique report
menus and toolbar buttons.

You can view a report in four different views: Design, Report, Layout, and Print Preview. You can
also print a report to the default Windows printer. You have already seen various preview windows
in previous chapters. This chapter focuses on the Report Design window.

Layout view
The Report Design window is one place where you create and modify reports. You began working
with a new report by selecting a table or query to serve as the new report’s data source; then you
click the Blank Report button in the Create tab of the main Access ribbon. The new report appears
in Layout view as shown in Figure 9-15.

FIGURE 9-15

Layout view of a new report based on tblProducts

311

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 311

The ability to change a report’s design in Layout view is a new feature of Access 2007. The main
advantage of Layout view is that you can see the relative positions of the controls on the report’s
surface, as well as the margins, page headers and footers, and other report details.

The main constraint of Layout view is that you cannot make fine adjustments to a report’s design
unless you put the report in Design view. Layout view is primarily intended to allow you to adjust the
relative positions of controls on the report. For instance, the icon that appears in the upper-left corner
of the report shown in Figure 9-15 can be deleted by clicking on the icon and pressing the Delete
button, or moved to another location by dragging it to a better location on the report’s surface.

While in Layout view, you can also right-click any control and select Properties from the shortcut
menu. The Property Sheet allows you to modify the default settings for the selected control.

Figure 9-16 shows the Access ribbon while a report is open in Layout view. Not surprisingly, the
options on the ribbon are mostly involved with adjusting the appearance of the controls on the
report.

FIGURE 9-16

The Access ribbon while a report is open in Layout view

In Figure 9-16 notice that you cannot adjust the fine details of a control, such as its height or
width, but you can adjust the font used for the control, the font size, the BackColor, and the
ForeColor of a report control. To adjust a control’s height and width, click on the control and drag
its margins to the new height or width.

Report Design view
As an alternative to the Layout view, you may choose to use the more traditional Report Design
view, which gives you a high level of control over the controls on a report, as well as the report
itself. Right-click the report in Layout view, and select Design view from the shortcut menu to open
the report in the traditional Access Report Designer (see Figure 9-17).

312

Access Building BlocksPart I

13_046732 ch09.qxp 11/27/06 4:42 PM Page 312

FIGURE 9-17

The new report open in Report Design view

The Report Design ribbon is shown in Figure 9-18. Notice how much more complex the ribbon is
when the report is in Design view than when it is open in Layout view. You have many more
options for influencing how a report looks on the printed page in Design view than in Layout view.

FIGURE 9-18

The Report Design ribbon

Banded Report Writer Concepts
In a report, your data is processed one record at a time. Depending on how you create your report
design, each data item is processed differently. Reports are divided into sections, known as bands
in most report-writing software packages. (In Access, these are simply called sections.) Access
processes each record in the underlying data set, processing each section in order and deciding (for
each record) whether to process fields or text in that section. For example, the report footer section
is processed only after the last record is processed in the recordset.

In Figure 9-19 (rptProductsSummary) notice that the data on the report is grouped by
ProductCategory (Minivans, Motor Homes, and so on). Each group has a group header containing
the category name (The first category in this example is Minivans.) Each group also has a footer
displaying summary information for the category. In Figure 9-19, the total profit is $17,063 on
total sales of $93,063. The page header contains column descriptions (Product ID, Description, and
so on), whereas the report header contains the report title (Products Summary). Finally, the report
footer contains grand totals for the report, and the page footer shows the page number.

313

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/27/06 4:42 PM Page 313

FIGURE 9-19

rptProductsSummary, a grouped report containing summary data

The following Access sections are available:

n Report header: Prints only at the beginning of the report; used for title page.

n Page header: Prints at the top of each page.

n Group header: Prints before the first record of a group is processed.

n Detail: Prints each record in the table or recordset.

n Group footer: Prints after the last record of a group is processed.

n Page Footer: Prints at the bottom of each page.

n Report footer: Prints only at the end of a report after all records are processed.

The Report Designer sections
Figure 9-20 shows rptProductSummary open in Design view. As you can see, the report is divided
into seven sections. The group section displays data grouped by categories, so you see the sections
Category Header and Category Footer. Each of the other sections is also named for the type of pro-
cessing it performs.

You can place any type of text or text box controls in any section, but Access processes the data
one record at a time. It also takes certain actions (based on the values of the group fields, the loca-
tion of the page, or placement in the report) to make the bands or sections active. The example in
Figure 9-20 is typical of a report with multiple sections. As you learned, each section in the report
has a different purpose and different triggers.

314

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 314

FIGURE 9-20

The Report Design window

Page and report headers and footers are added as pairs. To add one without the other,
resize the section you don’t want to a height of zero or set its Visible property to No.

If you remove a header or footer section, you also lose the controls in those sections.

The Report Header section
Controls in the Report Header section are printed only once at the beginning of the report. A com-
mon use of a Report Header section is as a cover page or a cover letter or for information that
needs to be communicated only once to the user of the report.

You can also have controls in the Report Header section print on a separate page, which enables
you to create a title page and include a graphic or picture in the section. There is a Force New Page
property in the Report Header section that can be set to After Section that will place the informa-
tion in the report header into a separate page.

In Figure 9-20 the Report Header section is not used. Notice that the Report Header’s height is
zero.

Only data from the first record can be placed in a report header.

The Page Header section
Text or text box controls in the Page Header section normally print at the top of every page. If a
report header on the first page is not on a page of its own, the information in the Page Header sec-
tion prints just below the report header information on the first page. Typically, page headers serve
as column headers in group/total reports; they can also contain a title for the report. In this exam-
ple, placing the Products Summary report title in the Page Header section means that the title
appears on every page.

NOTENOTE

CAUTION CAUTION

NOTENOTE

315

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 315

The page header section shown in Figure 9-20 contains horizontal lines above and below the
label controls. Each label control can be moved or sized individually. You can also change special
effects (such as color, shading, borders, line thickness, font type, and font size) for each control.

Both the Page Header and Page Footer sections can be set to one of four settings (found in the
Report’s properties, not the section properties):

n All Pages: The page header and page footer print on every page.

n Not with Report Header: Neither the page header nor footer prints on a page with the
report header.

n Not with Report Footer: The page header does not print with the report footer. The
report footer prints on a new page.

n Not with Report Header/Footer: Neither the page header nor the footer prints on a page
with the report header or footer.

The Group Header section
A Group Header section normally displays the name of the group, such as “Minivans” or “Motor
Homes.” Access knows when all the records in a group have been displayed in a Detail section
when the group name changes. In this example, the detail records are all about individual prod-
ucts. The Category control in the Category Header tells you that the products within the group
belong to the indicated category (Minivan or Motor Home). Group headers immediately precede
Detail sections.

It is possible to have multiple levels of group headers and footers. In this report, for example, the
data is only for categories. However, in some reports you might have groups of information with
date values. You could group your sections by year or month and year, and within those sections
by another group such as category.

To set group-level properties such as Group On, Group Interval, Keep Together, or
something other than the default, you must first set the Group Header and Group

Footer property (or both) to Yes for the selected field or expression. You learn about these later in the
chapter.

The Detail section
The Detail section processes every record in the data and is where each value is printed. The Detail
section frequently contains a calculated field such as profit that is the result of a mathematical
expression. In this example, the Detail section simply displays information from the tblProduct
table except for the last control. The profit is calculated by subtracting the cost from the SalePrice.

You can tell Access whether you want to display a section in the report by changing the
section’s Visible property in the Report Design window. Turning off the display of the

Detail section (or by excluding selected group sections) displays a summary report with no detail or
with only certain groups displayed.

TIPTIP

NOTENOTE

316

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 316

The Group Footer section
You use the Group Footer section to calculate summaries for all the detail records in a group. In the
Products Summary report, the expression = Sum([SalePrice] - [Cost]) adds a value calcu-
lated from all of the records within a category. In the Minivans group, this expression sums seven
records. The value of this text box control is automatically reset to 0 every time the group changes.
(You learn more about expressions and summary text boxes in later chapters.)

You can change the way summaries are calculated by changing the Running Sum prop-
erty of the text box in the Report Design window.

The Page Footer section
The Page Footer section usually contains page numbers or control totals. In very large reports, such
as when you have multiple pages of detail records with no summaries, you may want page totals as
well as group totals. For the Products Summary Report, the page number is printed by combining
the text page, and built-in page number controls. These controls show Page x of y where x is the
current page number and y is the total number of pages in the report. A text box control with the
following expression in the Control Source property can be used to display page number informa-
tion that keeps track of the page number in the report:

=”Page: “ & [Page] & “ of “ & [Pages]

You can also print the date and the time printed. You can see the page number text box in the Page
Footer section in Figure 9-20. The Page Footer in rptProductsSummary also contains the current
date and time.

The Report Footer section
The Report Footer section is printed once at the end of the report after all the detail records and
group footer sections are printed. Report footers typically display grand totals or other statistics
(such as averages or percentages) for the entire report. The report footer for the Products Summary
report uses the expression = Sum with each of the numeric fields to sum the amounts.

When there is a report footer, the Page Footer section is printed after the report footer.

The Report Writer in Access is a two-pass report writer, capable of preprocessing all records to cal-
culate the totals (such as percentages) needed for statistical reporting. This capability enables you
to create expressions that calculate percentages as Access processes those records that require fore-
knowledge of the grand total.

Creating a Report from Scratch
Fundamental to all reports is the concept that a report is another way to view the records in one or
more tables. It is important to understand that a report is bound to either a single table or a query
that brings together data from one or more tables. When you create a report, you must select

NOTENOTE

TIPTIP

317

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 317

which fields from the query or table you want to see in your report. Unless you want to view all
the records from a single table, bind your report to a query. Even if you are accessing data from a
single table, using a query lets you create your report on the basis of a particular search criterion
and sorting order. If you want to access data from multiple tables, you have almost no choice but
to bind your report to a query. In the examples in this chapter, all the reports are bound to a query
(even though it is possible to bind a report to a table).

Access lets you create a report without first binding it to a table or query, but you will
have no controls on the report. This capability can be used to work out page templates

with common text headers or footers such as page numbering or the date and time, which can serve
as models for other reports. You can add controls later by changing the underlying control source of
the report.

Throughout the rest of this chapter, you learn the tasks necessary to create the Products Display
Report (a part of the first page is shown in Figure 9-21). In these sections, you design the basic
report, assemble the data, and place the data in the proper positions.

FIGURE 9-21

The Products Summary report

As with almost every task in Access, there are many ways to create a report without wizards. It is
important, however, to follow some type of methodology, because creating a good report involves a
fairly scientific approach. You should create a check list that is a set of tasks that will result in a
good report every time. As you complete each task, check it off your list. When you are done, you
will have a great-looking report. The following section outlines this approach.

NOTENOTE

318

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 318

Creating a new report and binding it to a query
The first step is to create a new, empty report and bind it to tblProducts. Creating a blank report is
quite easy:

1. Select the Create tab of the main Access ribbon.

2. Click the Blank Report button in the Reports ribbon group.

Access opens a blank report in Layout view, and positions a Field List dialog on top of the
new report (see Figure 9-22).

FIGURE 9-22

A blank report in Layout view

At this point, you have two different paths for adding controls to the report: continue working in
Layout view, or switch to Design view. Each of these techniques has advantages over the other, but
for the purposes of this exercise we’ll use the Design view because it better demonstrates the
process of building Access reports.

Right-click the report’s title bar, and select Design view from the shortcut menu. The Report win-
dow transforms to the traditional Access banded Report Designer, as shown in Figure 9-23. This
figure also shows the Field List open on tblProducts, allowing you to track fields from the list to
the appropriate section on the new report.

319

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 319

FIGURE 9-23

Building the new report in Design view

In Figure 9-23, the Description field has been dragged onto the Detail section of the report.

Defining the report page size and layout
As you plan your report, consider the page-layout characteristics as well as the kind of paper and
printer you want to use for the output. As you make these decisions, you use several dialog boxes
and properties to make adjustments. These specifications work together to create the desired output.

Click the Page Setup tab in the Access ribbon to select the report’s margins, orientation, and other
overall characteristics. Figure 9-24 shows a portion of the Access screen with the Page Setup tab
selected, and the Margins option open.

FIGURE 9-24

The Page Setup dialog box showing the Page tab

320

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 320

Notice that the Page Setup tab contains options for setting the paper size, the report’s orientation
(Portrait or Landscape), its margins, and other details. Dropping down either the Size or Margins
option reveals a tab containing common settings for each of these options.

rptProductDisplay is to be a portrait report, which is taller than it is wide. You want to print on let-
ter size paper (81⁄2 x 11 inches), and you want the left, right, top, and bottom margins all set to
0.25 inches. In Figure 9-24 notice that the Narrow margins option is selected, which specifies
exactly 0.25 inches for all four margin settings.

If the margins you need for your particular report are not shown in the margins tab, click the small
button in the lower-right corner of the page layout group to open the common Windows Page
Setup dialog. This dialog enables you to specify the margins, orientation, and other page layout
specifications as you would in Microsoft Word or any other Windows application.

To set the right border for the Product Display report to 7 1/2 inches, follow these steps:

1. Click the right edge of the report body (where the white page meets the gray
background).

The mouse pointer changes to a double-headed arrow.

2. Drag the edge to the 71⁄2-inch mark.

If the ruler is not displayed in the Report Designer, select the Arrange tab, move to the
Show/Hide group, and click the ruler icon.

You can also change the Width property in the Property window for the report.

If you run your report and every other page is blank, it is a sign that the width of your
report exceeds the width of your page. To fix this problem, decrease your left and right

margin size or reduce the report’s width. Sometimes, when you move controls around, you acciden-
tally make the report width larger than you originally intended. For example, in a portrait report, if
your left margin + report width + right margin is greater than 81⁄2 inches, you will see blank pages.

Placing controls on the report
Access takes full advantage of drag-and-drop capabilities of Windows. The method for placing con-
trols on a report is no exception:

1. Click the Add Existing Fields button in the Tools group of the Design ribbon tab.

The Field List window appears.

2. Click the desired Toolbox control to determine the type of control to create if they
are to be different from the default control types for the fields.

3. Select each field that you want on your report and then drag them to the appropri-
ate section of the Report Design window.

TIPTIP

NOTENOTE

321

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/27/06 4:42 PM Page 321

Select multiple fields by holding down the Ctrl key as you click on fields in the Field List.
Depending on whether you choose one or several fields, the mouse pointer changes
shape to represent your selection as you drag fields on to the report.

The fields appear in the detail section of the report, as shown in Figure 9-25. Notice that
for each field you dragged onto the report, there are two controls. When you use the
drag-and-drop method of placing fields, Access automatically creates a label control with
the field name attached to the Text control to which the field is bound.

FIGURE 9-25

The report with several fields added

Notice the Bound Object Frame control for the field named Picture. Access always cre-
ates a Bound Object Frame control for an OLE-type object found in a table. Also notice

that the Detail section automatically resizes itself to fit all the controls. Above the Bound Object
Frame control is the control for the memo field Features.

Controls are needed for the customer information in the page header section. Before you do this,
however, you must resize the page header to leave room for a title you will add later.

Resizing a section
To make room on the report for the title information in the page header, you must resize it. You
resize by using the mouse to drag the bottom of the section you want to resize. The mouse pointer
turns into a vertical double-headed arrow as it is positioned over the bottom of a report section.
Simply drag the section border up or down to make the section smaller or larger.

NOTENOTE

322

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 322

Resize the Page Header section to make it about 3/4-inches high by dragging the bottom margin of
the page header downwards. Use the Controls group on the Design ribbon tab to drag labels to the
report. Add two labels to the Page Header, and enter Product Display as the Caption property of
one label, and Access Auto Auctions to the other.

The labels you just added are unattached; they are not related to any other controls on the report.
When you drag a field from the Field List Access adds not only a text box to contain the field’s
data, but also a label to provide an identifier for the text box. Labels that you drag from the
Controls group on the Access ribbon are unattached and are not related to text boxes or any other
control on the report.

You may notice the Page Header section expanding to accommodate the label controls that you
dragged into the section. All the fields needed for the Product Display report are now placed in
their appropriate sections.

To create a multiple-line label entry, press Ctrl+Enter to force a line break where you
want it in the control.

If you enter a caption that is longer than the space in the Property window, the contents
scroll as you type. Otherwise, open a Zoom box that gives you more space to type by

pressing Shift+F2.

Modifying the appearance of text in a control
To modify the appearance of the text in a control, select the control by clicking its border (not in
the control itself). You can then select a formatting style to apply to the label by clicking the appro-
priate button on the Formatting toolbar.

To make the titles stand out, follow these steps to modify the appearance of label text:

1. Click the newly created report heading label Product Display.

2. Click the Bold button in Font group on the ribbon.

3. Click the arrow beside the FontSize drop-down box and select 18 from the drop-
down list.

4. Repeat for the Access Auto Auctions label, using a 12 pt font and Bold.

The size of the labels may not fit their displayed text. To tighten the display or to display
all the text when a label isn’t big enough, double-click any of the sizing handles, and
Access chooses an appropriate size for the label.

Figure 9-26 shows these labels added, resized, and formatted in the report’s Page Header
section.

TIPTIP

TIPTIP

323

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 323

FIGURE 9-26

Adding unbound labels to the report

Working with text boxes and their attached label
controls
So far, you added controls bound to fields in the tables and unbound label controls used to display
titles in your report. There is another type of text box control that is typically added to a report:
unbound text boxes that are used to hold expressions such as page numbers, dates, or a calculation.

Adding and using text box controls
In reports, text box controls serve two purposes. First, they enable you to display stored data from
a particular field in a query or table. Second, they display the result of an expression. Expressions
can be calculations that use other controls as their operands, calculations that use Access functions
(either built-in or user-defined), or a combination of the two. You learned how to use a text box
control to display data from a field and how to create that control.

Entering an expression in a text control
Expressions enable you to create a value that is not already in a table or query. They can range from
simple functions (such as a page number) to complex mathematical computations.

Chapter 5 discusses expressions in greater detail.

A function is a small program that, when run, returns a single value. The function can be one of
many built-in Access functions or it can be user-defined. For example, earlier in this chapter you
saw the Now() function used to return the current date and time for a text box located in a report’s
page footer. The following steps show you how to use an unbound text box to add a page number
to your report:

1. Click in the middle of the Page Footer section, resize the page footer so that it is a
1⁄2 inch in height

2. Drag a text box control from the Controls group on the Design ribbon tab and drop
it into the Page Footer area. Make the text box about three-quarters of the height of
the Page Footer section and about 1⁄2-inch wide.

CROSS-REFCROSS-REF

324

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 324

3. Select the text box’s attached label and change its contents to say Page:.

4. Select the text box control (it says “Unbound”) and enter = Page directly into the
text box.

Alternatively, you could open the Property sheet (press F4) and enter = [Page] as the text
box’s ControlSource property.

5. Drag the new text box control until it is near the right edge of the report’s page (see
Figure 9-27).

You may want to also move the text box’s label so that it is positioned close to the text
box. The upper-left handle on the label moves the label independently of the text box.

FIGURE 9-27

Adding a page-number expression in a text box control

You can always check your result by clicking the Print Preview button on the toolbar
and zooming in on the Page Footer section to check the page number.

Sizing a text box control or label control
You select a control by clicking it. Depending on the size of the control, from three to seven sizing
handles appear — one on each corner except the upper-left corner and one on each side. Moving
the mouse pointer over one of the sizing handles changes the mouse pointer to a double-headed
arrow. When the pointer changes, click the control and drag it to the size you want. Notice that, as
you drag, an outline appears indicating the size the label control will be when you release the
mouse button.

If you double-click any of the sizing handles, Access resizes a control to best fit for text in the con-
trol. This feature is especially handy if you increase the font size and then notice that the text no
longer fits the control.

Note that, for label controls, the best-fit sizing resizes both vertically and horizontally, although text
controls resize only vertically. The reason for this difference is that in Report Design mode, Access
doesn’t know how much of a field’s data you want to display. Later on, the field’s name and con-
tents might be radically different. Sometimes label controls are not resized correctly, however, and
have to be adjusted manually.

You can also select Format ➪ Size ➪ To Fit to change the size of the label control text
automatically.TIPTIP

TIPTIP

325

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 325

Before continuing, you should check how the report is progressing. You should also save the report
frequently as you make changes to it. You could send a single page to the printer, but is probably
easier to view the report in Print Preview. Right-click the report’s title bar, and select Print Preview
from the shortcut menu. Figure 9-28 shows a zoomed print preview of the report’s current appear-
ance. The page header information is at the very top of the page, and the first product record
appears below the header.

FIGURE 9-28

A print preview of the report

As you move the mouse over the print preview, the cursor changes to a magnifying glass. Click any
portion of the view to zoom in so that can closely examine the report’s layout. Only one record per
page appears on the report because of the vertical layout. In the next section, you move the con-
trols around and create a more horizontal layout.

Deleting and cutting attached labels from text controls
To create the report shown in Figure 9-19, you must move the text box labels from the Detail sec-
tion to the Page Header section. Once moved, these controls appear as headings above each col-
umn of data and are repeated on each page of the report.

It’s easy to delete one or more attached controls in a report. Simply select the desired controls and
press Delete. However, if you want to move the label to the Page Header section (rather than simply

326

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 326

deleting it), you can cut the label instead of deleting it. When removing attached controls, there are
two choices:

n Delete only the label control.

n Cut the label control to the Clipboard.

n Delete or cut the label and the text box control.

Oddly enough, you cannot simply drag a label from the Detail section to the page header. Dragging
an attached label from the Detail section drags its text box along with it. You must cut the label
from the Detail section and paste it into the page header.

If you select the label control and cut it by pressing Ctrl+X or the Delete key, only the label control
is removed. If you select the text box control and cut or delete it, the label and the text box con-
trols are removed. To cut an attached label control (in this case, the Product ID controls and their
attached label), follow these steps:

1. Click the Close button on the toolbar to exit Print Preview mode.

2. Select the Product ID label control only in the Detail section.

3. Press Ctrl+X (Cut).

After you have cut the label, you may want to place it somewhere else. In this example,
place it in the Page Header section.

Pasting labels into a report section
It is as easy to cut labels from controls placed in the Detail section and paste them into the page
header as it is to delete the labels and create new ones in the page header. Regardless, you now
paste the label you cut in the previous steps:

1. Click anywhere in or on the Page Header section.

2. Press Ctrl+V (Paste).

The Product ID label appears in the page header.

3. Repeat for the Description, Category, and Quantity in Stock labels.

4. Delete the remaining label controls in the Detail section, leaving all the text box
controls.

If you accidentally selected the data text box control and both controls are cut or deleted,
click the Undo toolbar button, or press Ctrl+Z, to undo the action.

If you want to delete only the text box control and keep the attached label control,
right-click the label control and then select Copy from the shortcut menu. Next, to

delete the text box control and the label control, press the Delete key. Finally, right-click anywhere on
the form and select Paste from the shortcut menu to paste only the copied label control to the report.

TIPTIP

327

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 327

Moving label and text controls
Before discussing how to move label and text controls, it is important to review a few differences
between attached and unattached controls. When an attached label is created automatically with a
text control, it is called a compound control. In a compound control, whenever one control in the set
is moved, the other control moves along with it. This means that, moving either the label or the
text box also moves the related control.

To move both controls in a compound control, select either of the pair of controls with the mouse.
As you move the mouse pointer over either of the objects the pointer turns into a hand. Click the
controls and drag them to their new location. As you drag, an outline for the compound control
moves with your pointer.

To move only one of the controls in a compound control, drag the desired control by its move han-
dle (the large square in the upper-left corner of the control). When you click a compound control,
it looks like both controls are selected, but if you look closely, you see that only one of the two
controls is selected (as indicated by the presence of both moving and sizing handles). The unse-
lected control displays only a moving handle. A pointing finger indicates that you have selected the
move handles and can now move only one control. To move either control individually, select the
control’s move handle and drag it to its new location.

To move a label that is not attached, simply click any border (except where there is a
handle) and drag it.

To make a group selection, click with the mouse pointer anywhere outside a starting point and
drag the pointer through (or around) the controls you want to select. A gray, outlined rectangle
appears, showing the extent of the selection. When you release the mouse button, all controls the
rectangle surrounds are selected. You can then drag the group of controls to a new location.

The global option File ➪ Access Options ➪ Object Designers ➪ Forms/Reports ➪
Selection Behavior is a property that controls the enclosure of selections. You can

enclose them fully (the rectangle must completely surround the selection) or partially (the rectangle
must touch only the control), which is the default.

Make sure you also resize all the controls as shown in the figure. Change the size and shape of the
Features memo field and the OLE picture field Picture. The OLE picture field displays as a rectan-
gle with no field name in design view. It is to the right in Figure 9-29.

Place all the controls in their proper position to complete the report layout. You the controls
arranged as shown in the example in Figure 9-29. You make a series of block moves by selecting
several controls and positioning them close to where you want them. Then, if needed, you fine-
tune their position. This is the way most reports are done.

Follow Figure 9-29 to begin placing the controls where they should be. Notice the Cost label in the
Detail section has been renamed to Cost/Retail/Sale Prices.

TIPTIP

CROSS-REFCROSS-REF

328

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 328

FIGURE 9-29

Rearranging the controls on the report

At this point, you’re about halfway done. The screen should look like the one shown in Figure
9-29. (If it doesn’t, adjust your controls until your screen matches the figure.) Remember that these
screen pictures are taken with Windows set to 1024 x 768. If you are using a lower resolution, or
have large fonts turned on the Windows Display Properties (in Control Panel), you have to scroll
the screen to see the entire report.

These steps complete the rough design for this report. There are still properties, fonts, and sizes to
change. When you make these changes, you have to move controls around again. Use the designs
in Figure 9-29 only as a guideline. How it looks to you, as you refine the look of the report in the
Report window, determines the final design.

Modifying the appearance of multiple controls
The next step is to apply bold formatting to all the label controls in the Page Header section
directly above the section separator. The following steps guide you through modifying the appear-
ance of text in multiple label controls:

1. Select all label controls in the bottom of the Page Header section by individually
clicking them while holding down the Shift key.

Alternatively, click in the vertical ruler immediately to the left of the labels in the Page
Header. There are four label controls to select, as shown in Figure 9-29.

Alternatively, you can drag a bounding box around the label controls in the page header.

2. Click the Bold button on the toolbar.

After you make the final modifications, you are finished, except for fixing the picture con-
trol. To do this, you need to change properties, which you do in the next section.

329

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 329

This may seem to be an enormous number of steps because the procedures were
designed to show you how laying out a report design can be a slow process. Remember,

however, that when you click away with the mouse, you don’t realize how many steps you are doing
as you design the report layout visually. With a WYSIWYG (What You See Is What You Get) layout like
an Access report, you may need to perform many tasks, but it’s still easier and faster than program-
ming. Figure 9-29 shows the final version of the design layout as seen in this chapter. In the next
chapter, you continue to improve this report layout.

Changing label and text box control properties
To change the properties of a text or label control, you need to display the control’s Property Sheet.
If it is not already displayed, perform one of these actions to display it:

n Double-click the border of the control (anywhere except a sizing handle or move handle).

n Press F4.

n Right-click the mouse and select Properties.

The Property Sheet enables you to look at a control’s property settings and provides an easy way to
edit them. Using tools, such as the formatting windows and text-formatting buttons, on the Design
ribbon also changes the property settings of a control. Clicking the Bold button, for example, sets
the control’s Font Weight property to Bold. It is usually easier and more intuitive to use the con-
trols on the Design ribbon, but some properties are not accessible this way. In addition, sometimes
objects have more options available through the Property Sheet.

The Size Mode property of an OLE object (bound object frame), with its options of Clip, Stretch,
and Zoom, is a good example of a property that is available only through the Property Sheet.

The image control, which is a bound object frame, presently has its Size Mode property set to Clip,
which is the default. With Clip, the picture is displayed in its original size and may be too large to
fit in the frame. In this exercise, you change the setting to Stretch so that the picture is sized auto-
matically to fit the picture frame.

Chapter 24 covers the use of pictures, OLE objects, and graphs.

Follow these steps to change the property for the bound object frame control that contains the picture:

1. Click the frame control of the picture bound object.

2. Click the Size Mode property and Click the arrow to display the drop-down list box.

3. Select Stretch.

You might also consider changing the Border Style property to Transparent. When set to
Transparent, no boxes drawn around the picture on the report.

These steps complete the changes so far to your report. A print preview of the first few records
appears in Figure 9-30. If you look at the pictures, notice how the picture is properly displayed
and the Features control now appears across the bottom of the Detail section.

CROSS-REFCROSS-REF

NOTENOTE

330

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 330

FIGURE 9-30

The report displayed in print preview

Growing and shrinking text box controls
When you print or print-preview controls that can have variable text lengths, Access provides
options for enabling a control to grow or shrink vertically, depending on the exact contents of a
record. The Can Grow and Can Shrink properties determine whether a text control resizes its verti-
cal dimension to accommodate the amount of text contained in its bound field. Although these
properties are usable for any text control, they are especially helpful for text box controls.

Table 9-1 explains the acceptable values for these two properties.

TABLE 9-1

Text Control Values for Can Grow and Can Shrink

Property Value Description

Can Grow Yes If the data in a record uses more lines than the control is defined to display, the
control resizes to accommodate additional lines.

Can Grow No If the data in a record uses more lines than the control is defined to display, the
control does not resize; it truncates the data display.

Can Shrink Yes If the data in a record uses fewer lines than the control is defined to display, the
control resizes to eliminate blank lines.

Can Shrink No If the data in a record uses fewer lines than the control is defined to display, the
control does not resize to eliminate blank lines.

331

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 331

To change the Can Grow settings for a text control, follow these steps:

1. Select the Features text box control.

2. Display the Property window.

3. Click the Can Grow property; then click the arrow and select Yes.

The Can Grow and Can Shrink properties are also available for report sections. Use a
section’s Property Sheet to modify these values. Setting a report section’s Can Grow and

Can Shrink properties affects only the section, not the controls contained within the section.

The report is starting to look good, but you may want to see groups of like data together and deter-
mine specific orders of data. To do this, you use sorting and grouping.

Sorting and grouping data
You can often make the data on the report more useful to users by grouping the data in informative
ways. Suppose that you want to list your products first by category and then by description within
each category. To do this, you use the Category and Description fields to group and sort the data.

Creating a group header or footer
Grouping on a field in the report’s data adds two new sections (Group Header and Group Footer) to
the report. In the following steps, you use the group header to display the name of the product cat-
egory above each group of records. You won’t use the Category group footer in this example
because there are no totals by category or other reasons to use a group footer.

Follow these steps to create a Category group header:

1. Click the Grouping button in the Grouping and Totals group of the Design
ribbon tab.

You should see that the report’s data already sorted by Description and Category.

2. Click the Add a group button in the Group, Sort, and Total area.

3. Select Category from the field list, and Access adds Group on Category with A on
top of the Group, Sort, and Total area.

Access adds Category Header and Category Footer sections to the report’s design as soon
as you select the Category field for grouping. The Category Header section appears
between the Page Header and Detail sections. If you define a group footer, it appears
below the Detail section. If a report has multiple groupings, each subsequent group
becomes the one closest to the Detail section. The groups defined first are farthest from
the Detail section.

The Group Properties pane (displayed at the bottom of the Sorting and Grouping box) contains
these properties:

n Group Header: Yes creates a group header. No removes the group header.

NOTENOTE

332

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 332

n Group Footer: Yes creates a group footer. No removes the group footer.

n Group On: Specifies how you want the values grouped. The options you see in the drop-
down list box depend on the data type of the field on which you’re grouping. If you
group on an expression, you see all grouping options as listed below.

For Text data types, there are two choices:

n Each Value: The same value in the field or expression

n Prefix Characters: The same first n number of characters in the field

For Date/Time data types, there are additional options:

n Each Value: The same value within the field or expression

n Year: Dates within the same calendar year.

n Qtr: Dates within the same calendar quarter

n Month: Dates within the same month

n Week: Dates within the same week

n Day: Dates on the same date

n Hour: Times within the same hour

n Minute: Times within the same minute

Currency, or Number data types provide three options:

n Each Value: Includes the same value in the field or expression

n Interval: Includes values falling within the interval you specify

n Group Interval: Specifies any interval that is valid for the values in the field or expres-
sion you’re grouping on. The Group Interval has its own options:

n Keep Together: Controls widows and orphans so that you don’t have a header at the
bottom of a page without detail until the next page

n Whole Group: Prints header detail and group footer on one page

n With First Detail: Prevents the contents of the group header from printing without
any following data or records on a page

n No: Does not keep data together

Sorting data within groups
Sorting enables you to determine the order in which the records are viewed on the report, based on
the values in one or more controls. This order is important when you want to view the data in your
tables in a sequence other than that of your input. For example, new products are added to
tblProducts as they are needed on an invoice. The physical order of the database reflects the date
and time a product is added. Yet, when you think of the product list, you probably expect it to
be in alphabetical order by Product ID, and you want to sort it by Description of the cost of the

333

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 333

product. By sorting in the report itself, you don’t have to worry about the order of the data. Although
you can sort the data in the table by the primary key or in a query by any field you want, there are
good reasons to do it in the report. This way, if you change the query or table, the report is still in
the correct order.

In the case of the products report, you want to display the records in each category group sorted
by description. Follow these steps to define a sort order based on the Description field within the
Category grouping:

1. Click the Grouping button in the Design ribbon tab to display the Group, Sort and
Total area, if it is not already open.

You should see that the Category group already exists in the report.

2. Click the Add a Sort button in the Group, Sort and Total area.

3. Select Description in the field list. Notice that Sort Order defaults to Ascending.

4. Close the Group, Sort and Total area by clicking the X in the upper-right corner.

The Group, Sort and Total section should now look like Figure 9-31.

FIGURE 9-31

The Group, Sort and Total area completed

Although in this example you used a field, you can alternatively sort (and group) with an expres-
sion. To enter an expression, click the Add a sort or Add a group button in the Group, Sort and
Total area and click the Expression button at the bottom of the field list. The Expression Builder
dialog opens, enabling you to enter any valid Access expression, such as in = [RetailPrice]-
[Cost].

To change the sort order for fields in the Field/Expression column, simply click the drop-down
arrow to the right of the button with the A on top to display the Sort Order list. Select Descending
from the sort options that appear.

Removing a group header or footer
To remove a Page or Report Header/Footer section, display the Group, Sort and Total area, select
the group or sort specifier to delete, and press the Delete key.

334

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 334

Hiding a section
Access also enables you to hide headers and footers so that you can break data into groups without
having to view information about the group itself. You can also hide the Detail section so that you
see only a summary report. To hide a section, follow these steps:

1. Click the section you want to hide.

2. Display the section’s Property Sheet.

3. Click the Visible property’s text box.

4. Click the drop-down list arrow on the right side of the text box.

5. Select No from the drop-down list box.

Sections are not the only objects in a report that can be hidden; controls also have
a Visible property. This property can be useful for expressions that trigger other

expressions.

Sizing a section
Now that you have created the group header, you might want to put some controls in the section,
move some controls around, or even move controls between sections. Before you start manipulat-
ing controls within a section, you should make sure the section is the proper height.

To modify the height of a section, drag the top border of the section below it. If, for example, you
have a report with a page header, Detail section, and page footer, change the height of the Detail
section by dragging the top of the Page Footer section’s border. You can make a section larger or
smaller by dragging the bottom border of the section. For this example, change the height of the
group header section to 3⁄8 inch with these steps:

1. Move your mouse pointer to the bottom of the Category section.

The pointer changes to a horizontal line split by two vertical arrows.

2. Select the top of the detail section (which is also the bottom of the Category Header
section).

3. Drag the selected band lower until three dots appear in the vertical ruler (3⁄8").

The gray line indicates where the top of the border will be when you release the mouse
button.

4. Release the mouse button.

Moving controls between sections
You now want to move the Category control from the Detail section to the Category Header sec-
tion. You can move one or more controls between sections by simply dragging the control with
your mouse from one section to another or by cutting it from one section and pasting it to another
section. Follow these instructions to move the Category control from the Detail section to the
Category section:

NOTENOTE

335

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 335

1. Select the Category control in the Detail section.

2. Drag the Category control up to the Category Header section and drop it close to
the vertical ruler, as shown in Figure 9-32.

You should now perform the following steps to complete the report design.

3. Delete the Category label from the page header.

4. Move the ProductID control and its associated label after the Description control
and its associated label, as shown in Figure 9-30.

5. Move the Description control and its associated label to the left so that it starts just
to the right of the start of the Category control in the Category Header control.

By offsetting the first control in the Detail section slightly to the right of the start of the
control in the Group Header section, you show the hierarchy of the data presented in the
report. It now shows that each group of products is for the category listed in the group
header.

6. Lengthen the Description control so that it approaches the Product ID control.

Figure 9-32 shows this Property window and the completed report design. The Property
sheet is opened in this figure so that you can see how the Force New Page property is set
for the Category Header section.

FIGURE 9-32

Completing the Group Header section and forcing a page break before the Category
Header section

336

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 336

Adding page breaks
Access enables you to force page breaks based on groups. You can also insert forced breaks within
sections, except in Page Header and Footer sections.

In some report designs, it’s best to have each new group begin on a different page. You can achieve
this effect easily by using the Force New Page property of a group section, which enables you to
force a page break every time the group value changes.

The four Force New Page property settings are listed here:

n None: No forced page break (the default)

n Before Section: Starts printing the current section at the top of a new page every time
there is a new group

n After Section: Starts printing the next section at the top of a new page every time there is
a new group

n Before & After: Combines the effects of Before Section and After Section

To create the report you want, force a page break before the Category group with the Force New
Page property in the Category header:

1. Click anywhere in the Category header, or click the Category Header bar above the
section.

2. Display the Property Sheet.

3. Select the Force New Page property, and select Before Section from the drop-down
list in the property’s box.

Alternatively, you can set Force New Page property to After Section in the Category
Footer section.

Sometimes, you don’t want to force a page break on the basis of a grouping, but you still want to
force a page break. For example, you may want to split a report title across several pages. The solu-
tion is to use the Page Break tool from the Controls group on the ribbon. Just drag the control and
drop it on the report where you want a page break to occur every time the page prints.

Be careful not to split the data in a control. Place page breaks above or below controls;
do not overlap them.

Making the Report Presentation Quality
As you near completion of testing your report design, you should also test the printing of your
report. Figure 9-33 shows the first page of the Product Display report. There are a number of
things still to do to complete the report.

NOTENOTE

TIPTIP

337

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 337

The report is very boring, plain, and not something you want to give to anyone else. If your goal is
to just look at the data, this report is done. However, you need to do more before you are really
done.

Although the report has good, well organized data, it is not of professional quality. To make a
report more visually appealing, you generally add some lines and rectangles, possibly some special
effects such as shadows or sunken areas if you have a background on the report. You want to make
sure sections have distinct areas separate from each other using lines or color. Make sure controls
aren’t touching each other (because text may eventually touch if a value is long enough). Make sure
text is aligned with other text above or below and to the right or left.

In Figure 9-33, you can see some opportunities for professionalism.

FIGURE 9-33

The report is pretty plain and uninteresting at this point.

Adjusting the Page Header
The page header contains several large labels positioned far apart from each other. The column
headers are too small and are just hanging there. They could be made one font size larger. The
entire page header should be separated from the Detail section by a horizontal line.

If you wanted to add some color to your report, you could make the report name a different color.
Be careful not to use too many colors unless you have a specific theme in mind. Most serious busi-
ness reports use one or two colors, and rarely more than three with the exception of graphs and
charts. Furthermore, colors are not much use when printed on most laser printers. Color laser
printers are still not widely available, so adding a lot of color to your Access reports may not be
something others will recognize or appreciate.

338

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 338

Figure 9-34 shows these changes. The Product Display label has been changed to a blue back-
ground color with white foreground text. This is done by first selecting the control and then select-
ing Blue for the background. They have also been placed under each other and left aligned. The
rectangle around each of the controls was also properly sized by double-clicking each control’s siz-
ing handles.

The next step is to add a nice thick line separating the Page Header section from the Category
Group Header section:

1. Select the Line tool in the Controls ribbon group.

2. Place the mouse cursor near the far left side of the Page Header, just to the right
and above of the 1 inch mark on the vertical toolbar, as shown in Figure 9-34.

FIGURE 9-34

Adjusting controls in the page header

3. Hold down the Shift key and then hold down the left mouse button and drag the
mouse across the page header, releasing it just to the left of the 71⁄2-inch mark.

Holding down the Shift key forces a nice, straight, horizontal line.

4. Select the line and select the 2 pt line thickness from the Line Thickness icon
on the toolbar, or select the 2 pt Border Width property from the line’s Property
window.

The Line Thickness icon should be next to the Border icon on the formatting toolbar.

Creating an expression in the group header
Figure 9-34 also shows that the Category field has been replaced by an expression. If you place the
value of the category in the Group Header section, it looks out of place and may not be readily
identifiable. Most data values should have some type of label to identify what they are.

339

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 339

The expression =”Category: “ & [Category] displays Category: followed by a space and the
value of the Category field (such as Category: Cars) in the text box. The & symbol (the concatena-
tion operator) joins strings. Make sure you leave a space after the colon or the value will not be
separated from the label. The text control has been bolded, underlined, and the font point size
increased as well.

You may find that Access complains about a circular reference on the Category text box after you
change the control’s ControlSource. This happens because the name of the control is Category, and
the text box is bound to a field named Category. Access doesn’t understand that [Category] in
the expression you entered as the ControlSource actually refers to the field, not the text box. (A text
box’s value cannot be based on the text box’s contents — that’s the definition of circular reference.)

The solution is to rename the text box to distinguish it from its bound field. The logical name for
this text box is txtCategory.

When you create a bound control, it uses the name of the data field as the default con-
trol name. Using the control in an expression without changing the name of your con-

trol, causes circular references. You must rename the control to something other than the original
field name. This is another reason why a simple naming convention, such as prefixing text boxes with
txt is such a good idea. You’ll avoid a lot of nagging problems by adopting a naming convention for
the controls on your Access reports.

Follow these steps to complete the expression and rename the control:

1. Select the Category control in the Category Group Header section.

2. Display the Property window for the control.

3. Change the Control Source property to =“Category: ” & [Category].

4. Change the Name property to txtCategoryDisplay.

Changing the picture properties
and the Detail section
The Detail section is in fairly good shape. Make sure the Description control is slightly indented
from the Category expression in the Group Header. A label should be created, as shown in Figure
9-34, identifying the values in the Cost, Retail Price, and Sale Price controls.

A line is also good to add to this Detail section to separate one record from another. This is often
done when records occupy varying space within a group. Some records are shorter than others,
and the separation between records may not be obvious to users.

Because you don’t want two lines at the bottom of each page (you add a line to the Page Footer
next), you put this line at the top of the Detail section:

1. Select the Line tool in the Controls ribbon group.

2. Place the cursor near the far left side of the Detail section, just to the right and
above the 1⁄8-inch mark on the vertical toolbar, as shown in Figure 9-35.

CAUTION CAUTION

340

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 340

FIGURE 9-35

Put the cursor near the far left of the Detail section.

You may have to reposition controls in the Detail section to make room for the horizontal
line.

3. Hold down the Shift key and drag the line across the page header, releasing the
mouse button just to the left of the 71⁄2-inch mark.

4. Select the line and select 1 or 2 pt line thickness from the Line Thickness icon in
the Controls ribbon group, or select the 1 or 2 pt BorderWidth property from the
line’s Property Sheet.

Numeric data controls are right aligned by default. Because they are next to each other horizontally
and not above each other vertically, they can be left or center aligned. Although the repeating groups
of records are above each other, they are separated by a wide space and left alignment is okay.

One task to complete is to change the picture control to make the picture fit within the control and
to add a shadow to dress up the picture and give it some depth. Follow these steps to complete
these tasks:

1. Select the Picture control in the Detail section.

2. Change the control’s Size Mode property to Stretch.

3. Select Shadowed as the Special Effect property.

Creating a standard page footer
The page footer currently contains a page number control that you added earlier in this chapter.
Although Page n of m is at the bottom of the report, a date and time control would be nice as well.
Many times, you print a copy of a report and then discover some bad data. You correct the values,
print another copy, and discover you can’t tell them apart. Having a print date and time solves this
problem.

341

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 341

Follow these steps to create a date/time control:

1. Select the Text Box control in the Controls group.

2. Select the Page Footer section and add a text box near the left edge.

3. Delete the label attached to the text box.

4. Enter =Now() as the text box’s Control Source property.

This displays the current date and time when the report is run. If you use the Date()
keyword, you only get the current date and not the current time.

5. Select General Date from the control’s Format property.

6. Select Align Left from the Font ribbon group.

The print date control should be left aligned, but make sure the page number control is
right-aligned.

The last step is to move the controls down a little from the Page Footer section and add a line
between the Page Header section and these controls:

1. Select the date and page number controls and move them down 1/8 inch.

2. While they are selected, click the Italic icon on the Formatting toolbar.

3. Select the Line tool in the toolbox.

4. Draw a horizontal line above the print date and page number controls in the Page
Footer section, and adjust its width.

Your screen should look like the one shown in Figure 9-36.

FIGURE 9-36

Adjusting controls in the Detail and Page Footer sections

342

Access Building BlocksPart I

13_046732 ch09.qxp 11/21/06 8:50 AM Page 342

If every even-numbered page is blank, you accidentally widened the report past the
8-inch mark. If you move a control to brush up against the right page-margin border or

exceed it, the right page margin increases automatically. When it is past the 8-inch mark, it can’t dis-
play the entire page on one piece of paper. The blank page you get is actually the right side of the pre-
ceding page. To correct this, make sure that all your controls are within the 8-inch right margin; then
drag the right page margin back to 8 inches.

Saving your report
After all the time you spent creating your report, you’ll want to save it. It is good practice to save
your reports frequently, starting as soon as you create them. This prevents the frustration that
occurs when you lose work because of a power failure. Save the report as follows:

1. Select File ➪ Save, or click the Save button in the Quick Access toolbar in the
upper -left area of the main Access window.

If this is the first time you have saved the report, the Save As dialog box appears.

2. Type a valid Access object name. For this example, type rptProductDisplayFinal.

3. Click OK.

If you already saved your report, Access immediately saves your report.

Summary
Reports are an important and integral part of most Access applications. Very often reports are the
most important aspect of Access applications, and are seen by people who never see the Access
application running on a computer.

Access is endowed with an outstanding Report Designer. This long chapter has surveyed the wealth
of report creation tools available to the Access developer. As long as this chapter is, it has only
scratched the surface and presented the fundamental capabilities of the Access Report Designer.

In this chapter, you read about the different types of Access reports, learned how to use the Access
Report Wizard to build reports, and then created reports from scratch. You also read about the
many different ways to provide a report with data and to display data on the report. This chapter
also discussed a number of techniques for summarizing data on Access reports.

CAUTION CAUTION

343

Presenting Data with Access Reports 9

13_046732 ch09.qxp 11/21/06 8:50 AM Page 343

13_046732 ch09.qxp 11/21/06 8:50 AM Page 344

Programming
Microsoft Access

This part explains the art and science of Visual Basic for
Applications (VBA) programming. Very few professional-
quality Access applications have been written without lib-

eral use of the VBA programming language and its capabilities.
VBA provides you with powerful tools for adding capabilities and
flexibility to your applications.

VBA is a fully qualified programming language and is used in
many other Microsoft products, including all the main members
of the Microsoft Office suite (Word, Excel, and PowerPoint), in
addition to Microsoft Access.

Many user requirements simply cannot be implemented without
using VBA code. VBA code provides functionality that goes far
beyond simply opening forms and reports and controlling the
user interface. You’ll use VBA code to validate data, as well as
transform and combine data in new and interesting ways. VBA
code is used to import and export data, respond to user input,
and handle the mistakes inevitably made by users.

VBA code enables you to seamlessly integrate with the other
applications in Microsoft Office. For instance, using a surpris-
ingly small amount of code, you can implement a very powerful
mail-merge system by combining Access data with Word docu-
ment templates. (We discuss application integration in Part III of
this book, but we wanted to give you a preview of what’s com-
ing up next!)

IN THIS PART
Chapter 10
VBA Programming Fundamentals

Chapter 11
Mastering VBA Data Types and
Procedures

Chapter 12
Understanding the Access
Event Model

Chapter 13
Using Expressions in Queries and
VBA Code

Chapter 14
Accessing Data with VBA Code

Chapter 15
Using the VBA Debugging Tools

14_046732 pt02.qxp 11/21/06 8:50 AM Page 345

As you’ll see in this part, VBA is a large and somewhat complex programming language. If you aren’t
already using VBA, you’ll want to carefully read the chapters in this part and work the examples
until you’re comfortable creating VBA modules and composing programming statements.

These chapters provide you with the essential skills necessary to become comfortable writing VBA
code. You’ll learn where VBA code lives within an Access application, how to compose VBA state-
ments, and how to hook up VBA code to your forms and reports.

We can’t overemphasize how important VBA programming skills are to professional database develop-
ers. Because VBA is used in so many different platforms (Access, Word, Excel, and so on), your pro-
gramming skills are transferable to many situations beyond database development. Also, the VBA
programming language is very similar to the languages used in Microsoft Visual Studio. Quite frankly,
there is no limit to what you can accomplish with the skills you develop in learning Access VBA.

14_046732 pt02.qxp 11/21/06 8:50 AM Page 346

If you have created or worked with a simple Access application, you most
likely created the application’s operations by using macros. Although
macros provide a quick and easy way to automate an application, writing

Visual Basic for applications (VBA) modules is the best way to create applica-
tions. Using data access, repetitive looping, and branching, and adding fea-
tures that macros simply cannot provide gives you more control over
application development. In this chapter, you learn how to build an applica-
tion framework and how to extend the power of an application using VBA.

Use the database file Chapter10.accdb in this chapter.

Understanding the Limitations
of Macros
For a number of reasons, this book does not extensively cover Access macro
creation. To begin with, there are enough important topics so that we have to
choose which topics are covered in detail. Also, macros are pretty easy to
learn on your own, and they are quite well documented in the Access online
help.

But, by far, the biggest reason not to document macros is that, for the most
part, macros do not belong in professionally built applications. At the very
least, macros occupy a relatively minor position in most applications because
of their rather serious limitations. Perhaps the greatest issue with macros is
that they are guaranteed to be non-portable to other applications. You cannot
use an Access macro anywhere other than Access. VBA code, on the other

ON the CD-ROMON the CD-ROM

347

IN THIS CHAPTER
Converting macros to VBA

Using the Command Button
Wizard to create VBA code

Understanding the basics of VBA

Understanding modules

Creating a new module

Using the Module window

VBA Programming
Fundamentals

15_046732 ch10.qxp 11/21/06 8:51 AM Page 347

hand, is very portable to Word, Excel, Outlook, Visio, and even Visual Studio.NET (with changes).
Learning to build great macros is not a career-booster the way that mastering VBA programming is.

This is not meant to imply that macros have no place in Access 2007 applications.
Microsoft has issues related to previous versions of Access macros. In particular, macros

now include simple error handling (mostly jumping to a named location when an error occurs) and
also include variables. These are significant updates to the Access macro engine but, in the opinion of
many, are not enough to justify using macros in professional applications.

Introducing Visual Basic for Applications
Although it is undoubtedly true that many readers of this book are experienced Access developers
and are comfortable working with VBA, this chapter and the other chapters in this part of Access
2007 Bible assume the reader has no experience with VBA.

These chapters are included to provide a firm foundation for many of the techniques discussed in
the latter chapters of this book. As you’ll see in the chapters following Part II, many advanced
Access techniques simply cannot be implemented without the use of VBA code.

Visual Basic for Applications (VBA), of course, is the programming language built into Access.
VBA is shared among all of the Microsoft Office applications, including Word, Excel, Outlook,
PowerPoint, and even Visio. If you are not already a VBA programmer, learning the VBA syntax
and how to hook VBA into the Access event model is a definite career builder.

If you’re new to programming, it is important not to become frustrated or overwhelmed by the
seeming complexity of the VBA language. As with any new skill, you’re much better off approach-
ing VBA programming by taking it one step at a time. It is important to learn exactly what VBA can
do for you and your applications, along with the general syntax, statement structure, and how to
compose procedures using the VBA language.

This book is chock-full of examples for Access developers of how to use the VBA language to
accomplish useful tasks. Each of the procedures you see in this book has been carefully tested and
verified to work correctly. If you find that a bit of code in this book does not work properly for
you, please take the time to ensure that you have used the example code exactly as presented in
this book. Very often, the most difficult problems implementing any programming technique stem
from simple errors such as misspelling or forgetting to include a comma or parentheses mark
where required.

NOTENOTE

348

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 348

What’s in a name? The expression “Visual Basic” is a source of endless confusion for
people working with the Microsoft products. Microsoft has applied the name “Visual

Basic” to a number of different products and technologies. For more than 10 years Microsoft mar-
keted a stand-alone product named “Visual Basic” that was, in many ways, comparable and competi-
tive with Microsoft Access. In 1995, Microsoft added the Visual Basic for Applications (VBA)
programming language to Access, Word, and Excel in the Microsoft Office product. This name was
chosen because the words used to write programs in the Visual Basic product are identical to those
used when programming with the VBA language used in Access, Word, and Excel.

Although the VBA language used in the Visual Basic product is very similar to VBA as used in Access,
they are not exactly the same. There are some things that can be done with the Visual Basic (product)
language that cannot be done with Access VBA, and vice-versa. In this book, the expressions “VBA”
and “Visual Basic” refer to the programming language built into Access, and should not be confused
with the Microsoft product named Visual Basic or the newer products named Visual Basic.NET.

We actually begin our discussion of VBA programming by showing you how to migrate Access
macros to the VBA language. There are a number of reasons why we have taken this approach to
describing VBA. It is very likely that you understand how the macros in an Access application
work. If your applications already include a several macros, it is very likely that you have seen
these macros in action. Converting those macros to VBA code is a great way to learn basic VBA
syntax. Also, after a macro is converted to VBA code, you may find simple and effective ways to
extend the tasks supported by that code. Because the VBA programming language is very flexible,
there are many things you can do using VBA that you can’t do with Access macros. A few of these
operations are discussed in the following section.

Understanding VBA Terminology
Before plunging into our discussion on VBA, let’s review some basic VBA terminology:

Keyword: A word that has special meaning in VBA. For instance, in normal English lan-
guage, the word now simply indicates a point in time. In VBA, Now is the name of a built-in
VBA function that returns the current date and time.

Statement: A single VBA word or combination of words that constitute an instruction to
be performed by the VBA engine.

Procedure: A collection of VBA statements that are grouped together to perform a certain
task. You might, for instance, write a procedure that extracts data from a table, combines
the data in a particular way, and displays the data on a form. Or, you might write three
smaller procedures, each of which performs a single step of the overall process.

NOTENOTE

349

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 349

Function: There are two types of procedures: subs (subroutines) and functions.
Subroutines are actually easier to understand — they perform a single task and then just go
away. Functions, on the other hand, perform a task and then return a value. The procedure
example described previously is actually a subroutine. It performs a specific task; then
when it ends, it just goes away. The example where the operation is split into three smaller
procedures includes a function. In this case, the first procedure that opens the database
and extracts data most likely returns the data as a recordset, and the recordset is passed to
the other procedures that perform the data combination and data display.

Module: Procedures live in modules. If statements are like sentences and procedures are
like paragraphs, modules are the chapters or documents of the VBA language. A module
consists of a number of procedures and other elements combined as a single entity within
the application.

Variable: Variables are sometimes tricky to understand. Because Access is a database devel-
opment tool, it makes sense that VBA code has to have some way of managing the data
involved in the application. A variable is nothing more than a name applied to represent a
data value. In virtually all VBA programs, you create and use variables to hold values such
as customer names, dates, and numeric values manipulated by the VBA code.

VBA is appropriately defined as a language. And, just as with any human language, VBA consists of
a number of words, sentences, and paragraphs, all arranged in a specific fashion. Each VBA sen-
tence is a statement. Statements are aggregated as procedures, and procedures live within modules. A
function is a specific type of procedure; one that returns a value when it’s run. For instance, Now()
is a built-in VBA function that returns the current date and time, down to the second. You use the
Now() function in your application whenever it is necessary to capture the current date and time,
such as when assigning a timestamp value to a record.

Each VBA statement is an instruction that is processed and executed by the VBA language engine
built into Microsoft Access. Here is an example of a typical VBA statement that opens a form:

DoCmd.OpenForm “frmMyForm”, acNormal

DoCmd is a built-in Access object that performs numerous tasks for you. Think of DoCmd as a little
robot that can perform many different tasks. The OpenForm that follows DoCmd is the task we
want DoCmd to run, and frmMyForm is (obviously) the name of the form to open. Finally,
acNormal is a specifier that tells DoCmd we want the form opened in its “normal” view. The
implication here, of course, is that there are other view modes that may be applied to opening a
form. These modes include Design (acDesign) or Datasheet (acFormDS) view, and Print Preview
(acPreview, when applied to reports).

In a nutshell, that’s all there is to learning and using VBA.

350

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 350

Migrating from Macros to VBA
Should you now convert all the macros in your applications to VBA? The answer depends on what
you are trying to accomplish. The fact that Access 2007 includes VBA does not mean that Access
macros are no longer useful; it simply means that Access developers should learn VBA and add it
to their arsenal of tools for creating Access applications.

VBA is not always the answer. Some tasks, such as creating global key assignments, can be accom-
plished only via macros. You can perform some actions more easily and effectively by using a
macro than by writing VBA code.

When to use macros and when to use VBA
In Access, macros often offer an ideal way to take care of many details, such as opening reports and
forms. You can build applications faster using macros because the arguments for each macro action
are displayed in the macro editor (in the bottom portion of the Macro editor window). You don’t
have to remember complex or difficult syntax.

Here’s another naming issue: An Access macro is a stepwise list of actions that you com-
pose using the Access macro editor. Microsoft Word and Excel use the word macro to

refer to procedures written in the VBA programming language. When working with in the Access
environment, a macro always refers to the stepwise set of instructions composed using the Access
macro editor. Most Access developers refer to VBA code as either procedures or modules and virtu-
ally never refer to these objects as macros.

Certain actions are easier to accomplish with macros than with VBA code. Actions such as opening
and closing forms or opening reports are somewhat easier to accomplish with a simple macro than
by writing VBA code.

Most often, VBA is much better choice. There are many things that can be accomplished with the
VBA code and with macros:

n Create and use your custom functions: In addition to using built-in Access functions,
you can use VBA to create and work with your own functions.

n Trap and handle errors: You can create error routines that detect an error and decide
what action to take. These routines bypass the cryptic Access error messages.

n Use Automation to communicate with other Windows applications: You can write
code to see whether a file exists before you take some action, or you can communicate
with another Windows application (such as a spreadsheet), passing data back and forth.

n Use the Windows API: As you’ll see in Chapter 30, you can use VBA code to hook into
many resources provided by Windows, such as determining the user’s Windows login
name, or the name of the computer the user is working on.

NOTENOTE

351

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 351

n Loop through records: Very often, you need to open a set of records and perform some
operation on those records one at a time. The only effective way to perform this type of
operation is through VBA code.

n Maintain the application: Unlike macros, code can be built into a form or report, mak-
ing maintaining the form or report more efficient. Additionally, if you move a form or
report from one database to another, the event procedures built into the form or report
travel with it.

n Create or manipulate objects: In most cases, you’ll find that it necessary to work with
an object in Design View. In some situations, however, you may want to manipulate the
definition of an object in code. Using VBA, you can manipulate all the objects in a data-
base, including the database itself.

If you create a form or report that will be copied to other databases, create your event
procedures for that form or report in VBA instead of with macros. Because most macros

are stored as separate objects in the database, you have to remember which ones are associated with
the form or report you are copying. On the other hand, because VBA code can be attached to the
form or report, copying the form automatically copies the VBA event procedures associated with it.

Access 2007 supports embedded macros in forms, reports, and controls. An embedded macro lives
within its host object (form, report, or control) and travels with the object if it is copied to another.
Even then, however, embedded macros suffer from the performance issues associated with external
macros and are not portable to any other systems like Word or Excel.

Converting existing macros to VBA
As you become comfortable with writing VBA code, you may want to rewrite existing macros as
VBA procedures. As you begin this process, you quickly realize how mentally challenging the effort
can be as you review every macro action in your macro libraries. You cannot cut and paste a macro
into a VBA code module. You must analyze the task accomplished by each macro action and then
add the equivalent VBA statements to your code.

Fortunately, Access provides a feature to convert macros to VBA code automatically. One of the
options in the Save As dialog box is Save As Module. You can use this option when a macro file is
highlighted in the Macros object window of the Database window. This option enables you to con-
vert an entire macro group to a module in seconds.

To try the conversion process, convert the mcrOpenContacts macro in the Chapter10.accdb
database and follow these steps to run the conversion process:

1. Click the Macros object button of the Database window.

2. Select the mcrOpenCustomers macro.

3. Choose File ➪ Save As.

The Save As dialog box appears, as shown in Figure 10-1.

TIPTIP

352

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 352

FIGURE 10-1

Saving a macro as a module

Access assigns a default name for the new module as “Copy of” followed by the macro
name.

4. Enter a more descriptive name for the new module and select module for the option
and click OK.

The Convert Macro dialog box appears, as shown in Figure 10-2.

FIGURE 10-2

The Convert Macro dialog box

5. Select the options that include error handling and comments, and click Convert.

Access briefly displays each new procedure as it is converted. When the conversion
process completes, the Conversion Finished! message box appears.

Figure 10-3 shows the newly created VBA module (Converted Macro mcrOpenContacts). Notice
that the module is named after the macro that was converted.

353

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 353

FIGURE 10-3

The newly converted module

When you specify that you want Access to include error processing for the conversion, Access
automatically inserts the On Error statement as the first statement in the procedure, telling Access
to branch to other statements that display an appropriate message and then exit the function.

Handling errors is covered in Chapter 25.

The statement beginning with DoCmd is the actual code that Access created from the macro.
DoCmd methods mimic macro actions and perform important tasks such as opening forms and
reports, and setting the value of controls.

Using the Command Button
Wizard to create VBA code
One way to learn event procedures is to use the Command Button Wizard. When Access creates a
command button with a wizard, it adds an event procedure attached to the button. You can open
the event procedure to see how it works and then modify it to fit your needs.

Access supports more than 30 types of command buttons through the Command Button Wizard.
These buttons include finding or printing records, or applying a filter to a form’s data. Run this wiz-
ard by adding a command button to a form with the Use Control Wizards item selected in the
Design tab of the Access ribbon. Figure 10-4 shows a Delete Record command button being created.

CROSS-REFCROSS-REF

354

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 354

FIGURE 10-4

The Command Button Wizard

The Chapter10.accdb example database includes a form named frmButtonWizardSamples.
This form, shown in Figure 10-5 in Design mode, contains a dozen command buttons created with
the Command Button Wizard. Review the procedures for the buttons on this form to see how pow-
erful VBA code can be.

FIGURE 10-5

Examples of Command Button Wizard buttons

Figure 10-6 shows the code for the Go To First Record command button.

355

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 355

FIGURE 10-6

The Go To First Record button’s On Click procedure

The code produced by the Command Button Wizard is very simple, but effective.

Creating VBA Programs
Access has a wide variety of tools that enable you to work with tables, queries, forms, and reports
without ever having to write a single line of code. At some point, you may begin building more
sophisticated applications. You may want to “bulletproof” your applications by providing more
intensive data-entry validation or implementing better error handling.

Some operations cannot be accomplished through the user interface, even with macros. You may
find yourself saying, “I wish I had a way to...” or “There just has to be a function that will let me....”
At other times, you find that you are continually putting the same formula or expression in a query
or filter. You may find yourself saying, “I’m tired of typing this formula into....” or “Doggone it, I
typed the wrong formula in this....”

For situations such as these, you need the horsepower of a high-level programming language such
as VBA. VBA has become the common language for many Microsoft applications. VBA is a modern,
structured programming language offering many of the programming structures available in most
programming languages: If...Then...Else, Select Case, and so on. VBA is extensible (capable of call-
ing Windows API routines) and can interact through ADO (ActiveX Data Objects), DAO (Data
Access Objects), and with any Access or VBA data type.

Getting started with VBA programming in Access requires an understanding of its event-driven
environment.

356

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 356

Understanding events and event procedures
In Access, unlike old-fashioned programming environments, the user controls the actions and flow
of the application. The user determines what to do and when to do it, such as changing informa-
tion in a field or clicking a command button. Users determine the flow of action and, through
events, the application determines what action to take or ignore. In contrast, procedural-oriented
programming languages require that the programmer determine the flow of actions the user must
follow. In fact, the programmer must program for all possibilities of user intervention — for exam-
ple, keystrokes a user may enter in error — and must determine what actions to take in response to
the user.

Using macros and event procedures, you implement the responses to these actions. Access pro-
vides event properties for each control you place on a form. By attaching a VBA procedure to a con-
trol’s event property, you do not have to worry about the order of actions a user may take on a
particular form.

In an event-driven environment such as Access, the objects (forms, reports, and controls) respond
to events. Basically, an event procedure is VBA code that executes when an event occurs. The code
is directly attached to the form or report containing the event being processed. An Exit command
button, for example, closes the form when the user clicks the button. Clicking the command but-
ton triggers its Click event. The event procedure is the VBA code attached to the Click event.
The event procedure automatically runs every time the user clicks the command button.

There are two types of procedures:

n Sub

n Function

Sub and function procedures are grouped and stored in modules. The Modules object button in
the Navigation Pane stores the common procedures that any of your forms can access. You could
store all your procedures in a single module, but that wouldn’t be a good idea. You’ll probably
want to group related procedures into separate modules, categorizing them by the nature of the
operations they perform. For example, an Update module might include procedures for adding
and deleting records from a table.

Subprocedures
Subprocedures do not return a value, and therefore, you cannot use subs in expressions or call
them by assigning them to variables. All event procedures are subs.

These VBA statements within a sub are the code you want to run every time the procedure is exe-
cuted. The following example shows an Exit command button’s subprocedure:

Sub cmdExit_Click()
DoCmd.Close

End Sub

357

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 357

The first line of this procedure notifies the VBA engine that the procedure is a Sub, and that its
name is cmdExit_Click. If parameters (data passed to the procedure) are associated with this
sub, they appear within the parentheses.

There is only one VBA statement within this Sub (DoCmd.Close). The End Sub statement at the
bottom ends this procedure. The cmdExit_Click () subprocedure is attached to the Exit but-
ton’s Click event. The event procedure closes the form when the user clicks the Exit command
button.

Functions
A function returns a value. Use functions in expressions or assign a function to a variable. Like
subprocedures, functions are often called by other functions or by subs.

Within the body of a function, you assign a return value to the function’s name. You then can use
the value that is returned as part of a larger expression. The following function calculates the
square footage of a room:

Function nSquareFeet(dblHeight As Double, _
dblWidth As Double) As Double

‘Assign this function’s value:
nSquareFeet = dblHeight * dblWidth

End Function

This function receives two parameters (dblHeight and dblWidth). Notice that the function’s
name (nSquareFeet) is assigned a value within the body of the function. The function is
declared as a Double data type, so the return value is recognized by the VBA interpreter as a
Double.

Use code like this to call this function:

dblAnswer = nSquareFeet(xHeight, xWidth)

One last point: notice the underscore character in the function’s first line. An underscore at the end
of a VBA statement (called a continuation character) instructs the VBA engine to include the next
line as part of the same statement.

Understanding modules
Modules and their procedures are the principal objects of the VBA programming language. The
code that you write is added to procedures that are contained in a module. VBA code modules can
be independent, stand-alone objects (called standard modules) that are unrelated to specific forms
or reports, or they can be integrated into forms and reports (usually referred to as form modules and
report modules).

As you create VBA procedures for your Access applications, you use both types of modules.

358

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/27/06 4:50 PM Page 358

Form and report modules
All forms and reports support events. The procedures associated with form and report events can
be macros or VBA code. Every form or report you add to your database contains a VBA code mod-
ule (unless its Has Module property is set to No). This form or report module is an integral part
of the form or report, and is used as a container for the event procedures you create for the form
or report. This method is a convenient way to place all of a form’s event procedures in a single
location.

Adding VBA event procedures to a form module is very powerful and efficient. Event procedures
contained in a form’s module become part of the form. When you export the form to another
Access database, all of the form’s event procedures go with it.

Modifying a control’s event procedure is easy: simply click the ellipsis button (...) in the Property
Sheet next to the event property, opening the form’s code module. Figure 10-7 illustrates accessing
the Click event procedure of the Delete button on the Contacts form.

FIGURE 10-7

Accessing a control’s event procedure from the Property Sheet

Notice the [Event Procedure] in the control’s On Click property. It tells you that there is
code attached to the control’s event procedure. Clicking on the button with the ellipsis (three dots)
opens the VBA code editor, displaying the event procedure.

Event procedures that work directly with a form or report belong in the module of the form or
report. A form’s module should contain only the declarations and event procedures needed for that
form and its controls (buttons, check boxes, labels, text boxes, combo boxes, and so on). Placing
procedures shared with other forms in a form’s module doesn’t make sense.

359

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 359

Standard modules
Standard modules are independent from forms and reports. Standard modules store code that is
used from anywhere within your application. These procedures are often called global or public
because they are accessible to all elements of your Access application.

Use public procedures throughout your application in expressions, macros, event procedures, and
other VBA code. To use a public procedure, you simply reference it from VBA code in event proce-
dures or any other procedure in your application.

Procedures run; modules contain. Procedures are executed and perform actions.
Modules, on the other hand, are simple containers, grouping procedures and declara-

tions together. A module cannot be run; rather, you run the procedures contained within the module.

Standard modules are stored in the Module section of the Navigation Pane. As you read earlier,
form and report modules are attached to their hosts and are accessed through the form or reports
Property Sheets.

Generally speaking, you should group your procedures into categories. Most modules contain pro-
cedures that are related in some way.

Creating a new module
Using the Modules section of the Navigation Pane you create and edit VBA code contained in stan-
dard modules. You could, for example, create a Beep procedure that makes the computer beep as a
warning or notification that something has happened in your program. Each procedure is a series
of code statements that performs an operation or calculation.

Think of a module as a library or collection of procedures. Your Access databases can contain thou-
sands of modules, although most Access applications include only a few dozen standard modules.

You will see many examples of creating functions and procedures in Chapters 11
through 14.

For this example, you can use the Chapter10.accdb database, or open a new blank database. Add a
new module by selecting the Create tab of the Access ribbon, dropping down the list under the
Macro item, and selecting Module from the list (see Figure 10-8).

CROSS-REFCROSS-REF

TIPTIP

360

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 360

FIGURE 10-8

Adding a new module to an Access database

Access opens the VBA editor and adds a new module named Module1 (see Figure 10-9).

FIGURE 10-9

The newly opened code in the VBA editor

361

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 361

Working in the Code window
Whenever you create VBA procedures for your Access applications, you edit code in a code win-
dow. Although the Code window is confusing at first, it is easy to understand and use after you
learn how each part is used.

Notice that the Access 2007 Code window does not use the ribbon. Instead, the Code
window appears much as it has in every version of Access since Access 2000. Therefore,

in this book you’ll see references to the Code window’s toolbar and menu whenever we describe
working with Access VBA modules.

When you enter Design mode of a module — whether it is via a form or report module or the
modules group on the Navigation Pane — the VBA editor and its menu and toolbar open to enable
you to create or edit your procedures.

When you display VBA code within a form (or report) module, the Object and Procedure drop-
down lists at the top of the Code window contain the form’s controls and events. You select these
objects and events to create or edit event procedures for the form. Form and report modules can
also include procedures that are not related to a control’s events.

The Object drop-down list for a standard module offers only one choice: General. The Procedure
drop-down list contains only the names of existing procedures within the standard module.

The Code window’s toolbar (shown in Figure 10-9) helps you create new modules and their proce-
dures quickly. The toolbar contains buttons for the most common actions you use to create, mod-
ify, and debug modules.

The Code window — the most important area of the VBA editor — is where you create and modify
the VBA code for your procedures. The Code window has the standard Windows features to resize,
minimize, maximize, and move the window. You also can split the window into two areas by drag-
ging the splitter bar downwards (the splitter bar is the little horizontal bar at the very top of the
vertical scroll bar at the right edge of the Code window). Splitting the window enables simultane-
ous editing of two procedures. Each section of a split VBA Code window scrolls independently, and
changes you make in one pane of a split window show in the other pane.

The Immediate window enables you to try a procedure while you are still in the module. See the
“Checking your results in the Immediate window” section later in this chapter for an example.

Each VBA code module includes two or more sections:

n A Declarations section at the top of the module

n A section for each procedure

The Declarations section
You can use the Declarations section to declare (define) variables used in the module’s procedures.
A variable is a named storage location for a value. Examples of variables include:

NOTENOTE

362

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 362

n intCounter (an integer)

n curMySalary (a currency)

n dtmDate (a date/time)

You may have noticed the Option Explicit line at the top of the VBA modules in
this chapter’s figures and example database. Option Explicit instructs the VBA

compiler to require every variable to be “explicitly” declared. This means that every variable must be
declared as a specific data type (integer, string, and so on). Explicit variable declaration is always a
good idea because it prevents stray variables from creeping into an application and causing bugs.
Without the Option Explicit directive at the top of the module, every time you type in an identi-
fier that the VBA compiler does not recognize, it creates a new variable by that name. This means
that, when using “implicit” variable declarations, if you have been using a variable named
strLastName and type it in incorrectly (strLstName), the VBA compiler creates a new variable
named strLstName and begins using it. Bugs caused by simple misspellings can be very difficult to
detect, because the application doesn’t raise any errors, and the only way to detect the cause of the
bug is to go through the code one line at a time until you find the misspelling.

You are not required to declare all of a module’s variables in the Declarations section, because vari-
ables are also declared within procedures.

Creating a new procedure
After you complete any declarations for the module, you are ready to create a procedure. Follow
these steps to create a procedure called BeepWarning:

1. Open the Module1 module you previously created, as shown in Figure 10-9.

2. Go to any empty line in the Code window.

3. Type the code in exactly as shown in Figure 10-10.

FIGURE 10-10

Entering a new procedure in the Code window

CAUTION CAUTION

363

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 363

Notice that, as you enter the first line of the procedure, Access automatically added the End Sub
statement to the procedure.

In this example, you are running the program five times. Don’t worry about what the procedure
does — you learn more about how to program specific tasks in Chapter 19.

Your completed function should look like the one shown in Figure 10-10.

When BeepWarning runs, it beeps for the number of times specified.

If you enter the name of a function you previously created in this module (or in another module
within the database), Access informs you that the function already exists. Access does not enable
you to create another procedure with the same name.

Using IntelliSense
Suppose that you know you want to use a specific command but can’t remember the exact syntax.
Access 2007 features two types of IntelliSense, called Auto List Members and Auto Quick Info, to
help you create each line of code.

Auto List Members is a drop-down list that is automatically displayed when you type the beginning
of a keyword that has associated objects, properties, or methods. For example, if you enter DoCmd,
a list of the possible options displays, as shown in Figure 10-11. Scroll through the list box and
press Enter to select the option you want.

FIGURE 10-11

Access 2007 Auto List Members help in a module

In this example, the OpenForm method is selected (actions associated with an object are called
methods). After choosing an item in the list, more Auto List Members help is displayed. Or, if
parameters are associated with the keyword, the other type of module help, Auto Quick Info is dis-
played, as shown in Figure 10-12. (In Figure 10-12, the AutoListMembers is cut off at the right
edge. In fact, the Auto List Members help for the OpenForm method extends quite a ways beyond
the edge of this figure.)

364

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 364

FIGURE 10-12

Access 2007 Auto Quick Info help in a module

Auto Quick Info guides you through all the options (called parameters) for the specific item. The
bold word (FormName) is the next parameter available for the DoCmd object. Figure 10-12 shows
that there are many parameters available for the OpenForm command. The parameters are sepa-
rated by commas, as each parameter is entered the next parameter is highlighted in bold. The posi-
tion of parameters is significant; they cannot be rearranged without causing problems. Press the
Esc key to hide Auto List Members help.

Compiling procedures
When you complete a procedure, you should compile it by choosing Debug ➪ Compile from the
Code window menu. The compiler checks your code for errors (a process known as syntax check-
ing), and the compiler converts the VBA code to a binary format your computer understands. An
error window appears if the compilation is not successful.

Access compiles all procedures in the module, and all modules in the Access database,
not just the current procedure and module.

Saving a module
When you finish creating a procedure, you save it by saving the module. Save the module by
choosing File ➪ Save, or simply close the code editor to save the module automatically. Access
prompts you for a name to apply to the module if no name has yet been assigned.

Creating procedures in the Form or Report Design window
All forms, reports, and their controls may have event procedures associated with their events.
While you are in a form or report’s Design View, you can add an event procedure in any of three
ways:

n Choose Build Event from the shortcut menu (see Figure 10-13).

NOTENOTE

365

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 365

FIGURE 10-13

Shortcut menu for a control in the Form Design window

n Choose Code Builder in the Choose Builder dialog box when you click the ellipsis
button to the right of an event in the Property dialog box.

n Type [Event Procedure] into the event property, or select it from the top of the event
drop-down list (see Figure 10-14).

FIGURE 10-14

The properties sheet in the Form Design window

Whether you choose Build Event from the shortcut menu or click the ellipsis button in the
Property dialog box, the Choose Builder dialog box appears. Choosing the Code Builder item
opens the VBA code editor, as shown in Figure 10-15. Clicking the View Microsoft Access button
in the Code window’s toolbar toggles between the form designer and the VBA Code window.

366

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 366

FIGURE 10-15

A form module open in Design View

Editing an existing procedure
There a number of ways to access existing code behind a form or report. These are by far the most
common:

n Use the View Code button in the Tools group in the Access ribbon (with the form or
report open in Design View, of course).

n Select an event procedure from a control’s event property, as demonstrated in Figure 10-7.

Opening a standard module is even easier. Simply select Modules in the Navigation Pane; then
right-click on a module and select Design View from the shortcut menu (see Figure 10-16).

FIGURE 10-16

Selecting a module to edit

367

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 367

Checking your results in the Immediate window
When you write code for a procedure, you may want to try the procedure while you are in the
module, or you may need to check the results of an expression. The Immediate window enables
you to try your procedures without leaving the module. You can run the module and check vari-
ables. You could, for example, type ? and the name of the variable.

Use Ctrl+G to view the Immediate window, or select View ➪ Immediate Window in the VBA code
editor. Figure 10-17 shows the Immediate window.

FIGURE 10-17

The Immediate window

Running the BeepWarning procedure is easy. Simply type BeepWarning into the immediate win-
dow and press Enter. You may hear five beeps or only a continuous beep because the interval
between beeps is short.

Figure 10-10, earlier in this section, shows the VBA code for this subprocedure.

You’ll see many more examples of using the Immediate window in Chapter 15.

Understanding VBA Branching Constructs
The real power of any programming language is its capability to make a decision based on some
condition. VBA provides two ways for a procedure to execute code conditionally: branching and
looping.

368

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 368

Conditional execution
Often, a program in VBA performs different tasks based on some value. If the condition is True,
the code performs one action. If the condition is False, the code performs a different action. An
application’s capability to look at a value and, based on that value, decide which code to run is
known as conditional processing or branching.

The procedure is similar to walking down a path and coming to a fork in the path; you can go to
the left or to the right. If a sign at the fork points left for home and right for work, you can decide
which way to go. If you need to go to work, you go to the right; if you need to go home, you go to
the left. In the same way, a program looks at the value of some variable and decides which set of
code should be processed.

VBA offers two sets of conditional processing statements:

n If...Then...Else...End If

n Select Case

The If...Then...Else...End If construct
The If...Then and If...Then...Else construct checks a condition and, based on the eval-
uation, perform a single action. The condition must evaluate to a Boolean value (True or False).
If the condition is True, the program moves to the next statement in the procedure. If the condi-
tion is False, the program skips to the statement following the Else statement, if present, or the
End If statement if there is no Else clause.

In Figure 10-18, the code examines the value of the ContactType, and if the value is either
“Buyer” or “Both”, the Customer page is made visible, otherwise the Customer page is made
invisible.

FIGURE 10-18

The VBA code decides whether to display the Customers page of a tab control.

369

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 369

The Else statement is optional. Use Else to perform an alternative set of actions when the If
condition is False:

If Condition Then
[Action to perform when Condition is True]

Else
[Action to perform when Condition is False]

End If

The Else clause can contain virtually any valid VBA statements, including another If...
Then... Else...End If:

If Condition1 Then
[Action to perform when Condition1 is True]

Else
If Condition2 Then

[Action to perform when Condition2 is True]
Else

[Action to perform when Condition2 is False]
End If

End If

Needless to say, nested If... Then... Else...End If constructs can become quite compli-
cated and confusing. The ElseIf clause sometimes helps reduce this confusion:

If Condition1 Then
[Action to perform when Condition1 is True]

ElseIf Condition2 Then
[Action to perform when Condition2 is True]

Else
[Action to perform when Condition2 is False]

End If

In this example, notice that there is only one End If statement at the bottom of the construct.

When you have many conditions to test, the If...Then...ElseIf...Else conditions can get
rather unwieldy. A better approach is to use the Select Case construct.

In Figure 10-18 you may have noticed that the If statement actually contains two dif-
ferent conditions (Me.ContactType = “Buyer” and Me.ContactType = “Both”).

In this case, if either condition is true, the “True” portion of the If...Then...Else...End If is
executed. The Or clause means that the combined expression is true if the ContactType is either
“Buyer” or “Both.” If, on the other hand, an And clause was used between the conditions (such as
Month = January And Day = 28), then both conditions must be true for the entire expression to
evaluate to True.

NOTENOTE

370

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 370

The Select Case...End Select statement
VBA offers the Select Case statement to check for multiple conditions. Following is the general
syntax of the statement:

Select Case Expression

Case Value1
[Action to take when Expression = Value1]

Case Value2
[Action to take when Expression = Value2]

Case ...

Case Else
[Default action when no value matches Expression]

End Select

Notice that the syntax is similar to that of the If...Then statement. Instead of a Boolean condi-
tion, the Select Case statement uses an expression at the very top. Then, each Case clause tests
its value against the expression’s value. When a Case value matches the expression, the program
executes the next line or lines of code until it reaches another Case statement or the End Select
statement. VBA executes the code for only one matching Case statement.

If more than one Case statement matches the value of the test expression, only the
code for the first match executes. If other matching Case statements appear after the

first match, VBA ignores them.

Figure 12-19 shows Select...Case used by frmDialogContactPrint to decide which of
several reports to open.

FIGURE 10-19

Using the Select Case statement

NOTENOTE

371

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 371

The Case Else statement is optional but is always a good idea. The Case Else clause is always
the last Case statement of Select Case and is executed when none of the Case values match
the expression at the top of the Select Case statement.

In some procedures, you may want to execute a group of statements more than one time. VBA pro-
vides some constructs for repeating a group of statements.

Repetitive Looping
Another very powerful process that VBA offers is repetitive looping — the capability to execute a
single statement or a group of statements over and over. The statement or group of statements is
repeated until some condition is met.

VBA offers two types of looping constructs:

n Do...Loop

n For...Next

Loops are commonly used to process records within a recordset, change the appearance of controls
on forms, and a number of other processes that require repeating the same VBA statements multi-
ple times.

The Do...Loop statement
Do...Loop is used to repeat a group of statements while a condition is True or until a condition
is True. This statement is one of the most commonly used VBA looping constructs:

Do [While | Until Condition]
[VBA statements]
[Exit Do]
[VBA statements]

Loop

Alternatively, the While (or Until) is placed at the bottom of the construct:

Do
[VBA statements]
[Exit Do]
[VBA statements]

Loop [While | Until Condition]

Notice that Do...Loop has several options. The While clause causes the VBA statements within
the Do...Loop to execute as long as the condition is True. Execution drops out of the Do..Loop
as soon as the condition evaluates to False.

372

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 372

The Until clause works in just the opposite way. The code within the Do...Loop executes only
as long as the condition is False.

Placing the While or Until clause at the top of the Do...Loop means that the loop never exe-
cutes if the condition is not met. Placing the While or Until at the bottom of the loop means
that the loop executes at least once because the condition is not evaluated until after the statements
within the loop have executed the first time.

Exit Do immediately terminates the Do...Loop. Use Exit Do as part of a test within the loop:

Do While Condition1
[VBA statements]
If Condition2 Then

Exit Do
End If
[VBA statements]

Loop

Exit Do is often used to prevent endless loops. An endless loop occurs when the condition’s state
(True or False) never changes within the loop.

In case you’re wondering, Condition1 and Condition2 in this example may be the same.
There is no requirement that the second condition be different from the condition used at the top
of the Do...Loop.

Figure 10-20 illustrates how a Do loop may be used. In this particular example a recordset has
been opened and each record is processed within the Do loop. In this example, the company’s
name is printed in the immediate window, but the data is not modified or used in any way.

FIGURE 10-20

Using the Do...Loop statement

The While and Until clauses provide powerful flexibility for processing a Do...Loop in your
code.

373

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 373

The For...Next statement
Use For...Next to repeat a statement block a set number of times. The general format of
For...Next is:

For CounterVariable = Start To End
[Statement block]

Next CounterVariable

We already saw an example of the For...Next loop. Earlier in this chapter, you saw a procedure
named BeepWarning that looks like this:

Sub BeepWarning()
Dim xBeeps As Integer
Dim nBeeps As Integer

nBeeps = 5

For xBeeps = 1 To nBeeps
Beep

Next xBeeps

End Sub

In this procedure, xBeeps is the counter variable, 1 is the start, and nBeeps is the end. In this
example, xBeeps starts at 1 and is incremented at the bottom of the For...Next loop at the
Next xBeeps statement.

An alternate form of For...Next is:

For CounterVariable = Start To End Step StepValue
[Statement block]

Next CounterVariable

The only difference here is the StepValue added to the first statement. The Step keyword fol-
lowed by an increment causes the counter variable to the incremented by the step value each time
the loop executes. For example, if Start is 10 and End is 100 and StepValue is 10, the counter vari-
able starts 10 and increments by 10 each time the loop executes.

Working with Objects and Collections
Very often in Access applications is necessary to work with objects such as the controls on a form
or a recordset object containing data extracted from the database. VBA provides several constructs
specifically designed to work with objects and collections of objects.

374

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 374

The With statement
The With statement enables you to loop through all the members of a collection of objects, setting
or changing the properties of each member. Any number of statements can appear between the
With and End With statements. With statements can be nested.

As an example, consider the code using the following For...Next looping construct. This code
loops through all members of a form’s Controls collection, examining each control. If the control is
a command button, the button’s font is set to 10 point, Bold, Times New Roman:

Private Sub cmdOld_Click()
Dim i As Integer
Dim c As Control

For i = 0 To Me.Controls.Count - 1
Set c = Me.Controls(i)
If TypeOf c Is CommandButton Then
c.FontName = “Times New Roman”
c.FontBold = True
c.FontSize = 12

End If
Next

End Sub

Don’t be confused by the different expressions you see in this example. The heart of this procedure
is the For...Next loop. The loop begins at zero (the start value) and executes until the i vari-
able reaches the number of controls on the form minus 1. (The controls on an Access form are
numbered beginning with zero. The Count property tells you how many controls are on the form.)
Within the loop, a variable named c is pointed at the control indicated by the i variable. The If
TypeOf... statement evaluates the type of control referenced by the c variable.

Within the body of the If...Then branch, the control variable’s properties (FontName,
FontBold, and FontSize) are adjusted. Notice that the control variable is referenced in each of
the assignment statements. Referencing control properties one at a time is a fairly slow process. If
the form contains many controls, this code executes relatively slowly.

An improvement on this code uses the With statement to isolate one member of the controls col-
lection and apply a number of statements to that control. The following listing uses the With state-
ment to apply a number of font settings to a single control.

Private Sub cmdWith_Click()
Dim i As Integer
Dim c As Control

For i = 0 To Me.Controls.Count - 1
Set c = Me(i)
If TypeOf c Is CommandButton Then
With c

375

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 375

.FontName = “Arial”

.FontBold = True

.FontSize = 8
End With

End If
Next

End Sub

The code in this example (cmdWith_Click) executes much faster than the previous example
(cmdOld_Click). Once Access has a handle on the control (With c...), it is able to apply all
the statements in the body of the With without having to fetch the control from the controls on
the form as in cmdOld_Click.

Think of the With statement as if you are handing Access a particular item and saying “Here, apply
all of these properties to this item.” The previous example said “Go get the item named x and apply
this property to it” over and over again. The speed difference in these commands is considerable.

The For Each statement
The code in cmdWith_Click is further improved by using the For Each statement to traverse
the Controls collection. For Each walks through each member of a collection, making it avail-
able for examination or manipulation. The following code shows how For Each simplifies our
example.

Private Sub cmdForEach_Click()
Dim c As Control

For Each c In Me.Controls
If TypeOf c Is CommandButton Then
With c
.FontName = “MS Sans Serif”
.FontBold = False
.FontSize = 8

End With
End If

Next
End Sub

The improvement goes beyond using fewer lines to get the same amount of work done. Notice we
no longer need an integer variable to count through the Controls collection. We also don’t have
to call on the Controls collection’s Count property to determine when to end the For loop. All
of this overhead is handled silently and automatically for us by the VBA programming language
engine.

376

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 376

The code in this listing is easier to understand than in either of the previous procedures. The pur-
pose of each level of nesting is obvious and clear. You don’t have to keep track of the index to see
what’s happening, and you don’t have to worry about whether to start the For loop at 0 or 1. The
code in the For...Each example is marginally faster than With...End With example because
no time is spent incrementing the integer value used to count through the loop and Access doesn’t
have to evaluate which control in the collection to work on.

The Chapter10.accdb example database includes frmWithDemo (see Figure 10-21)
containing all of the code discussed in this section. Each of the three command buttons

along the bottom of this form uses different code to loop through the controls collections on this
form, changing the font characteristics of the controls.

FIGURE 10-21

frmWithDemo is included in Chapter10.accdb.

Using Compiler Directives
Conditional compilation directives are another feature of the Access VB language. In a conditional
compilation directive, you declare the value of a constant that tells Access whether you want cer-
tain sections of code compiled and run. An example of using compiler directives is shown in
Figure 10-22. In this example because the constant “DEBUG1” has been defined at the top of the
local module, Access executes the Debug.Print statement. Otherwise, Access ignores the state-
ments between the #If and #End If directives.

ON the CD-ROMON the CD-ROM

377

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 377

FIGURE 10-22

VBA compiler directives at work

The following compiler directives are recognized by Access 2007:

n #Const: The #Const directive specifies a constant value that can be tested with the #If
directive. The constant value specified by #Const is private to the module in which it
appears and can be any data type (numeric, string, Boolean, and so on) recognized by
Access. The syntax of #Const is:

#Const Identifier = Value

The Identifier name cannot conflict with the name of a variable or constant declared else-
where in the module and cannot be the same as an Access 2007 keyword. For these rea-
sons you may want to adopt a naming convention that avoids these conflicts, such as
prefixing conditional constants with “CC_”, your initials, or some other text. Using a nam-
ing convention will also make the conditional constants easier to find in your code. Many
developers always use full upper case for all constants to make them easy to see in code.

n #If...#Then...#Else...#End If: The #If directive evaluates an expression
which returns True or False. Place the statements you want processed when the expres-
sion is True between the #If...Then and the #Else; otherwise place them between
the #Else and #End If. The syntax of these directives are:

#If Expression Then
...Perform these statements
#Else
...Perform these alternate statements
#End If

The #Else portion, of course, is optional.

378

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 378

The constant value established with #Const is seen only by the #If compiler directive and is
ignored by your VBA code. Similarly, the #If directive cannot use a constant set up with the
Const VBA keyword.

The compiler directives are a handy way to include debugging statements and optional code to an
application. For instance, you may use compiler directives to exclude large portions of code during
development because the code is not needed as you prepare and debug certain features.

Keep in mind that the #Const directive is a module-level constant declaration. This means it
won’t be seen outside of the module in which it appears, even if the module itself is global. In most
cases the #Const directive appears in the module’s Declarations section. Normally you want this
directive to appear where it is easy to find and change, which means you want it in the same loca-
tion from module to module. Also, if you are using compiler directives in more than one module,
you should probably use the same constant value in all modules to help make your code easier to
understand.

One important consideration is that the compiler directives affect the VBA code behind your appli-
cation only as the code is compiled. Once you’ve compiled the code, you cannot change the direc-
tive at runtime. During compilation the Access VBA compiler detects the directives and either
includes or excludes the code segments as specified by the directives. After the compiled code has
been prepared by the compiler, you cannot change its contents.

Access 2007 Options for Developers
Many of the most important features in Access 2007 affect only developers. These features are hid-
den from end users and benefit only the person building the application. Spend some time explor-
ing these features so that you fully understand their benefits. You’ll soon settle on option settings
that suit the way you work and the kind of assistance you want as you write your VBA code.

Editor tab in Options dialog box
The Options dialog box contains several important settings that greatly influence how you interact
with Access as you add code to your applications. These options are accessed by opening a module
in the VBA code editor, and selecting Tools ➪ Options.

n AutoIndent: AutoIndent causes code to be indented to the current depth in all successive
lines of code. For instance, if you inserted four spaces (or tabs) in front of the current line
of code, each line of code following the current line will be automatically indented four
spaces.

n Auto Syntax Check: When the Auto Syntax Check option is selected, Access checks
each line of code for syntax errors as you enter it in the code editor. Many experienced
developers find this behavior intrusive and prefer to keep this option disabled, instead
letting the compiler point out syntax errors. Most of the syntax errors caught by Auto
Syntax Check are the most obvious spelling errors, missing commas, and so on.

379

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 379

n Break on all Errors: Break on All Errors causes Access to behave as if On Error GoTo 0 is
always set, regardless of any error trapping you may set up in code. When this option is
selected, Access stops on every error, making it easier to debug the code.

n Require Variable Declaration: This setting automatically inserts the Option
Explicit directive into all VBA modules in your Access application. This option is not
selected by default in Access 2007.

n Compile on Demand: Compile on Demand instructs Access to compile modules only
when their functions are required somewhere else in the database. When this option is
unchecked, all modules are compiled anytime any function is called.

n Auto List Members: This option pops up a list box containing the members of an
object’s object hierarchy in the Code window. In Figure 10-11 the list of Application
objects appeared as soon as I typed as the period following Application in the VBA
statement. You select an item from the list by continuing to type it in or scrolling the list
and pressing the spacebar.

n Auto Quick Info: When Auto Quick Info has been selected Access pops up syntax help
(refer to Figure 10-12) when you enter the name of a procedure (function, subroutine, or
method) followed by a period, space, or opening parenthesis. The procedure can be a
built-in function or subroutine or one that you’ve written yourself in Access VBA.

n Auto Data Tips: The Auto Data Tips option displays the value of variables when you
hold the mouse cursor over a variable with the module in break mode. Auto Data Tips is
an alternative to setting a watch on the variable and flipping to the Debug window when
Access reaches the break point.

Debugging Access VBA is described in Chapter 15.

Because they are so handy you’ll almost certainly use one or more of the auto-help options in
Access 2007. Of the other options available to you be sure not to overlook the ability to require
variable declaration. Once you get used to having Option Explicit set on every module
(including global and class modules) the instances of rogue and unexplained variables (which, in
reality, are simple misspellings of declared variables) disappear. With Option Explicit set in every
module, your code is more self-explanatory and easier to debug and maintain.

The Project Properties dialog box
All of the code components in an Access application, including all the modules, procedures, vari-
ables, and other elements are aggregated as the application’s VBA project. The VBA language engine
accesses modules and procedures as members of the project. Access manages the code in your
application by keeping track of all of the code objects that are included in the project, which is dif-
ferent than and separate from the code added into the application as a runtime library or wizard.

Each Access project includes a number of important options. The Project Properties dialog (Figure
10-23) contains a number of settings that are important for developers. Open the Project
Properties dialog by opening a module in the Code window, clicking the Tools menu, and selecting

CROSS-REFCROSS-REF

380

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 380

the project properties menu item. The project properties menu item is named after your database’s
project. For instance, in the Chapter10.accdb example database, the Code editor’s Tools menu con-
tains a Chapter10 Properties menu item.

FIGURE 10-23

The Project Properties dialog contains a number of interesting options.

Project name
Certain changes in an application’s structure require Access to recompile the code in the applica-
tion. For instance, changing the code in a global module affects all statements in other modules
using that code, so Access must recompile all the code in the application. Until the code is recom-
piled Access “decompiles” the application by reverting to the plain-text version of the code stored
in the .accdb file and ignoring the compiled code in the .accdb. This means that each line of
the code must be interpreted at runtime, dramatically slowing the application.

Sometimes insignificant modifications, such as changing the name of the project itself, are suffi-
cient to cause decompilation. This happens because of the hierarchical nature of Access VBA.
Because all objects are ‘owned’ by some other object, changing the name of a high-level object may
change the dependencies and ownerships of all objects below it in the object hierarchy.

Access 2007 maintains a separate, independent project name for the code and executable objects in
the application. Simply changing the name of the .accdb file is not enough to decompile the code
in an Access 2007 application. By default, the project name is the same as the name of the .accdb
but is not dependent on it. You can assign a unique name to the project with the Project Name text
box in the General tab of the Project Properties dialog.

Project description
The Project Description is, as its name implies, a description for the project. Because this area is so
small, it is not possible to add anything of significance that might be helpful to another developer.

381

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 381

Conditional compilation arguments
Earlier in this chapter (in the section titled “Using Compiler Directives”) you learned about the
new Access 2007 compiler directives. These directives instruct the Access VBA compiler to include
or exclude portions of code, depending on the value of a constant established in the module’s
Declarations section.

One of the limitations of using compiler directives is that the constant declaration is local to the
module. This means you have to use the #Const compiler directive to set up the constant in every
module that includes the #If directive. This limitation can make it difficult to remove all of the
#Const compiler directives to modify the code at the conclusion of development.

For instance, consider the situation where you want to use conditional compilation to include cer-
tain debugging statements and functions during the development cycle. Just before shipping the
application to its users, of course, you want to remove the compiler directives from the code so
that your users won’t see the message boxes, status bar messages, and other debugging informa-
tion. If your application consists of dozens of forms and modules, you have to make sure you find
every single instance of the #Const directive to make sure you successfully deactivated the debug-
ging code. (This is why it’s such a good idea to apply a naming convention to the identifiers you
use with the #Const directive.)

Fortunately, Access 2007 provides a way for you to set up “global” conditional compilation argu-
ments. The General tab of the Project Properties dialog contains a text box where you can enter
arguments to be evaluated by the conditional compilation directives in your code.

As an example, assume you’ve set up the following sort of statements in all the modules in your
application:

#If CC_DEBUG2 Then
MsgBox “Now in ProcessRecords()”

#End If

Rather than adding the constant directive (#Const CC_DEBUG2 = True) to every module in the
application, you might enter the following text into the Conditional Compilation Arguments text
box in the Advanced tab of the Options dialog:

CC_DEBUG2 = -1

This directive sets the value of CC_DEBUG2 to -1 (True) for all modules (global and form and
report class modules) in the application. You need only to change this one entry to CC_DEBUG2=0
to disable the debugging statements in all modules in the application. Please note that you do not
use the words True or False when setting compiler constants in the Project Properties dialog,
even though you use these values within a VBA code module.

The syntax of the conditional compilation arguments in the Project Properties dialog is tricky. It
does not recognize keywords such as True and False, and seems to accept only numeric argu-
ments. You cannot, therefore, use text strings, variables, or intrinsic constants as arguments.
Separate multiple arguments with colons.

382

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 382

Command-line arguments
The options dialog you open from the File menu (click on the large round Office button in the
upper left corner of the main Access window, and select the Access Options button in the File
menu) provides a number of interesting options. Click the Advanced tab and scroll down to the
Advanced section near the bottom of the dialog. Notice the Command-line arguments text box
at the very bottom of the Advanced section.

Many applications use command-line arguments to influence how the application behaves at runtime.
You could, for instance, add a command-line argument to an Access database application that indicates
whether the user was an experienced or novice user. The application might display help and other
assistance that is appropriate for the user’s experience level. (Use the Command function to return the
arguments portion of the command line used to start Access or the Access runtime environment.)

It’s always been difficult to pass a Windows application command-line arguments during develop-
ment. Windows requires command-line arguments to be passed as text in the Target text box of a
program icon’s property sheet. Figure 10-24 shows such a property sheet. The text /User Novice
in the Target text box is the command-line argument passed to the Access application as it starts up.

FIGURE 10-24

Adding a command-line argument to a shortcut pointing to a Windows application.

Before the Command-Line Arguments option was available there was no easy way to test the
effect of command-line arguments in your application. Use this option to test and debug the
command-line argument code you build into your applications.

383

VBA Programming Fundamentals 10

15_046732 ch10.qxp 11/21/06 8:51 AM Page 383

Do not forget to remove the text from this option before distributing your application to end users.
The text you enter in this option setting is persistent and will remain there until it is removed or
changed.

Use the Command function to return the arguments portion of the command line used
to start Access or the Access runtime environment. The Chapter10.accdb example

database includes frmCommandLine (see Figure 10-25), a demonstration of the Command function.
Use the Options dialog to set some command-line arguments for Chapter10.accdb; then click on
the button on frmCommandLine to see the how Command retrieves the arguments.

FIGURE 10-25

Chapter10.accdb includes frmCommandLine to demonstrate using command-line arguments in your
applications.

Summary
This chapter reviewed some of the important topics as you work with Access 2007 VBA. We took a
look at the fundamental concepts of creating VBA modules and procedures and touched on the
important topic of event-driven programming in Access 2007.

You also read that Access provides a large number of options and settings that influence how you
work with your modules and procedures. The good news is that you have a lot of options control-
ling the appearance and behavior of the code editor in Access 2007. There is no bad news about
writing code in Access 2007!

The With..End, With, and For Each constructs make it easy and efficient to traverse the mem-
bers of object collections. Named arguments give you a lot more flexibility in passing parameters to
functions and subroutines.

You continue your exploration of the VBA programming language in the next several chapters. In
Chapters 11 through 15 you learn virtually every fundamental skill necessary to succeed as a VBA
programmer. One important aspect of VBA programming is that it is a skill with no barriers. Your
abilities as an Access VBA programmer are completely transferable to any of the other Microsoft
Office products such as Word and Excel.

ON the CD-ROMON the CD-ROM

384

Programming Microsoft AccessPart II

15_046732 ch10.qxp 11/21/06 8:51 AM Page 384

All VBA applications require variables to hold data while the program
executes. Variables are like a white board where important informa-
tion can be temporarily written and read later on by the program.

For instance, when a user inputs a value on a form, you’ll most often use a
variable to temporarily hold the value until it can be permanently stored in
the database or printed on a report. Simply put, a variable is the name you’ve
assigned to a particular bit of data in your application. In more technical
terms, a variable is a named area in memory used to store values during pro-
gram execution.

Variables are transient and do not persist after an application stops running.
And, as you’ll read in the “Understanding variable scope and lifetime” sec-
tion, later in this chapter, a variable may last a very short time as the pro-
gram executes or may exist as long as the application is running.

In most cases, you assign a specific data type to each of the variables in your
applications. For instance, you may create a string variable to hold text data
such as names or descriptions. A currency variable, on the other hand, is
meant to contain values representing monetary amounts. You should not try
to assign a text value to a currency variable because a runtime error may
occur as a result.

The variables you use have a dramatic effect on your applications. You have a
lot options when it comes to establishing and using variables in your Access
programs. Inappropriately using a variable can slow an application’s execu-
tion or potentially cause data loss.

385

IN THIS CHAPTER
Using variables

Understanding the VBA data
types

Understanding subs and
functions

Creating VBA procedures

Creating functions

Calling procedures and functions

Passing parameters to
procedures and functions

Handling values returned from a
function

Mastering VBA Data Types
and Procedures

16_046732 ch11.qxp 11/21/06 8:51 AM Page 385

This chapter contains everything you need to know about creating and using VBA variables. The
information in this chapter helps you use the most efficient and effective data types in your vari-
ables while avoiding the most common problems related to VBA variables.

In addition to variables, we’ll take a look at a few more code editor options, working with VBA
procedures, and passing parameters to procedures.

The Access VBA Editor
We’ll be writing quite a bit of code in this chapter, and in the chapters that follow, and this seems
as good a place as any to discuss a few options when using the VBA code editor and writing VBA
code.

The Access 2007 Code editor (see Figure 11-1) supports a number of important features to help
you write and manage VBA code. For instance, any line of code ending in an underscore character
preceded by a space is recognized as a statement that is continued on the next line, making it easy
to see all of the constituents of very long VBA statements. Notice the statement that starts out If
SysCmd in Figure 11-1. This statement actually occupies two lines of code: the one containing the
If statement and the line immediately under it.

FIGURE 11-1

The continuation character is a welcome feature in the Access 2007 VBA editor.

If you use continuation characters (and you will, we’re sure!), be sure to indent the continued lines
of code. Being able to recognize continued lines of code without having to keep track of the con-
tinuation characters is important.

386

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 386

The line continuation in Access 2007 is quite powerful. You can split long declaration lines such as
Windows API declares (the Windows API is discussed in Chapter 30), and you can even split long
strings into multiple lines. One particularly powerful use of the continuation character is illustrated
later in this chapter (in Figure 11-14). In Figure 11-14, a long SQL statement is split across a num-
ber of lines of code. All that’s needed on each subsequent line is the concatenation character (&)
and as much of the string as you want to add on the line. Splitting long SQL statements this way
makes it easy to see what’s in the statement and, therefore, what fields end up in the resulting
recordset.

Most often, however, continuation characters are used to break long, complex statements across
multiple lines. Figure 11-2 shows an example of this use of the continuation character. In this fig-
ure, a long VBA statement that opens a new recordset is split into five lines of code. The continua-
tion characters are placed after the commas separating the elements contained in the complex
statement, making the statement easier to read and understand.

FIGURE 11-2

Use the continuation character to split long strings into multiple lines.

Another powerful feature of the Access code editor that is probably not evident in Figures 11-1 and
11-2 is the text colors used to set aside comments, keywords, and identifiers. Although it’s not obvi-
ous in this book’s figures, the comments in Figures 11-1 and 11-2 appear in a green font while the
VBA keywords like Function, Const, and If are blue. Identifiers like conObjStateClosed
and conDesignView, as well as the procedure name (IsLoaded) in Figure 11-1, are black.

You can adjust the editor font and text colors to suit your particular style. The Editor Format tab of
the code Options dialog box (Tools ➪ Options from the code editor) contains all of the options nec-
essary to select the font, font size, and colors for any number of different parts of the VBA syntax
(see Figure 11-3).

387

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 387

FIGURE 11-3

The Options dialog box contains plenty of settings that affect the VBA code window.

Another terrific feature of the Access 2007 code window is that the object drop-down list (shown
in Figure 11-4) is alphabetically sorted. If you use a naming convention in Access 2007, all of the
controls will be grouped by the control type. For instance, by using cmd as the prefix for command
buttons, all of the command buttons are sorted together in the object list.

FIGURE 11-4

The object list in the Access 2007 code window is sorted alphabetically.

388

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 388

Using Variables
One of the most powerful concepts in programming is the variable. A variable is a temporary stor-
age location for some value and is given a name. You can use a variable to store the result of a cal-
culation, or you can create a variable to make the control’s value available to another procedure.

To refer to the result of an expression, you use a variable’s name to store the result. To assign an
expression’s result to a variable, you use the = operator. Following are some examples of expres-
sions that assign values to variables:

counter = 1
counter = counter + 1
today = Date()

Figure 11-5 shows a simple procedure using several different variables.

FIGURE 11-5

Variable declarations are quite simple.

Although this is a very simple example of using variable, it effectively demonstrates just about
everything you need to know about using VBA variables:

n The Dim keyword establishes the new variables (strDocName and strCriteria)
within a procedure.

n A variety of techniques can be used to assign a value to a variable. Figure 11-5 uses the =
operator to assign a literal value (frmContactLog) to strDocName. Notice that
frmContactLog is surrounded by quotation marks, making it a “literal” value. A value
pulled from the txtContactID text box on the form’s surface is combined with a literal
string (“[ContactID]=”) and assigned to the strCriteria variable. The data assigned to
variables should always be appropriate for the variable’s data type.

389

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 389

n The Dim statement includes the data type of the new variable. In Figure 11-5, both vari-
ables are declared as the String data type.

n A variety of techniques can be used to assign a value to a variable. Figure 11-5 uses the =
operator to assign a literal value (frmContactLog) to strDocName. strCriteria is
assigned a value that is derived from a literal string and a value pulled from the
ContactID text box on the form’s surface. The data assigned to variables should always
be appropriate for the variable’s data type.

n Variables are manipulated with a variety of operators. Figure 11-5 uses the concatenation
operator (&) to combine =[ContactID] and the value in txtContactID.

There are a variety of ways to perform each of the tasks you see in Figure 11-5. For instance, as
you’ll read in the “Declaring variables” section later in this chapter, the Dim statement is not the
only way to establish a variable. The = operator is not the only way to assign a value to a variable
as you’ll see in many of the chapters in this book. Also, it isn’t necessary to use a variable like
strCriteria to temporarily hold the value generated by combining two values. The two values
could just as easily be combined on the fly within the DoCmd.OpenForm statement:

DoCmd.OpenForm “frmContactLog”, _
“[ContactID] = “ & Me![txtContactID]

There are very few rules governing how you declare and use your variables. You should always
strive for readability in your VBA code. In the small example shown in Figure 11-5, it’s easy to see
that strDocName holds the name of a form, especially because it is used as part of the
DoCmd.OpenForm statement.

Naming variables
Every programming language has its own rules for naming variables. In VBA, a variable name must
meet the following conditions:

n Must begin with an alphabetical character

n Must not contain an embedded period or type-declaration character

n Must have a unique name; the name cannot be used elsewhere in the procedure or in
modules that use the variables

n Cannot contain spaces or punctuation characters

n Cannot be a reserved word, such as Sub, Module, or Form

n Must be no longer than 64 characters

Although you can make up almost any name for a variable, most programmers adopt a standard
convention for naming variables. Some common practices include the following:

n Using a mix of uppercase and lowercase characters, as in TotalCost

n Using all lowercase characters, as in counter

390

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 390

n Preceding the name with the data type of the value; a variable that stores a number might
be called nCounter while a variable holding a string might be named strLastName

One source of endless confusion to Access developers is the fact that Access object names (tables,
queries, forms, and so on) may contain spaces, while variable names never include spaces. One
reason not to use spaces in Access object names is to eliminate the confusion that is possible when
mixing different naming conventions within a single applications. You really are better off being
consistent in how you apply names to your Access objects, variables, procedures, and other appli-
cation entities.

When creating variables, you can use uppercase, lowercase, or mixed-case characters to
specify the variable or call it later. VBA variables are not case-sensitive. This fact means

that you can use the TodayIs variable later without having to worry about the case that you used
for the name when you created it; TODAYIS, todayis, and tOdAyIs all refer to the same variable.
VBA automatically changes any explicitly declared variables to the case that was used in the declara-
tion statement (Dim statement).

When you need to see or use the contents of a variable, you simply reference its name. When you
specify the variable’s name, the computer program goes into memory, finds the variable, and gets
its contents for you. This process means, of course, that you need to be able to remember and cor-
rectly reference the name of the variable.

VBA, like many other programming languages, allows you to create variables on the fly. In the
Counter = 1 example, at the beginning of this section, the Counter variable was not declared
before the value 1 was assigned to it.

Declaring variables
There are two principle ways to add variables to your applications. The first method — called
implicit declaration — is to let VBA automatically create the variables for you. As with most things
that are not carefully controlled, you’ll find that letting VBA prepare your variables for you is not
necessarily a good idea and does not lead to the best performance or efficiency in your programs.
(See the “Comparing implicit and explicit variables” section, later in this chapter, for a comparison
of implicit declaration with the alternatives.)

Implicit declaration means that VBA automatically creates a variant data type variable for each
identifier it recognizes as a variable in an application. (Variants are discussed in the “Working with
Data Types” section, later in this chapter.) In the following listing, there are two implicitly declared
variables (strFirstName and strLastName).

Private Sub Combine_Implicit()
strFirstName = txtFirstName
strLastName = txtLastName
txtFullName = strFirstName & “ “ & strLastName

End Sub

TIPTIP

391

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 391

The second approach to declaring variables is to explicitly declare them with one of the following
keywords: Dim, Static, Private, or Public. The choice of keyword has a profound effect on
the variable’s scope within the application and determines where the variable can be used in the
program. (Variable scope is discussed in the “Understanding variable scope and lifetime” section
later in this chapter.)

The syntax for explicitly declaring a variable is quite simple:

Dim VariableName As DataType
Static VariableName As DataType
Private VariableName As DataType
Public VariableName As DataType

In each case, the name of the variable and its data type are provided as part of the declaration. VBA
reserves the amount of memory required to hold the variable as soon as the declaration statement
is executed. Once a variable is declared, it is not possible to change its data type, although it is
quite easy to convert the value of a variable and assign the converted value to another variable.

The following example shows the Combine_Implicit sub rewritten to use explicitly declared
variables.

Private Sub Combine_Explicit()
Dim strFirstName As String
Dim strLastName As String
strFirstName = txtFirstName.Text
strLastName = txtLastName.Text
txtFullName = strFirstName & “ “ & strLastName

End Sub

So, if there’s often very little difference between using implicit and explicit variables, why bother
declaring variables at all? The following code demonstrates the importance of using explicitly
declared variables in your applications.

Private Sub Form_Load()
Department = “Manufacturing”
Supervisor = “Joe Jones”
Title = “Senior Engineer”

‘Dozens of lines of code go here

txtDepartment = Department
txtSupervisor = Superviser
txtTitle = Title

End Sub

In this example code, the txtSupervisor text box on the form is always empty and is never
assigned a value. A line near the bottom of this procedure assigns the value of a variable to a text
box named txtSupervisor. Notice that the name of the variable (Superviser) is a mis-
spelling of the intended variable (Supervisor). Because the source of the assignment appears to
be a variable, VBA simply creates a new variant named Superviser and assigns it to the

392

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 392

txtSupervisor text box to it. And, because the new Superviser variable has never been
assigned a value, the text box always ends up empty. Misspellings such as this are very common
and easy to overlook in long or complex procedures.

Furthermore, the code shown in this example runs fine, and causes no problem. Because this pro-
cedure uses implicit variable declaration, Access raises no error because of the misspelling, and the
problem isn’t detected until someone notices the text box is always empty. Imagine the problems
you’d encounter in a payroll or billing application if variables go missing because of simple spelling
errors!

When you declare a variable, Access sets up a location in the computer’s memory for storing a
value for the variable ahead of time. The amount of storage allocated for the variable depends on
the data type you assign to the variable. More space is allocated for a variable that will hold a cur-
rency amount (such as $1,000,000) than for a variable that will never hold a value greater than,
say, 255. This is because a variable declared with the Currency data type requires more storage
than another variable declared as a Byte. Data types are discussed later in this chapter in the sec-
tion titled “Working with Data Types.”

Even though VBA does not require you to declare your variables before using them, it does provide
various declaration commands. Getting into the habit of declaring variables is good practice. A
variable’s declaration assures that you can assign only a certain type of data to it — always a
numeric value or only characters, for example. In addition, you attain real performance gains by
pre-declaring variables. A programming best practice is to declare variables at the top of the proce-
dure. This practice makes the program easier for other programmers to work with later on.

The Dim keyword
To declare a variable, you use the Dim statement (Dim is an abbreviation of the archaic Dimension
programming term — because you are specifying the dimension of the variable). When you use the
Dim statement, you must supply the variable name that you assign to the variable. The format for
the Dim keyword is:

Dim [VariableName] [As DataType]

The following statement declares the variable xBeeps as an Integer data type:

Dim xBeeps As Integer

Notice that the variable name follows the Dim statement. In addition to naming the variable, use
As DataType to specify a data type for the variable. The data type is the kind of information that
will be stored in the variable: String, Integer, Currency, and so on. The default data type is known
as variant; it can hold any type of data.

When you use the Dim statement to declare a variable in a procedure, you can refer to that variable
only within that procedure. Other procedures, even if they are stored in the same module, do not
know anything about the variable declared within a procedure. Such a variable is often described
as local because it is declared locally within a procedure and is known only by the procedure that
owns it (you’ll read more about variable scope later in this chapter).

393

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 393

Variables can also be declared in the declarations section of a module. Then all the procedures in
the module can access the variable. Procedures outside the module in which you declared the vari-
able, however, cannot read or use the variable.

The Public keyword
To make a variable available to all modules in the application, use the Public keyword when you
declare the variable. Figure 11-6 illustrates declaring a public variable.

FIGURE 11-6

Declaring a public variable

Notice that the statement is in the declarations section of the module. Public variables must be
declared in the declarations section of the module, and not within a procedure.

You cannot declare a variable public within a procedure. It must be declared in the dec-
larations section of a module. If you attempt to declare a variable public within a proce-

dure, you receive an error message.

Although you can declare a public variable in any module, it seems logical to declare public vari-
ables only within the module that will use them the most. The exceptions to this rule are true
global variables that you want to make available to all procedures across modules and that are not
specifically related to a single module. You should declare global variables in a single standard
module so that you can find them easily.

It is possible to declare public variables in the code module attached to a form or
report. Referencing these public variables from another module is a little bit different

than referencing public variables declared in standard modules. To reference the value of a public
variable declared behind a form or report from another module, you must qualify the variable refer-
ence, using the name of the form or report object. frmMainForm.MyVariable, for example,
accesses a form named frmMainForm and obtains the value of the variable MyVariable.

TIPTIP

CAUTION CAUTION

394

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 394

The Private keyword
The declarations section in Figure 11-6 shows the use of the Dim and Private statements to
declare variables. Technically, there is no difference between Private and Dim, but using
Private at the module level to declare variables that are available to only that module’s proce-
dures is a good idea. Declaring private variables does the following:

n Contrasts with Dim, which must be used at the procedure level, distinguishing where the
variable is declared and its scope (Module versus Procedure)

n Contrasts with Public, the other method of declaring variables in modules, making
understanding your code easier

You can quickly go to the declarations section of a module while you are working on
code in a form’s module by selecting (Declarations) from the Procedure drop-

down list in the upper right corner of the Code editor. Another way to move to the declarations sec-
tion is to select (General) in the Object drop-down list in the upper left corner of the Code editor.
Refer to the Module window combo boxes in Figure 11-6.

When you declare a variable, you use the AS clause to assign a data type to the variable. Because
Access is a database development system, it’s not surprising that variable data types are similar to
field data types in an Access database table.

Working with Data Types
When you declare a variable, you also specify the data type for the variable. All variables have a
data type. The type of variable determines what kind of information can be stored in the variable.

A string variable — a variable with a data type of string — can hold any character values ranging
from A to Z, a to z, and 0 to 1, as well as formatting characters (#, -, !, and so on). Once created,
a string variable can be used in many ways: comparing its contents with another string, pulling
parts of information out of the string, and so on. If you have a variable defined as a string, how-
ever, you cannot use it to do mathematical calculations. Conversely, you cannot assign a number to
a variable declared as a string.

Table 11-1 describes the 12 fundamental data types supported by VBA.

TIPTIP

395

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 395

TABLE 11-1

VBA Data Types

Data Type Range Description

Boolean True or false 2 bytes

Byte 0 to 255 1-byte binary data

Currency –922,337,203,685,477,5808 to 8-byte number with fixed
922,337,203,685,477,5807 decimal point

Decimal +/-79,228,162,514,264,337,593,543,950,335 14 bytes
with no decimal point
+/-7.9228162514264337593543950335
with 28 places to the right of the decimal;
smallest non-zero number is
+/0.0000000000000000000000000001

Date 01 Jan 100 to 31 Dec 9999 8-byte date/time value

Double –1.79769313486231E308 to 8-byte floating-point number
–4.94065645841247E–324 for negative values
and 4.94065645841246544E-324 through
1.79769313486231570E+308 for positive values

Integer –32,768 to 32,767 2-byte integer

Long –2,147,483,648 to 2,147,483,647 4-byte integer

Object Any object reference 4 bytes

Single negative values: –3.402823E38 to 4-byte floating-point number
–1.401298E –45 positive values: 1.401298E –45 to
3.402823E38

String 0 to approximately 2,000,000,000 Varies by size of data
(variable-length)
10 bytes plus
length of string

String 1 to approximately 65,400 Length of string
(fixed-length)

Variant Any numeric value up to the range of Double 16 bytes
(with numbers)

Variant 0 to approximately 2,000,000,000 Varies by size of data
(with characters)
22 bytes plus
length of string

396

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 396

Most of the time, you use the String, Date, Integer, and Currency or Double data types. If a variable
always contains whole numbers between –32,768 and 32,767, you can save bytes of memory and
gain speed in arithmetic operations if you declare the variable an integer type.

When you want to assign the value of an Access field to a variable, you need to make sure that the
type of the variable can hold the data type of the field. Table 11-2 shows the corresponding VBA
data types for Access field types.

TABLE 11-2

Comparative Access and VBA Data Types

Access Field Data Type VBA Data Type

AutoNumber (Long Integer) Long

AutoNumber (Replication ID) —

Currency Currency

Computed —

Date/Time Date

Memo String

Number (Byte) Byte

Number (Integer) Integer

Number (Long Integer) Long

Number (Single) Single

Number (Double) Double

Number (Replication ID) —

OLE object String

Text String

Hyperlink String

Yes/No Boolean

Now that you understand variables and their data types, you’re ready to learn how to use them in
writing procedures.

Comparing implicit and explicit variables
The default data type for VBA variables is the variant. This means that, unless you specify other-
wise, every variable in your application will be a variant. As you read earlier in this chapter, the

397

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 397

variant data type is not very efficient. Its data storage requirements are greater than the equivalent
simple data type (a string, for instance) and the computer spends more time keeping track of the
data type contained in a variant than for other data types.

Here’s an example of how you might test for the speed difference when using implicitly declared
variant variables and explicitly declared variables. This code is found behind frmImplicitTest
in Chapte11.accdb:

‘Use a Windows API call to get the exact time:
Private Declare Function GetTickCount _

Lib “kernel32” () As Long

Private Sub cmdGo_Click()
Dim i As Integer
Dim j As Integer
Dim sExplicit As Single

txtImplicitStart = timeGetTime()

For o = 1 To 10000
For p = 1 To 10000
q = i / 0.33333

Next p
Next o

txtImplicitEnd = timeGetTime()

txtImplicitElapsed = txtImplicitEnd - txtImplicitStart

DoEvents

txtExplicitStart = timeGetTime()

For i = 1 To 10000
For j = 1 To 10000
sExplicit = i / 0.33333

Next j
Next i

txtExplicitEnd = timeGetTime()
txtExplicitElapsed = txtExplicitEnd - txtExplicitStart

End Sub

In this small test, the loop using implicitly declared variables required approximately 7.2 seconds
to run while the loop with the explicitly declared variables required only 5.6 seconds. This is a per-
formance enhancement of approximately 20 percent just by using explicitly declared variables.

398

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 398

Forcing explicit declaration
Access provides a simple compiler directive that forces you to always declare the variables in your
applications. The Option Explicit statement, when inserted at the top of a module, instructs
VBA to require explicit declaration of all variables in the module. If, for instance, you’re working
with an application containing a number of implicitly declared variables, inserting Option
Explicit at the top of each module results in a check of all variable declarations the next time
the application is compiled.

Since explicit declaration is such a good idea, it may not come as a surprise that Access provides a
way to automatically ensure that every module in your application uses explicit declaration. The
Editor tab of the Options dialog box shown in Figure 11-7 includes a Require Variable Declaration
check box. This option automatically inserts the Option Explicit directive at the top of very
module created after from this point in time onward.

FIGURE 11-7

Requiring variable declaration is a good idea in most Access applications.

The Require Variable Declaration option does not affect modules already written. This option
applies only to modules created after this option is selected, so you’ll have to insert the Option
Explicit directive in existing modules. As mentioned earlier in this chapter, Require Variable
Declaration is not set by default in Access 2007. You must set this option yourself to take
advantage of having Access add Option Explicit to all your modules.

Using a naming convention
Like most programming languages, applications written in VBA tend to be quite long and complex,
often occupying thousand lines of code. Even simple VBA programs may require hundreds of dif-
ferent variables. VBA forms often have dozens of different controls on them, including text boxes,
command buttons, option groups, and other controls. Keeping track of the variables, procedures,
forms, and controls in even a moderately complicated VBA application is a daunting task.

399

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 399

One way to ease the burden of managing the code and objects in an application is through the use
of a naming convention. A naming convention applies a standardized method of supplying names to
the objects and variables in an application.

The most common naming convention used in Access applications uses a three- or four-character
prefix (a tag) attached to the base name of the objects and variables in a VBA application. For
instance, a text box containing a person’s last name might be named txtLastName, while a com-
mand button that closes a form would be named cmdClose.

The names for variables follow a similar pattern. The string variable holding a customer name
might be named strCustomer and a Boolean variable indicating whether the customer is cur-
rently active would be either boolActive or fActive (the f indicates a flag value).

Using a naming convention is not difficult. The code in this book uses one- and three-character
prefixes exclusively. In most cases, when the use of the variable is obvious, a one-character prefix is
used (for instance, sLastName) to keep code examples short and simple. In longer procedures,
three-character prefixes are used on most variables. Most of the controls on the Access forms in the
projects on this book’s CD use three-character prefixes.

This simple naming convention even helps you select the most logical name to apply to the vari-
ables and objects in your applications. In virtually every case, you’ll assign a name to a variable or
object based on how that item is used in the application. In other words, using a naming conven-
tion encourages names based on the functionality provided by the variables and objects in your
applications. After all, you should not be adding to an application variables and objects that do not
have specific jobs to perform.

Understanding variable scope and lifetime
A variable is more than just a simple data repository. Every variable is a dynamic part of the applica-
tion and may be used at different times during the program’s execution. The declaration of a variable
establishes more than just the name and data type of the variable. Depending on the keyword used
to declare the variable and the placement of the variable’s declaration in the program’s code, the vari-
able may be visible to large portions of the application’s code. Alternatively, a different placement
may severely limit where the variable can be referenced in the procedures within the application.

Examining scope
The visibility of a variable or procedure is called its scope. A variable that can be seen and used by
any procedure in the application is said to have public scope. Another variable, one that is usable
by a single procedure is said to have scope that is private to that procedure.

There are many analogies for public and private scope. For instance, a company is likely to have a
phone number that is quite public (the main switchboard number) and is listed in the phone book.
In addition to the main switchboard number, each office or room within the company may have its
own extension number that is private within the company. A large office building will have a pub-
lic street address that is known by anyone passing by the building. Each office or suite within the
building will have a number that is private within that building.

400

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 400

Variables declared within a procedure are local to that procedure and cannot be used or referenced
outside of that procedure. Most of the listings in this chapter have included a number of variables
declared within the procedures in the listings. In each case, the Dim keyword was used to define
the variable. Dim is shorthand for dimension and is a rather archaic expression that is an instruction
to VBA to allocate enough memory to contain the variable that follows the Dim keyword.
Therefore, Dim intMyInt As Integer allocates less memory (2 bytes) than Dim dblMyDouble
As Double (8 bytes). There is no way to make a variable declared within a procedure visible out-
side of that procedure.

The Public keyword makes a variable visible throughout an application. Public can only be
used at the module level and cannot be used within a procedure. Most often, the Public keyword
is used only in standard (standalone) modules that are not part of a form. Figure 11-8 illustrates
variables declared with three very different scopes.

Every variable declared in the general section of the standard module is public throughout the
application unless the Private keyword is used. Private restricts the visibility of a variable to
the module in which the variable is declared. In Figure 11-8, the X1 integer declared with Public
scope at the top of the module will be seen everywhere in the application while the Private Y1
integer declared in the next statement is accessible only within the module.

A bit farther down in Figure 11-8, you see two procedures (A and B). Each procedure declares a
variable that is usable only from within the procedure. In Procedure A, you see a variable named
X2 declared as an integer and assigned the value 99. Just below this assignment is a reference to
the Y1 variable defined at the top of the module. This is the variable that is accessible only from
within the module. Procedure B defines an integer variable named Y2 and assigns it a value of 55.
The X1 variable in Procedure B that is assigned the 19 value is the public X1 variable declared at
the top of the module.

FIGURE 11-8

Variable scope is determined by the variable’s declaration.

Standard Module A

Procedure A

Public X1 As Integer
Private Y1 As Integer

Dim X2 As Integer
X2 = 99
Y1 = 12

Procedure B

Dim Y2 As Integer
Y2 = 55
X1 = 19

401

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 401

Determining a variable’s lifetime
Variables are not necessarily permanent citizens of an application. Just as their visibility is deter-
mined by the location of their declaration, their lifetime is determined by their declaration as well.
A variable’s lifetime determines when it is accessible to the application.

By default, procedure-level variables exist only while the procedure is executing. As soon as the
procedure ends, the variable is removed from memory and is no longer accessible. As already dis-
cussed, the scope of procedure-level variables is limited to the procedure and cannot be expanded
beyond the procedure’s boundaries.

A variable declared in the declarations section of a form’s module exists as long as the form is open.
All of the procedures within the form’s module can use the module-level variables as often as they
need, and they all share the value assigned to the variable. When the form is closed and removed
from memory, all of its variables are removed as well.

The greatest variable lifetime is experienced by the variables declared in public (standard) modules.
These variables are available as soon as the VBA application starts up, and they persist until the
program is shut down and removed from memory. Therefore, public variables retain their values
throughout the application and are accessible to any of the procedures within the program. Private
variables (declared with the Private keyword) declared at the top of standard modules endure
throughout the application, but following the rules of variable scope, are accessible only from
within the module.

There is one major exception to the general rule that procedure-level variables persist only as long
as the procedure is running. The Static keyword makes a variable persist between calls to the
procedure. Once a value has been assigned to a static variable, that variable retains that value until
it is changed in another call to the procedure.

An alternative to using static variables is to declare a global or module-level variable and use it each
time a particular procedure is called. The problem with this approach is that a global or module-
level variable is accessible to other procedures that are also able to modify its value. You can expe-
rience undesirable side-effect bugs by unwittingly changing the value of a widely scoped variable
without realizing what has happened. Because of their procedure-limited scope, static variables are
one way to avoid side-effect bugs.

Incidentally, declaring a procedure with the Static keyword makes all variables in the procedure
static as well. In the following listing, both variables (intStatic and intLocal) in the
StaticTest2 sub are static, in spite of their local declarations within the procedure. The
Static keyword used in the procedure’s heading makes them both static.

Private Static Sub StaticTest2()
Dim intStatic As Integer
Dim intLocal As Integer

intStatic = intStatic + 1

402

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 402

intLocal = intLocal + 1

txtStatic = intStatic
txtLocal = intLocal

End Sub

Understanding Subs and Functions
The code in a VBA application lives in containers called modules. As you learned in Chapter 10,
modules exist behind the forms in an Access application as well as in standalone modules. The
modules themselves contain many procedures, variable and constant declarations, and other direc-
tives to the VBA engine.

The code within the modules is composed of procedures. There are two main types of procedures
in VBA: subroutines or subprocedures (often called subs) and functions.

The general rules for procedures include the following:

n You must give the procedure a unique name within its scope (see “Understanding variable
scope and lifetime,” earlier in this chapter). Although it is not a good idea because of the
chance of confusing the VBA engine or another person working with your code, it is pos-
sible to have more than one procedure with the same name, as long as the name is
unique within each procedure’s scope.

n The name you assign to a procedure cannot be the same as a VBA keyword or the name
of a built-in VBA procedure.

n A procedure can’t contain other procedures within it. A procedure can, however, call
another procedure and execute the code in the other procedure at any time.

Because of the rules governing procedure scope, you cannot have two public procedures both
named MyProcedure, although you could have two private procedures, both named
MyProcedure, or one public procedure named MyProcedure and one private procedure named
MyProcedure. The reason why it’s a bad idea to use the same procedure name for multiple proce-
dures, even when the procedures have different scopes, should be obvious.

The following sections cover some of the specifics regarding VBA procedures. Planning and com-
posing the procedures in your modules is the most time-consuming part of working with VBA;
therefore, it’s important to understand how procedures fit into the overall scheme of application
development.

Subroutines and functions both contain lines of code that you can run. When you run a subroutine
or function, you call it. Calling, running, and invoking are all terms meaning to execute (or run) the
statements (or lines of code) within the procedure or function. All of these terms can be used inter-
changeably (and they will be, by different developers). No matter how you invoke a VBA proce-
dure — using the Call keyword, referencing the procedure by its name, or running it from the

403

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 403

Immediate window, they all do the same thing — which is to cause lines of code to be processed,
run, executed, or whatever you want to call it.

The only real difference between a procedure and a function is that a function returns a value when
called. Returning a value means that the function generates a value when it runs, and makes the
value available to the code that called it. You can use a Boolean function to return a True or False
value indicating, for example, where the operation it performed was successful. You could see if a
file exists, if a value was greater than another value, or anything you choose. Function return dates,
numbers, or strings. Functions can even return complex data types such as recordsets. In one of
the examples in Chapter11.accdb, a function named CalcTax calculates the tax amount for an
invoice and returns the value so that it can be placed into the tax control.

A subprocedure does not return a value. However, although a function directly returns a value to a
variable created as part of the function call, there are other ways for functions and subprocedures
to communicate values to form controls or declared variables in memory.

Understanding where to create a procedure
You create procedures in one of two places:

n In a standard VBA module

n Behind a form or report

You create a subprocedure or function in a standard module when the procedure will be shared by
events in more than one form or report or by an object other than a form or report (queries can use
functions to handle very complex criteria).

If the code you are creating will only be called by a single procedure or form, the subprocedure or
function should be created in the form or report’s module.

A module is a container for multiple subprocedures and functions.

Calling VBA procedures
VBA procedures are called in a variety of ways and from a variety of places. They can be called
from events behind forms and reports or they can be placed in module objects and called by sim-
ply using their name or by using the Call statement. Here are some examples:

SomeSubRoutineName

Call SomeSubRoutineName

Somevalue = SomeFunctioName

NOTENOTE

404

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 404

Only functions return values that may be assigned to variables. Subprocedures are simply called,
do their work, and end. Although functions return a single value, both subprocedures and func-
tions can place values in tables, in form controls, or even in public variables available to any part of
your program. You will see several examples of different ways to use subprocedures and functions
in this chapter.

Creating subs
Conceptually, subroutines are easy to understand. A subroutine (usually called a sub, and sometimes
called a subprocedure) is a set of programming statements that is executed as a unit by the VBA
engine. VBA procedures can become complex, so this elementary description of subroutines is
quickly overwhelmed by the actual subroutines you’ll compose in the Visual Basic Code window.

Figure 11-9 shows a typical subroutine. Notice the Sub keyword that begins the routine, followed
by the name of the subroutine. The declaration of this particular subroutine includes the Private
keyword, which restricts the availability of this subroutine to the module containing the subroutine.

FIGURE 11-9

A typical subroutine in an Access application

405

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 405

The subroutine you see in Figure 11-9 contains most of the components you’ll see in almost every
VBA sub or function:

n Declaration: All procedures must be declared so that VBA knows where to find them. The
name assigned to the procedure must be unique within the VBA project. The Sub key-
word identifies this procedure as a subroutine.

n Terminator: All procedures must be terminated with the End keyword followed by the
type of procedure that is ending. In Figure 11-9, the terminator is End Sub.

n Declarations area: Although variables and constants can be declared within the body of
the procedure, good programming conventions require variables to be declared near the
top of the procedure where they’ll be easy to find.

n Statements: A VBA procedure can contain many statements. Usually, however, you’ll
want to keep your VBA procedures small to make debugging as painless as possible. Very
large subroutines can be difficult to work with, and you’ll avoid problems if you keep
them small. Instead of adding too many features and operations in a single procedure,
place operations in separate procedures and call those procedures when those operations
are needed.

At the conclusion of the subroutine in Figure 11-9, program flow returns to the code or action that
originally called the sub. In this particular case, this subroutine runs in response to the form’s
Load event.

The first procedure you create in this chapter retrieves several values from the cboBuyerID
combo box columns and uses them in the form. The RowSource of the cboBuyerID combo box
contains six active columns, which are as follows:

VBA Column Number Value

0 Name: tblContacts.LastName & “, “ & : tblContacts.FirstName

1 Company (from tblContacts)

2 DiscountPercent (from tblTaxRates)

3 TaxRate (from tblTaxRates)

4 TaxLocation (from tblContacts)

5 ContactID (from tblContacts). This is the bound column of this combo box.

Combo-box row sources start with column 0, so column 2 is the third column in the
row source.

The objective of this exercise is to learn about procedures, but it also serves to teach you some
additional VBA commands. The code should be entered into the cboBuyerID AfterUpdate
event.

NOTENOTE

406

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 406

To create an Event Procedure in a form, follow these steps:

1. Select cboBuyerID in frmSales Design view.

2. Press F4 to display the Property window for the control.

3. Click in the After Update event in the Event tab of the property sheet and select
[Event Procedure] from the After_Update event’s drop-down list.

4. Press the builder button (...) to open the VBA Code editor.

5. Enter the following code into the VBA window, as shown in Figure 11-10.

Me.Recalc
If Not IsNull(Me!cboBuyerID) Then

‘Verify that the DiscountPercent is valid:
If Not IsNull(Me!cboBuyerID.Column(2)) Then
‘Get the DiscountPercent from Column 2:
Me!txtDiscountRate = _

Format(Me!cboBuyerID.Column(2),”Percent”)
‘Get the Tax Location from Column 4:
Me!txtTaxLocation = nz(Me!cboBuyerID.Column(4))
‘Get the Tax Rate from Column 3:
Me!txtTaxRate = nz(Me!cboBuyerID.Column(3),0)

End If
Else
‘Invalid data found in the combo box,
‘so set all the text boxes to Null:
Me!txtDiscountRate = Null
Me!txtTaxLocation = Null
Me!txtTaxRate = Null

End If

6. Select Compile Chapter11 from the Debug menu in the Code editor to check your
syntax.

7. Close the VBA window and return to the frmSales form.

The code first performs a Recalc on the form to update any values that may be in an incomplete
state, like a buyer ID in the process of being selected or a line item that was in the process of being
selected when the combo box was used. Any time you are doing data entry and need code to run
to perform some process, it is a good idea to first run the form’s Recalc command. The Me.
refers to the current form and substitutes in this example for Forms!frmSales!.

The first IF statement checks to make sure a buyer ID was selected by making sure the current
value of the combo box’s bound column (ContactID) is not null. If it is not (a valid value was
selected in the combo box), a second IF statement checks to make sure that not only the value of
cboBuyerID is valid but also that the value of the third column (DiscountPercent) is not null.

If the DiscountPercent column (column 2) is valid, the values from that and other combo-box
columns are used to fill controls on the form.

407

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 407

Notice the nz function on front of the statements that retrieve the value from column 3 and
column 4 of the combo box. The nz function (“null to zero”) prevents null or zero length
string errors. For example, the following statement may cause an error if the value of
Me!cboBuyerID.Column(4) is null:

Me!txtTaxLocation = nz(Me!cboBuyerID.Column(4))

The nz function around the right side of the equation sets it to a blank if the value is null.

The following line uses an alternative value to the default blank:

Me!txtTaxRate = nz(Me!cboBuyerID.Column(3),0)

This line of code sets the value of the equality to 0 if the third column in null.

Figure 11-10 shows the procedure created in the code editor after entering the procedure
described earlier. After you complete entering these statements, press the Save button on the tool-
bar to save your code before closing the VBA window.

FIGURE 11-10

The frmSales cboBuyerID AfterUpdate event procedure in the VBA code window

The procedure behind this form runs each time the value of the cboBuyerID combo box changes.
When the user changes the value of the buyer ID combo box, this code updates the value of the tax
location and tax rate. However, you must then change the value of the tax amount. This code can
now be added to this procedure. Later, you make a separate procedure from this new code.

408

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 408

Creating Functions
Functions differ from subprocedures in that functions return a single value. In these examples,
you’ll create functions to calculate the extension for a single line item, create a function to calculate
the total of all the taxable line items, and then apply the current tax rate to that value.

Although functions can be created behind individual forms or reports, usually they are created in
modules. This first function will be created in a new module that you will name
basSalesFunctions. To do this, follow these steps:

1. Select the Modules tab in the Navigation Pane.

2. Right-click the basSalesFunctions module and select Design view from the con-
text menu.

The VBA window is displayed with the title basSalesFunctions (Code) in the title bar.

3. Move to the bottom of the module, and enter the following code:

Private CalcExtension(_
Quantity As Integer, _
Price As Currency, _
DiscountPercent As Double _
) As Currency

Dim Extension As Currency

Extension = Quantity * Price

CalcExtension = Extension - (Extension * DiscountPercent)

End Function

The first statement declares the variable Extension as the Currency data type. The
Extension variable is used in an intermediate step. The next line of code creates a calculation
assigning the product of two variables, Quantity and Price, to the previously declared variable,
Extension. You might notice that the two variables on the right side of the equation are not
declared.

Finally, the last line of code performs one more calculation to take the extension and apply any dis-
count to it. The function’s name is treated as if it is a variable and is assigned the value of the calcu-
lation. This is how a function gets the value that is returned to the calling program.

Handling parameters
Now, the question you should be asking is: Where are these variables coming from and how are
they declared? The answer is simple. They are the passed parameters from the original function
call.

409

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 409

The next step is to modify the Function statement at the top to handle the passed parameters
and the returned data type.

Before you can create variables for the passed parameters, you must know what parameters are
being passed. In this example, three parameters are passed.

Parameter Name Data Type

Quantity Integer

Price Currency

DiscountPercent Double

These parameter names can be anything you want them to be. Think of them as variables you would
normally declare. All that is missing is the Dim statement. They do not have to be the same name as
the variables used in the call to the function. Very often, you’ll pass the names of fields in a table or
controls on a form or variables created in the calling procedure as parameters to a procedure.

These variables are passed and their data types declared by placing them in parentheses after the
function name with the syntax variable name as data type.

For example:

Public Function SomeProcedureName(var1 as datatype1, _
var2 as datatype2)

For this example, you will change the first line as described in the following steps:

1. Replace the original Public Function CalcExtension statement with:

Public Function CalcExtension(_
Quantity As Integer, _
Price As Currency, _
DiscountPercent As Double _
) As Currency

2. Select Compile Chapter11 from the Debug menu to check your code.

3. Correct any errors you might find and then close the VBA window.

4. Save the module as basSalesFunctions.

Each parameter is listed in the form var1 as datatype1 separated by commas. In this exam-
ple, there are three parameters (Quantity, Price, and DiscountPercent). Each one
corresponds to the table previously shown. After the parentheses, the data type declara-
tion of the value is passed back to the calling program. CalcExtension is the name of
the function and the variable, and its data type will be Currency.

Your screen should look like the one shown in Figure 11-11.

410

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 410

FIGURE 11-11

The completed CalcExtension function

Calling a function and passing parameters
Now that you have completed the function, it’s time to test it.

Normally, a function call comes from a form or report event or from another procedure, and the
call passes variables or the value of a control on a form or report. However, the function call may
not even use variables. For example, you can test this function by going to the immediate window
and using hard-coded numbers or characters known as literals.

Follow these steps to test the function:

1. Press Ctrl+G to display the Immediate window.

2. Enter ?CalcExtension(5, 3.50, .05).

This statement passes the values as 5, 3.50, and .05 (5%) to the Quantity, Price, and
DiscountPercent parameters, respectively. CalcExtension returns 16.625 using
those values, as shown in Figure 11-12.

3. Close the Immediate window and the VBA window and return to the Database
window.

FIGURE 11-12

Testing the CalcExtension function in the Immediate window

411

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 411

The next task is to use the function to calculate the extension. You can add a call to the function
from the frmSales form’s line item subform’s Amount field. You can display the frmSales form
in Design view, and then click into the fsubSalesLineitems subform, and finally click into the
txtAmount control in the subform. Display the Property window and enter the following into the
Control Source property, as shown in Figure 11-13.

=CalcExtension(Nz(txtQuantity,0),Nz(txtPrice,0),Nz(txtDiscountPercent,0))

This expression passes the values from three controls (txtQuantity, txtPrice, and
txtDiscountPercent) in the subform to the CalcExtension function in the module and
returns the value back to the control source of the txtAmount control each time the line is recal-
culated or any of the parameters change.

FIGURE 11-13

Adding a function call to the Control Source of a control

Of course, entering a function call or any expression into the control source of a control makes the
control read-only. In this example, it is also an unbound control. There is no field in the
tblSalesLineItems table that the txtAmount control is bound to. This is by design. Because
the quantity, price, or discount can be changed, all three places would need to trigger a change to
the amount.

Our business rule is that this value should always be calculated, and the user can enter the quan-
tity and item number, override the price retrieved from the inventory table, and override the dis-
count retrieved from the contacts table, but the calculation of extended amount (quantity * price *
discount) is always used.

412

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 412

The CalcExtension function can be used in a variety of ways by other events within this form
and by any form or report, because it lives in a module. If it were created behind the frmSales
form, it would be accessible from only that form.

Creating a Function to Calculate Taxes
When you create a line item, you determine whether it is taxable. You can then add up all the
extensions for all the taxable line items to determine the taxable total. This total can then be multi-
plied by the tax rate to determine the tax.

The Access Auto Auctions sales form (frmSales) includes a text box control for the tax amount.
You could simply create an expression for the control’s value such as:

=fSubSalesLineitems.Form!txtTaxableTotal * txtTaxRate

This expression references (txtTaxableTotal) in the subform (fSubSalesLineitems) and
multiplies it by the tax rate (txtTaxRate) from the main form (frmSales).

However, although this expression displays the value of the tax, the expression entered into the
txtTaxAmount control would make the txtTaxAmount control read-only because it contains
an expression. You would not be able to override the calculated amount if you wanted to. The tax
applied to a sale is one of the fields that needs to be changed once in a while for specific business
purposes.

A better way than using a hard-coded expression is to create a function to calculate a value and
then place the value of the calculation in the control. This way, you can simply type over the calcu-
lated value if needed.

You could enter the following line of code at the end of the cboBuyerID AfterUpdate event
code you created previously. This way, each time you choose a new contact on the sales form, the
tax is recalculated after the contact’s tax rate is retrieved on the frmSales form.

Me.txtTaxAmount = _
Me.fSubSalesLineitems.Form!txtTaxableTotal * Me.txtTaxRate

You could also enter this line of code in the AfterUpdate events behind the Quantity, Price,
DiscountPercent, and chkTaxable controls. Each time the value in any of these controls
changes, the value of the tax is updated. Actually, better would be to place this statement in the
AfterUpdate event of fsubSalesLineitems. This way, the tax is recalculated each time a
value is updated in any record of this form. Because fsubSalesLineitems is displayed as a
datasheet, the AfterUpdate event fires as soon as the user moves to another line in
fsubSalesLineitems.

Although you can use a simple expression that references controls on forms and subforms, this
only works behind the form containing the code. Suppose you also need to calculate tax in other
forms or in reports. There is a better way than relying on a form.

413

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 413

This is an old developer’s expression: “Forms and reports lie; tables never lie.” This means that the
controls of a form or report often contain expressions, formats, and VBA code that may make a
value seem to be one thing when the table actually contains a completely different value. The table
containing the data is where the real values are stored and from where calculations and reports
should retrieve data.

Figure 11-14 shows the CalcTax function. You can go to the basSalesFunctions module in
Chapter11.accdb and enter this code into the basSalesFunctions module.

FIGURE 11-14

The CalcTax function

The function is called from the AfterUpdate events behind the txtQuantity, txtPrice, or
txtDiscountPercent controls in the subform. The CalcExtension function calculates the
sum of the taxable line items from the tblSalesItems table. The SQLstatement combined
with a bit of ADO code to determine the total. The calculated total amount is then multiplied by
the dblTaxPercent parameter to calculate the tax. The tax is set to the variable CalcTax (the
name of the expression).

Functions and subprocedures are important to the concepts of reusable code within an
application. You should try to use functions and subprocedures and pass them parame-

ters every time you can. A good rule is this: The first time you find yourself copying a group of code,
it’s time to create a procedure or function.

TIPTIP

414

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 414

Named arguments
Another significant feature of Access VBA is the use of named arguments for procedures. Without
named arguments, the arguments passed to procedures must appear in the correct left-to-right
order. With named arguments, you provide a name of each parameter passed to a subroutine or
function. The subroutine or function uses the argument based on its name rather than on its posi-
tion in the argument list. The following example illustrates this principle.

Assume your application includes the function shown here:

Function PrepareOutput(sStr1 As String, sStr2 As String, _
sStr3 As String) As String

PrepareOutput = sStr1 & “ “ & sStr2 & “ “ & sStr3

End Function

This function, of course, does nothing more than concatenate sStr1, sStr2, and sStr3 and
return it to the calling routine. The next example shows how this function might be called from
another procedure.

Private Sub cmdForward_Click()
txtOutput = PrepareOutput(txtFirstName, _

txtLastName, txtHireDate)
End Sub

The arguments required by PrepareOutput() must be passed in left-to-right order. The results
of this function are shown in Figure 11-15. The text in the Function output text box in the upper-
right corner of this form shows the arguments in the order in which they appear in the text boxes
on the left side of this form.

FIGURE 11-15

frmNamedArguments demonstrates the value of using named arguments in VBA procedures.

In Access 2007, arguments can be specified by name as we pass them to functions. Naming argu-
ments makes them position-independent. Examine the code in the following list to see how named
arguments work.

415

Mastering VBA Data Types and Procedures 11

16_046732 ch11.qxp 11/21/06 8:51 AM Page 415

Private Sub cmdBackward_Click()
txtOutput = PrepareOutput(sStr2:=txtLastName, _

sStr3:=txtFirstName, sStr1:=txtHireDate)
End Sub

The thing to notice in cmdBackward_Click is that the arguments are not passed to
PrepareOutput() in a specific order. As long as the names assigned to the arguments in this
procedure match the names of the arguments expected by PrepareOutput(), Access VBA cor-
rectly uses the arguments in PrepareOutput().

The Chapter11.accdb example database includes the frmNamedArguments
you see in Figure 11-15 and Figure 11-16. The two buttons below the Function

output text box pass the text from the First Name, Last Name, and Hire Date text boxes to the
PrepareOutput() function using positional and named arguments.

FIGURE 11-16

PrepareOutput() is able to use arguments submitted in any order as long as they’re named.

Summary
Building on the fundamentals presented in Chapter 10, this chapter took a closer — and longer —
look at using VBA to build subprocedure and functions. You also saw many more ways to use VBA
variables and data types in your Access applications.

We looked at some of the differences between subprocedures (or subroutines, if you prefer) and
functions, passing parameter to procedures, and returning values from functions. Mastering the
skills necessary to create strong VBA procedures, and correctly using the many different VBA vari-
able types is an essential step towards building bulletproof Access applications.

ON the CD-ROMON the CD-ROM

416

Programming Microsoft AccessPart II

16_046732 ch11.qxp 11/21/06 8:51 AM Page 416

When working with a database system, the same tasks may be per-
formed repeatedly. Instead of doing the same steps each time,
you can automate the process with VBA.

Database management systems continually grow as you add records in a
form, build new queries, and create new reports. As the system grows, many
of the objects are saved for later use — for a weekly report or monthly
update query, for example. You tend to create and perform many tasks repet-
itively. Every time you add contact records, for example, you open the same
form. Likewise, you print the same form letter for contacts that have pur-
chased a vehicle in the past month.

You can create VBA code throughout your application to perform these tasks.
The VBA language offers a full array of powerful commands for manipulating
records in a table, controls on a form, or just about anything else. This chap-
ter continues the previous chapters’ discussions of working with procedures
in forms, reports, and standard modules.

In this chapter, you will use the database file
Chapter12.accdb. Please copy this database file from

the book’s CD if you wish to follow along with the examples presented in this
chapter.

Programming Events
An Access event is the result or consequence of some user action. An Access
event occurs when a user moves from one record to another in a form, closes
a report, or clicks on a command button on a form. Even moving the mouse
generates a continuous stream of events.

ON the CD-ROMON the CD-ROM

417

IN THIS CHAPTER
Understanding how events work

Learning how events are
triggered

Understanding how event
procedures work

Responding to events in forms
and reports

Creating event procedures for
forms

Creating event procedures for
reports

Working with message boxes

Using variables and data types

Working with Visual Basic logical
constructs

Understanding the
Access Event Model

17_046732 ch12.qxp 11/21/06 8:52 AM Page 417

Access applications are event-driven. Access objects respond to many types of events. Access
events are hooked into specific object properties. For example, checking or unchecking a check
box triggers a MouseDown and a MouseUp event. These events are hooked into the check box
through the OnMouseDown and OnMouseUp properties, respectively. You use VBA to compose
event procedures that run whenever the user clicks on the check box.

Access events can be categorized into seven groups:

n Windows (Form, Report) events: Opening, closing, and resizing

n Keyboard events: Pressing or releasing a key

n Mouse events: Clicking or pressing a mouse button down

n Focus events: Activating, entering, and exiting

n Data events: Making current, deleting, or updating

n Print events: Formatting and printing

n Error and timing events: Happening after an error has occurred or some time has passed

In all, Access supports more than 50 different events that can be harnessed through VBA event
procedures.

Of these types of events, by far the most common are the keyboard and mouse events. As you’ll see
in the following sections, forms and most controls recognize keyboard and mouse events. In fact,
exactly the same keyboard and mouse events are recognized by forms and controls. The code you
write for a mouse-click event on a command button is exactly the same sort of code that you might
write for the mouse-click on a form.

In addition, most Access object types have their own unique events. The following sections discuss
the majority of these events, but Microsoft has a habit of introducing new event capabilities with
each new version of Access. Also, many ActiveX controls you might use in your Access applications
may have their own unique and special events. When using an unfamiliar control or a new type of
object in your Access applications, be sure to check out what events and properties are supported
by the control or object.

How do events trigger VBA code?
You can create an event procedure that runs when a user performs any one of the many different
events that Access recognizes. Access responds to events through special form and control proper-
ties. Reports have a similar set of events, tailored to the special needs and requirements of reports.

Figure 12-1 shows the property sheet for frmProducts. This form has many event properties.
Forms aren’t the only objects to have events. Each form section (page header, form header, detail,
page footer, form footer) and every control on the form (labels, text boxes, check boxes, and option
buttons, for example) has its own event.

418

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 418

FIGURE 12-1

The property sheet for frmProducts. Event procedures have been written for the Current,
BeforeDelConfirm, and Close events.

In Figure 12-1 notice that the property sheet is open on the Event tab. Access forms include more
than 50 events, and each form section includes a number of events, as well as each control on the
form. As you select a form section or a control on the form, the Event tab in the property sheet
changes to show you the offense for that object.

In Figure 12-1, all of the events with existing event procedures contain [Event Procedure],
which indicates that the property has associated VBA code that executes whenever this event is
triggered.

Where to trigger event procedures
In Access, you run event procedures through an object’s event properties. There are no event prop-
erties for tables or queries.

Simply put, an event is how Access responds to a user’s action. Events are triggered by actions such
as opening a form or report, changing data in a record, clicking on a button, or closing a form or
report. Access recognizes more than 60 events in controls, forms, and reports. Access provides
event properties you use to tie VBA code to an object’s events. For example, the On Open property
is associated with a form or report opening on the screen.

You add an event procedure to a form or report by selecting the event property (After Update,
for this example) in the object’s property sheet. If no event procedure currently exists for the prop-
erty, a drop-down arrow and builder button appear in the property’s box, as shown in the
AfterUpdate event property in Figure 12-1. The drop-down button exposes a short list contain-
ing [Event Property]. Selecting this option and then clicking on the builder button, takes you
to the VBA code editor with an event procedure template already in place (see Figure 12-2).

419

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 419

FIGURE 12-2

An empty event procedure template for the form’s AfterUpdate event

Notice the general format of the event procedure’s declaration:

Private Sub Object_Event()

The Object portion of the procedure’s name is, of course, the object raising the event, while the
Event portion is the specific event raised by the object. In Figure 12-2 the object is Form and the
event is AfterUpdate. Some events support arguments, which appear within the parentheses at
the end of the declaration.

Common Events
Certain events are raised by many different Access objects. Microsoft has taken great care that these
events behave exactly the same way, regardless of the object raising them. These events are also
among the most commonly used by Access developers. Table 12-1 lists several of the most com-
monly used events.

TABLE 12-1

Events Common to Multiple Object Types

Event Event Type When the Event Is Triggered

Click Mouse event When you press and release (click) the left mouse button on a
control in a form

DblClick Mouse event When you press and release (click) the left mouse button twice on
a control/label in a form

MouseDown Mouse event When you press the mouse button while the pointer is on a form

MouseMove Mouse event When you move the mouse pointer over an area of a form

420

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 420

Event Event Type When the Event Is Triggered

MouseUp Mouse event When you release a pressed mouse button while the pointer is on
a form

MouseWheel Mouse event When you spin the mouse wheel

KeyDown Keyboard event When you press any key on the keyboard when a form has focus
or when you use a SendKeys macro action

KeyUp Keyboard event When you release a pressed key or immediately after the
SendKeys macro

KeyPress Keyboard event When you press and release a key on a form that has the focus or
when you use the SendKeys macro action

Not surprisingly, these events are all associated with the mouse and the keyboard because these are
the user’s primary means of inputting information and giving directions to an application. Not
every object responds to every one of these events, but when an object responds to any of these
events, the event exhibits exactly the same behavior.

Form Event Procedures
When you work with forms, you can create event procedures based on events at the form level, the
section level, or the control level. If you attach an event procedure to a form-level event, whenever
the event occurs, the action takes effect against the form as a whole (such as when you move to
another record or leave the form).

To have your form respond to an event, you write an event procedure and attach it to the event
property in the form that recognizes the event. Many properties can be used to trigger event proce-
dures at the form level. Table 12-1 shows each property, the event it recognizes, and how the prop-
erty works.

When referring to form events, we are talking about events that happen to the form as a whole —
not about an event that can be triggered by a specific control on a form. Form events execute when
moving from one record to another or when a form is being opened or closed. We cover respond-
ing to control events later in this chapter.

Primary form events
Access forms respond to many, many events. You’ll never write code for most of these events
because of their specialized nature. There are, however, some events that you’ll program over and
over again in your Access applications. Table 12-2 lists some of the most fundamental and impor-
tant Access form events. Not coincidentally, these are also the most commonly programmed Access
form events.

421

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 421

TABLE 12-2

Primary Form Events

Event When the Event Is Triggered

Current When you move to a different record and make it the current record

BeforeInsert After data is first entered into a new record but before the record is actually
created

AfterInsert After the new record is added to the table

BeforeUpdate Before changed data is updated in a record

AfterUpdate After changed data is updated in a record

Dirty When a record is modified

Undo When a user has returned a form to clean state — record set back to unmodified
state — opposite of On Dirty

Delete When a record is deleted but before the deletion takes place

BeforeDelConfirm Just before Access displays the Delete Confirm dialog box

AfterDelConfirm After the Delete Confirm dialog box closes and confirmation has happened

Open When a form is opened, but the first record is not displayed yet

Load When a form is loaded into memory but not yet opened

Resize When the size of a form changes

Unload When a form is closed and the records unload, and before the form is removed
from the screen

Close When a form is closed and removed from the screen

Activate When an open form receives the focus, becoming the active window

Deactivate When a different window becomes the active window but before it loses focus

GotFocus When a form with no active or enabled controls receives the focus

LostFocus When a form loses the focus

Timer When a specified time interval passes

TimerInterval Specify the Interval in milliseconds

BeforeScreenTip When the screen tip is activated

422

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 422

Form mouse and keyboard events
Access forms also respond to a number of mouse and keyboard events, as shown in Table 12-3.

TABLE 12-3

Form Mouse and Keyboard Events

Event When the Event Is Triggered

Click When you press and release (click) the left mouse button on a control in a form

DblClick When you press and release (click) the left mouse button twice on a control/label
in a form

MouseDown When you press the mouse button while the pointer is on a form

MouseMove When you move the mouse pointer over an area of a form

MouseUp When you release a pressed mouse button while the pointer is on a form

MouseWheel When you spin the mouse wheel

KeyDown When you press any key on the keyboard when a form has focus; when you use a
SendKeys macro action

KeyUp When you release a pressed key or immediately after the SendKeys macro
action

KeyPress When you press and release a key on a form that has the focus; when you use the
SendKeys macro

KeyPreview (Property) Enables the form to respond to events before the controls on the form

Notice the KeyPreview property. This property, which is found only in forms, instructs Access to
allow the form to see keyboard events before the controls on the form. By default, the controls on
an Access form receive events before the form. This means that a form’s controls mask key events
from the form, and the form can never respond to those events. You must set the KeyPreview
property to Yes (True) before the form responds to any of the key events (KeyDown, KeyUp, and
so on).

Form data events
The primary purpose of Access forms is to display data. Not surprisingly then, Access forms have
a number of events that are directly related to a form’s data management (see Table 12-4). You will
see these events programmed over and over again in this book, and will encounter event proce-
dures written for these events virtually every time you work on an Access application.

423

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 423

TABLE 12-4

Form Data Events

Event When the Event Is Triggered

OnCurrent When you move to a different record and make it the current record

BeforeInsert After data is first entered into a new record but before the record is actually
created

AfterInsert After the new record is added to the table

BeforeUpdate Before changed data is updated in a record

AfterUpdate After changed data is updated in a record

OnDirty When a record is modified

OnUndo When a user has returned a form to clean state — record set back to
unmodified state — opposite of OnDirty

OnDelete When a record is deleted but before the deletion takes place

BeforeDelConfirm Just before Access displays the Delete Confirm dialog box

AfterDelConfirm After the Delete Confirm dialog box closes and confirmation has happened

Error When a runtime error is produced

Filter When a filter has been specified but before it is applied

ApplyFilter After a filter is applied to a form

Form PivotTable events
The more recent versions of Access include the ability to create PivotTables that display data in
interesting ways. Although this book does not discuss PivotTables in detail, you may encounter
PivotTables as you work with Microsoft Access. Because of the special requirements imposed by
PivotTables, Access forms include a number of events, as shown in Table 12-5.

In Access 2007, a PivotTable is actually a special view of a table, created by selecting PivotTable
View from the View group in the Home tab while a table is open in Datasheet View. A PivotChart is
created from a table open in Datasheet view by clicking on the PivotChart button in the Forms
group on the Create tab of the Access ribbon.

424

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 424

TABLE 12-5

Form PivotTable Events

Event When the Event Is Triggered

Timer When a specified time interval passes

TimerInterval Specify the Interval in milliseconds

BeforeScreenTip When the ScreenTip is activated

CmdEnabled When a command has become enabled in a PivotChart or PivotTable

CmdChecked When a PivotChart or PivotTable command has been selected

CmdBeforeExecute When a PivotChart or PivotTable command has been selected from the ribbon,
but not yet executed

CmdExecute Immediately after a PivotTable or PivotChart command has been executed

DataChange When PivotTable or PivotChart’s data is changed or refreshed

DataSetChange When a new data set for the chart changes (for example when filtered)

PivotTableChange Whenever the list field, field set, or total is added or deleted in a PivotTable

SelectionChange When a user makes a new selection; cannot be cancelled

ViewChange When a different PivotTable view of the current data is opened

Connect When a PivotTable connects to the underlying recordset

Disconnect When a PivotTable disconnects from the underlying recordset

BeforeQuery When a PivotTable is about to get a new data object

Query When the PivotTable receives a new data object

AfterLayout When the PivotChart has already been laid out but before any rendering is done

BeforeRender When the PivotChart is about to paint itself on the screen (before drawing
begins)

AfterRender When the object has been rendered in the PivotChart

AfterFinalRender When all the chart objects have been rendered

Form Access Data Project events
A fairly recent addition to Microsoft Access is the ability to create Access Data Projects (ADPs), a
special type of database that is specifically designed to connect to SQL Server databases.

We discuss ADPs in Chapter 40, where you learn how to create ADPs, connect an ADP
to a SQL Server database, and work with database objects managed by SQL Server.CROSS-REFCROSS-REF

425

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 425

Access supports several events that are specifically designed to work with ADP databases (see Table
12-6). These events enable Access ADP databases to understand what is happening within SQL
Server.

TABLE 12-6

Form ADP Events

Event When the Event Is Triggered

BeginBatchEdit Fires when a user begins editing a batch in ADPs (form in batch edit
mode)

UndoBatchEdit Fires when a user undoes edits in a batch in ADPs (form in batch edit
mode)

BeforeBeginTransaction Before a batch transaction begins in ADPs (form in batch edit mode)

AfterBeginTransaction After a batch transaction begins in ADPs (form in batch edit mode)

BeforeCommitTransaction After you request a commit, but before the commit actually takes place
in ADPs (form in batch edit mode)

AfterCommitTransaction After a commit has been completed in ADPs (form in batch edit mode)

RollbackTransaction Fires a batch transaction rollback in ADPs (form in batch edit mode)

Control Event Procedures
Controls also raise events. A control’s BeforeUpdate event fires as soon as focus leaves the con-
trol (more precisely, BeforeUpdate fires just before the focus leaves the control, allowing you to
cancel the event if data validation fails), whereas a form’s BeforeUpdate does not fire until you
move the form to another record.

This means that a control’s BeforeUpdate is good for validating a single control while the form’s
BeforeUpdate is good for validating multiple controls on the form. The form’s BeforeUpdate
would be a good place to validate that values in two different controls are in agreement with each
other (such as a zip code in one text box, and the city in another text box), instead of relying on
the BeforeUpdate in each of the controls.

Creating event procedures for control events is done exactly the same way you create procedures
for form events. You select [Event Procedure] in the property sheet for the event; then add
VBA code to the event procedure attached to the event. Table 12-7 shows each control event prop-
erty, the event it recognizes, and how it works. As you review the information in Table 12-7, keep
in mind that not every control supports every one of these events.

426

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 426

TABLE 12-7

Control Events

Event When the Event Is Triggered

BeforeUpdate Before changed data in the control is updated to the table

AfterUpdate After changed data is updated in the control to the data

Dirty When the contents of a form or text of combo box or tab control changes

Undo When the form is returned to a clean state

Change When the contents of a text box or combo box’s text changes

Updated When an ActiveX object’s data has been modified

NotInList When a value that isn’t in the list is entered into a combo box

Enter Before a control receives the focus from another control

Exit Just before the control loses focus to another control

GotFocus When a nonactive or enabled control receives the focus

LostFocus When a control loses the focus

Click When the left mouse button is pressed and released (clicked) on a control

DblClick When the left mouse button is pressed and released (clicked) twice on a control or
label

MouseDown When a mouse button is pressed while the pointer is on a control

MouseMove When the mouse pointer is moved over a control

MouseUp When a pressed mouse button is released while the pointer is on a control

KeyDown When any key on the keyboard is pressed when a control has the focus or when the
SendKeys macro action is used

KeyPress When a key is pressed and released on a control that has the focus or when the
SendKeys macro action is used

KeyUp When a pressed key is released or immediately after the SendKeys macro is used

When all is said and done, Access supports a very, very rich event model. Not many
Access developers master every Access event, nor is there need to. Virtually every

Access developer learns and uses the events that are important for the applications they are building,
and learns the others as they go. There is no need to worry about memorizing all of these events —
instead, just be aware that Access supports many different types of events and that they are there are
if you need them.

TIPTIP

427

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 427

Event Order
Sometimes even a fairly simple action on the part of the user raises multiple events in rapid succes-
sion. As an example, every time the user presses a key on the keyboard, the following events are
raised: KeyDown, KeyPress, and KeyUp. Similarly, pressing the left mouse button fires the
MouseDown and MouseUp events, as well as a Click event. It is your prerogative as a VBA devel-
oper to decide which events you program in your Access applications.

Events do not occur randomly. Events actually fire in a predictable fashion, depending on which
control is raising the event. Sometimes the trickiest aspect of working with events is keeping track
of the order in which events occur. It may not be intuitive, for example, that the Enter event
occurs before the GotFocus event (see Table 12-2) or that the KeyDown event occurs before the
KeyPress event (see Table 12-3). In the following sections are the sequence of events for the
most frequently encountered form scenarios.

Opening and closing of forms

When a form opens:

Open (form) → Load (form) → Resize (form) → Activate (form) → Current
(form) → Enter (control) → GotFocus (control)

When a form closes:

Exit (control) → LostFocus (control) → Unload (form) → Deactivate (form) →
Close (form)

Changes in focus

When the focus moves from one form to another:

Deactivate (form1) → Activate (form2)

When the focus moves to a control on a form:

Enter → GotFocus

When the focus leaves a form control:

Exit → LostFocus

When the focus moves from one control to another control:

Exit (control1) → LostFocus (control1) → Enter (control2) → GotFocus (control2)

When the focus leaves the record in which data has changed, but before entering the next record:

BeforeUpdate (form) → AfterUpdate (form) → Exit (control) → LostFocus
(control) → Current (form)

428

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 428

When the focus moves to an existing record in Form view:

Current (form) → BeforeUpdate (form) → AfterUpdate (form) → Current
(form)

Changes to data

When data is entered or changed in a form control and the focus is moved to another control:

BeforeUpdate → AfterUpdate → Exit → LostFocus

When the user presses and releases a key while a form control has the focus:

KeyDown → KeyPress → KeyUp

When text changes in a text box or in the text-box portion of a combo box:

KeyDown → KeyPress → Change → KeyUp

After a value is entered in a combo box that isn’t in the combo box list and the user attempts to
move the focus to another control or record:

KeyDown → KeyPress → Change → KeyUp → NotInList → Error

When data in a control is changed and the user presses Tab to move to the next control:

Control1:

KeyDown → BeforeUpdate → AfterUpdate → Exit → LostFocus

Control2:

Enter → GotFocus → KeyPress → KeyUp

When a form opens and data in a control changes:

Current (form) → Enter (control) → GotFocus (control) → BeforeUpdate
(control) → AfterUpdate (control)

When a record is deleted:

Delete → BeforeDelConfirm → AfterDelConfirm

When the focus moves to a new blank record on a form and a new record is created when the user
types in a control:

Current (form) → Enter (control) → GotFocus (control) → BeforeInsert
(form) → AfterInsert (form)

429

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 429

Mouse events

When the user presses and releases (clicks) a mouse button while the mouse pointer is on a form
control.

MouseDown → MouseUp → Click

When the user moves the focus from one control to another by clicking the second control:

Control1:

Exit → LostFocus

Control2:

Enter → GotFocus → MouseDown → MouseUp → Click

When the user double-clicks a control other than a command button:

MouseDown → MouseUp → Click → DblClick → MouseUp

When the user double-clicks a command button:

MouseDown → MouseUp → Click → MouseUp → Click

Writing simple procedures to verify event sequence is quite easy.

Use the preceding information to determine which event should be harnessed in your application.
Very often unexpected behavior can be traced to an event procedure attached to an event that
occurs too late (or too early!) to capture the information that is needed by the application.

The Chapter12.accdb example database includes a form named frmEventLogger that prints
every event for a command button, a text box, and a toggle button in the Debug window. This
form is provided to demonstrate just how many Access events are triggered by minor actions. For
instance, clicking the command button one time, then tabbing to the text box and pressing one
key on the keyboard fires the following events:

cmdButton_MouseDown

cmdButton_MouseUp

cmdButton_Click

cmdButton_KeyDown

cmdButton_Exit

cmdButton_LostFocus

txtText1_Enter

txtText1_GotFocus

430

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 430

txtText1_KeyPress

txtText1_KeyPress

txtText1_KeyUp

txtText1_KeyDown

txtText1_KeyPress

txtText1_Change

txtText1_KeyUp

You’ll have to open the Code editor and display the Immediate window to see these events dis-
played. From anywhere in the Access 2007 environment, press Ctrl+G and the Code editor
instantly opens with the Immediate window displayed. Then, Alt+Tab back to the main Access
screen, open the form, and click on the various controls and type something into the text box.
You’ll see a long list of event messages when you use Ctrl+G to return to the Immediate window.

Obviously, this is far more events than you’ll ever want to program. Notice that, on the command
button, both the MouseDown and MouseUp events fire before the Click event. Also, a KeyDown
event occurs as the Tab key is pushed, and then the command button’s Exit event fires before its
LostFocus event. (The focus, of course, moves off of the command button to the text box as the
Tab key is pressed.)

Also notice that the text box raises two KeyPress events. The first is the KeyPress from the Tab
button, and the second is the KeyPress that occurs as a character on the keyboard is pressed.
Although it may seem strange that the Tab key’s KeyPress event has caught by a text box, it
makes sense when you consider what is happening under the surface. The Tab key is a directive to
move the focus to the next control in the tab sequence. Access actually moves the focus before
passing the KeyPress event to the controls on the form. This means that the focus moves to the
text box, and the text box receives the KeyPress raised by the Tab key.

Clearly, the event Access event model is very rich with events. It is very difficult sometimes to pre-
dict exactly which event fires before which other event. Sometimes the only way to understand the
event sequence on an Access form is to write simple code that displays each event in the debug
window.

Opening a form with an event procedure
Most applications require multiple forms and reports to accomplish the application’s business
functions. Instead of requiring the users of the application to browse the database container to
determine which forms and reports accomplish which tasks, an application generally provides a
switchboard form to assist users in navigating throughout the application. The switchboard provides
a set of command buttons labeled appropriately to suggest the purpose of the form or report it
opens. Figure 12-3 shows the switchboard for the Access Auto Auctions application.

431

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 431

FIGURE 12-3

Using a switchboard to navigate throughout the forms and reports of an application.

The Access Auto Auctions switchboard includes five command buttons. Each command button
runs an event procedure when the command button is clicked. The Products command button, for
example, runs the event procedure to open frmProducts. Figure 12-4 shows the Properties win-
dow for the Product command button, called cmdProducts. Figure 12-5 shows the VBA code for
the Click event of the cmdProducts command button.

FIGURE 12-4

Specifying an event procedure for a control event

432

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 432

FIGURE 12-5

Using an event procedure to open a form

Running an event procedure when closing a form
At times, you’ll want to perform some action when you close or leave a form. For example, you
may want Access to keep an automatic log of the names of everyone using the form, or you may
want to close the form’s print dialog box automatically every time a user closes the main form.

To automatically close frmDialogProductPrint every time frmProducts is closed, create an
event procedure for frmProducts Close event. Figure 12-6 shows the VBA code for
frmProducts Close event.

FIGURE 12-6

Running an event procedure when a form closes

The Form_Close event illustrated in Figure 12-6 first checks to see if the form
frmDialogProductPrint is open. If it is open, the statement to close it executes. Although
attempting to close a form that is not currently open does not cause an error, always check to see if
an object is available before performing an operation on it (doing so is just good form).

433

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 433

Using an event procedure to
confirm record deletion
Although you can use the Access Form View ribbon to delete a record in a form, a better practice is
to provide a Delete command button on the form. A Delete button is a more user-friendly method
because it provides a more obvious visual cue to the user as to how to delete a record. Additionally,
the command button affords more control over the delete process because you can include code
to verify the deletion before it is actually processed. Or you may need to perform a referential
integrity check to ensure that deleting the record does not cause a connection to the record from
some other table in the database to be lost.

Use the MsgBox() function to confirm a deletion. cmdDelete’s event procedure uses MsgBox()
to confirm the deletion, as shown in Figure 12-7. For more information on using MsgBox(), see
the section “Using the MsgBox() function,” later in this chapter.

FIGURE 12-7

Using the MsgBox() function to confirm a deletion

When the cmdDelete_Click() event procedure executes, Access displays a message box
prompt, as shown in Figure 12-8. Notice that the message box includes two command buttons: Yes
and No. Access displays the prompt and waits for the user to make a selection. The record is
deleted only when the user confirms the deletion by clicking the Yes button.

434

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 434

FIGURE 12-8

A confirmation dialog box before deleting a record

Before the RunCommand acCmdDeleteRecord statement executes, it first checks to
see if deleting the record violates referential integrity rules that you have set up in the

Relationships diagram. If a violation occurs, an Access error message displays and the deletion is
cancelled.

See Chapter 3 for more information on setting up referential integrity in a database.

Using the MsgBox() function
MsgBox() is a very powerful function that displays a message in a dialog box, waits for a response
by the user, and then returns a value based on the user’s selection. MsgBox has five arguments:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

n prompt: The text displayed as a question in the prompt.

n buttons: Numeric expression controlling the buttons and icons displayed in the mes-
sage box.

n title: The text displayed in the title bar of the prompt.

n helpfile and context: Displays helpful information when you also include a Help
button in the message box.

Only the prompt argument is required. If you don’t specify the buttons or title arguments, Access
displays only an OK button, no icon, and “Microsoft Access” as the title.

Access offers a wide range of button arguments. The buttons argument is composed of as many as
four arguments added together:

n Number and type of buttons

n Icon style

n Default button

n Modality of the message box (that is, if all applications or just Microsoft Access must sus-
pend while waiting for user selection)

CROSS-REFCROSS-REF

CAUTION CAUTION

435

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 435

The value that you specify for each section of the argument is actually an integer value. But Access
provides built-in values, called intrinsic constants, so that you don’t have to remember the numeric
values. Table 12-8 lists the MessageBox intrinsic constants, the corresponding integer values, and
the buttons each displays.

TABLE 12-8

Message Box Constants

Intrinsic Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to the message
box before continuing work in the current application.

vbSystemModal 4096 System modal; all applications are suspended until the user
responds to the message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box.

vbMsgBoxSetForeground 65536 Specifies the message box window as the foreground
window.

vbMsgBoxRight 524288 Text is right-aligned.

vbMsgBoxRtlReading 1048576 Specifies that text should appear as right-to-left reading on
Hebrew and Arabic systems.

436

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 436

Using Table 12-8, specify the buttons argument of the MsgBox() function by specifying one or
more of the constants, separating each constant with a + sign. For example, to display the Yes and
No buttons, with Yes as the default button, the MsgBox statement looks like this:

intAnswer = MsgBox(“Are you sure?”, vbYesNo + vbDefaultButton1)

Adding a question mark icon changes the statement a bit:

intAnswer = MsgBox(“Are you sure?”, _
vbYesNo + vbDefaultButton1 + vbQuestion)

You could use just the summed numeric value, but the statement is much harder to understand:

intAnswer = MsgBox(“Are you sure?”, 36)

The whole purpose of intrinsic constants is to make code easier to understand and write.

In addition to displaying the message box with the options you specify, the MsgBox() function
also returns a value that indicates which button the user selected. Each button in the message box
returns a unique value when selected. Table 12-9 shows each button and the value that MsgBox()
returns.

TABLE 12-9

Message Box Return Values

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

If the dialog box displays a Cancel button, pressing the Esc key is the same as selecting the Cancel
button.

437

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 437

Report Event Procedures
Just as with forms, reports also use event procedures to respond to specific events. Reports respond
to events for the overall report itself and at the section level. Individual controls on Access reports
do not raise events.

Attaching an event procedure to the report runs code whenever the report opens, closes, or prints.
Each section in a report (header, footer, etc.) also includes events that run as the report is format-
ted or printed.

Several overall report event properties are available. Table 12-10 shows the Access report events. As
you can see, the list of report events is very similar to, but much shorter than, the form event list.

TABLE 12-10

Report Events

Event Property When the Event Is Triggered

Open When the report opens but before printing

Close When the report closes and is removed from the screen

Activate When the report receives the focus and becomes the active window

Deactivate When a different window becomes active

NoData When no data is passed to the report as it opens

Page When the report changes pages

Error When a runtime error is produced in Access

Running an event procedure as a report opens
Opening a report containing no data generally yields erroneous results. The report may display a
title and no detail information. Or, it may display #error values for missing information. This
situation can be a little scary for the user. Use the NoData event to avoid confusing the user.
NoData fires as a report opens and there is no data available in the report’s RecordSource. Use
the NoData event procedure to display a message box describing the situation to the user and then
cancel the report’s opening. Figure 12-9 shows a typical NoData event procedure.

438

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 438

FIGURE 12-9

Running a NoData event procedure when there is no data for a report

The Report_No Data event illustrated in Figure 12-9 first displays a message box to advise the
user that the report contains no data. Then the event procedure cancels the report’s opening by set-
ting the Cancel parameter to True. Because the Cancel parameter is set to True, the report
never appears on the screen and is never sent to the printer if no data exists for the report.

Many Access events are accompanied by parameters, such as the Cancel parameter you see in
Figure 12-9. In this case, setting Cancel to True instructs Access to simply ignore the process
that triggered the event. Because NoData was triggered as part of the report’s opening process, set-
ting Cancel to True prevents the report from being sent to the printer or being displayed on the
screen. You’ll see many examples of event property procedure parameters throughout this book.

Report Section Event Procedures
In addition to the event properties for the form itself, Access offers three event properties that you
can use for report sections. Table 12-11 shows each property, the event it recognizes, and how it
works.

TABLE 12-11

Report Section Events

Event When the Event Is Triggered

Format When the section is pre-formatted in memory before being sent to the printer. This is your
opportunity to apply special formatting to controls within the section.

Print As the section is sent to the printer. It is too late to format controls in a report section when the
Print event fires.

Retreat After the Format event but before the Print event; occurs when Access has to back up past
other sections on a page to perform multiple formatting passes. Retreat is included in all
sections except headers and footers.

439

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 439

Using the Format event
Use the Format event to apply special formatting to controls within a section before the section is
printed. Format is useful, for instance, to hide controls you don’t want to print because of some
condition in the report’s data. The event procedure runs as Access lays out the section in memory,
but before the report is sent to the printer.

You can set the OnFormat and OnPrint event properties for any section of the report. However,
OnRetreat is not available for the page header or page footer sections.

For example, you may want to hide some data on the form, based on certain conditions. If the con-
dition is met, the event procedure uses the control’s Visible property to show or hide the con-
trol. Figure 12-10 shows the Properties window for the OnFormat property of the detail section of
the rptProducts report. Notice that the bar separating the Detail section from the ProductID
header is selected so that the OnFormat property can be set for the Detail section.

FIGURE 12-10

Specifying an event procedure for a report’s Detail section

Figure 12-11 shows the VBA code for the Detail section’s Format event.

440

Programming Microsoft AccessPart II

17_046732 ch12.qxp 11/21/06 8:52 AM Page 440

FIGURE 12-11

Running an event procedure to display or hide a control on a report

The Detail0_Format event illustrated in Figure 12-11 first checks the value of the Auction
control. If the value of Auction is True, txtAuctionEndDate is displayed; otherwise,
txtAuctionEndDate is hidden.

You’ll see many examples of using events and event procedures to manipulate forms, reports, and
controls throughout this book.

Summary
A thorough understanding of the Access event model is an essential skill for serious Access devel-
opers. Access is unusually well equipped with events that enable developers to respond to virtually
every move made by users. In addition, the data-driven events provide unique and total control
over how Access works with and manages data.

The next chapter continues exploring the many uses of the VBA programming language in Access
applications. There you’ll learn many more details of adding powerful VBA procedures to Access
forms and reports.

441

Understanding the Access Event Model 12

17_046732 ch12.qxp 11/21/06 8:52 AM Page 441

17_046732 ch12.qxp 11/21/06 8:52 AM Page 442

In this chapter, you gain a more complete understanding of expressions
and functions. You have already seen and used expressions and func-
tions in queries and forms in earlier chapters. This chapter focuses on

more advanced expressions, and also discusses some of the most common
built-in functions of Access. Built-in functions are very powerful in queries,
forms, reports, and the VBA editor’s Immediate window.

This chapter uses the database named Chapter13.accdb.
If you have not already copied it onto your machine from

the CD, you need to do so now.

Understanding Expressions
Generally speaking, an expression is the means used to explain or model
something to someone or something. An expression has a value — the
expression 2 + 2 has a value of 4. Most expressions you use in Access have a
value that is used by an Access application in place of a literal or simple
numeric value.

In computer terms, an expression is generally composed of a combination of
symbols, operators, numbers, strings, or identifiers that represent a numeric
or string value. The expression is a representative object that Access uses to
interpret something and, based on that interpretation, to obtain specific
information. Simply put, an expression is a term or series of terms controlled
by operators. Expressions are a fundamental part of Access operations. They
are used to perform a calculation, manipulate characters, or test data.

ON the CD-ROMON the CD-ROM

443

IN THIS CHAPTER
Building expressions

Using built-in VBA functions

Referencing Access objects
within expressions

Using DLookup to look up data
quickly

Using Expressions in Queries
and VBA Code

18_046732 ch13.qxp 11/21/06 8:52 AM Page 443

You use expressions in Access to accomplish a variety of tasks. The same expression may serve as a
WHERE clause in a SQL statement, as a filter for a form or report, or in VBA procedure.
Expressions establish criteria for a query, or filter, control macros, and perform as arguments in
user-defined functions.

Access evaluates an expression each time it is used. An expression used in a form or report is re-
evaluated every time the form refreshes (as when changing records) to ensure accuracy of the
results. If an expression is used as a criterion in a query, Access evaluates the expression every time
the query is executed, thereby ensuring that the criterion reflects changes, additions, or deletions
to records since the last execution of the query. If an expression is used in the table design as a vali-
dation rule, Access evaluates the expression each time the field’s value is modified to determine
whether the value is allowed in the field. Expressions used as table validation rules may include
references to multiple fields within the table, whereas expressions used as field-level validation
rules reference only that field’s value.

To give you a better understanding of expressions, consider these examples:

= RTrim(LastName) & “ “ & RTrim(LastName)

= (Price-(Price * tblSalesLineItems.DiscountPercent)) < 25000

Taxable = True

ContactType = “Buyer” And State = “MA”

Sales.SalesDate Between 6/1/2007 And 4/30/2008

Each is a valid expression. Access can use them as validation rules, query criteria, calculated con-
trols, control sources, and control-source properties. Some expressions use built-in functions like
RTrim() in the first example. RTrim removes all spaces from the right side of the string passed as
an argument (in this example, LastName and FirstName).

Figure 13-1 shows a query (qrySimpleExpression) that uses a simple expression in the first field of
the returned data. Notice that it has concatenated (joined) the FirstName and LastName fields
as a single value named BuyerFullName.

Figure 13-1 illustrates a special feature of Access queries. That is, the ability to create columns in
the query’s returned data that is derived from data in the data sources underlying the query. In this
case, the query involves only two tables, and the derived field (BuyerFullName) is generated from
two columns in the Contacts table.

444

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/27/06 5:02 PM Page 444

FIGURE 13-1

A simple query using an expression. Notice that the expression has a name attached to it: ‘Buyer Full
Name’.

The parts of an expression
As the examples in the preceding section demonstrate, expressions can be simple or complex.
Expressions can include a combination of operators, object names, functions, literal values, and
constants.

Remembering that expressions don’t need to contain all these parts, you should understand each of
the following uniquely identifiable portions of an expression:

Operators: >, =, *, And, Or, Not, Like, and so on.

Operators indicate what type of action (operation) will be performed on one or more elements of
an expression. Generally speaking, operators are either mathematical or Boolean (true/false) in
nature.

Object names: Forms![frmContacts], LastName, Price,
tblProducts.Description

Object names, also known as identifiers, are the actual objects: tables, forms, reports, controls, or
fields.

Functions: Date(), DLookUp(), DateDiff()

445

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 445

Functions always return a value. The resulting value can be created by a calculation, a data conver-
sion result, or an evaluation. You can use a built-in Access function or a user-defined function that
you create.

Literal values: 100, Jan. 1, 2007, “Seller”, “[A-D]*”

These are actual values that you supply to the expression. Literal values can be numbers, strings, or
dates. Access uses the values exactly as they are entered.

Constants: Yes, No, Null, True, False

Constants represent values that do not change.

The following example illustrates the parts of an expression:

[FollowUpDate] = Date() + 30 where:

[FollowUpDate] is an object name or identifier, perhaps the name of a control on a
form or a field in a recordset.

= is an operator.

Date() is a built-in VBA function.

+ is an operator.

30 is a literal.

Figure 13-2 shows a simple form (frmSimpleExpression) bound to a query named
qryContactsAndContactLog. Notice the two data entry controls — Contacted On and Follow-up
date. These controls are automatically populated with today’s date (Contacted On) and 30 days
from now (Follow-up Date). If the user leaves these controls empty when adding a new record, the
form automatically adds the default values (today’s date, and 30 days from now, respectively).

FIGURE 13-2

Using code that uses expressions to add field values to a record

446

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 446

Figure 13-3 shows the code that contains the expressions to check values automatically in the
fields in Figure 13-3.

FIGURE 13-3

The code used for updating the fields in Figure 13-2

Examining the code in Figure 13-3, you can see many expressions. A couple of them are
chkFollowUp, IsNull(txtDateContacted), and IsNDateContacted = Date. Notice that
all three of these use the word Me with the field name. Me is a keyword that references the current
parent object (form, report, or class module). It is only used in Visual Basic for Applications code.

This chapter talks a lot about identifiers and names. Perhaps a little clarification is in
order before we go too far in our discussion of expressions. An identifier is a reference to

an object or to a value. For instance, I may point to a particular car in the parking lot and say, “That is
my car.” “My car” is an identifier and refers to one and only one car in the parking lot. If I’ve actually
given a name to my car, I may say something like “The name of my car is Pokey.” Once I’ve provided a
name for the car, I can refer to it as either “my car” or “Pokey,” and you’ll know what I mean.

In Access, you might refer to a form as Forms!frmContacts (the exclamation operator (!) is explained
later in this chapter). Forms!frmContacts is an identifier that points to a particular form in the appli-
cation. If instead, you wrote a VBA statement to open the same form, you might write the statement
like this:

DoCmd.OpenForm “frmContacts”

In this case, frmContacts is the name of the form. It’s confusing because you use the same word as
an expression and as a name, but the context in which the word is used is important. The general rule
is that names are surrounded by quotation marks (“) and identifiers may or may not be surrounded by
square brackets ([]), as explained later in this chapter.

NOTENOTE

447

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 447

Creating an expression
Expressions are commonly entered in Property windows, macro action arguments, and query crite-
ria grids. Expressions are often used within VBA statements as well. As you enter an expression
into a property box or grid cell, the text in the area shifts to the left so that you can continue to
enter the expression. Although it is easy to enter an expression in this manner, it is often desirable
to see the entire expression as you enter it. This is especially true when you are working with long,
complex expressions. Access has a Zoom box (opened with Shift+F2) that shows even the longest
expressions (see Figure 13-4).

FIGURE 13-4

The Zoom box makes it easy to see long expressions.

As you enter expressions, Access may insert certain characters for you when you change focus.
Access checks your syntax and automatically inserts these characters:

n Brackets ([]) around identifiers that have no spaces or punctuation in the name. Brackets
are much like quote marks (“) and help Access understand the beginning and end of an
identifier’s name.

n Pound signs (#) around date values.

n Quotation marks (“ “) around text that contains no spaces or punctuation in the body.

The term changing focus refers to the movement of the insertion point out of the loca-
tion where you are entering the expression, which is accomplished by pressing Tab or by

moving the mouse and clicking another area of the screen.

Access reports an error when it changes focus when Access doesn’t understand the date
you entered, when the name of the control contains spaces, when a control is not

placed in brackets, when an end parenthesis is missing in a function, and on and on.

CAUTION CAUTION

NOTENOTE

448

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/27/06 5:02 PM Page 448

Very often you have to manually enter the square brackets, quotation marks, or pound sign delim-
iters around identifiers to make sure Access understands what you mean.

Entering object names
Object names are identified by placing brackets ([]) around the element. Although the brackets
are usually optional, Access requires the use of brackets when the object contains a space or punc-
tuation in its name (like a dash). If these conditions are not present, you can ignore the brackets —
Access inserts them automatically. The following expressions are syntactically identical:

Buyer & [Sales Person ID]
[Buyer] & [Sales Person ID]

The field name SalespersonID was changed in the previous example to Sales
Person ID; placing spaces between the names demonstrates how to use brackets

around the field name when it contains spaces. The example databases on this book’s CD do not use
spaces in object names.

Notice that in both cases the brackets are placed around Sales Person ID because this object
name contains spaces.

Many Access developers routinely include square brackets around identifier names. Brackets
almost never cause problems and may help explain an identifier. Although it isn’t necessary to
enter brackets around objects such as Buyer in the second example, it is good programming prac-
tice to always surround object names with brackets for consistency in entry.

Entering text
Quotation marks around an element in an expression identify literal text. Access automatically
places the quotation marks for you if you forget to add them (that is, as long as Access can figure
out what you mean).

As an example, you can enter Buyer and Both into separate criteria cells of a query, and Access
automatically adds the quotation marks around each of these entries. Access recognizes these as
object names and helps you out by adding the quotation marks. Figure 13-5 illustrates how this
works. Access automatically added the quotation marks around Buyer in the Criteria cell in the
ContactType column.

FIGURE 13-5

Access adds the quotation marks around the query’s criterion if it can tell what you mean.

CAUTION CAUTION

449

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 449

Entering date/time values
Pound signs (#) around a date/time element identify date/time data. Access evaluates valid
date/time formats and places the pound signs around the element for you.

All the following expressions are recognized as date/time values by Access, and all mean May 13,
2009 when Windows is set to English (United States) local in Control Panel:

n #May 13, 2009#

n #05/13/2009#

n #5-13-09#

n #13 May 2009#

n #13.May.2009#

The pound signs are just like quotation marks around literal text or square brackets surrounding
simple identifiers. In fact, pound signs are provided to help Access distinguish between mathemati-
cal operations (5/13/2009 means 5 divided by 13 divided by 2009) and dates (#5/13/2009# means
May 13, 2009).

Access’s behavior (adding quotation marks, square brackets, and pound signs) can help
you verify that you’ve written expressions correctly. If, for instance, you entered Buyer

into the Criteria cell in the ContactType column, and Access did not immediately surround it with
quotation marks, you’d know there was a problem. Perhaps the ContactType column isn’t really a text
data type, or you’ve entered the value into the wrong column. It’s a good idea to let Access do what it
does best, and take advantage of the help Access provides.

Expression Builder
Access has an Expression Builder tool to help you build complex expressions. You can use the
Expression Builder almost anywhere you can input an expression (such as when creating a calcu-
lated field on a form or report). You can activate the builder tool in two ways:

n Press the Build button on the toolbar (the button with the ellipsis on it)

n Click the right mouse button and select Build from the shortcut menu

Figure 13-6 shows the Expression Builder open on the field containing the buyer’s first and last
names expression. The Expression Builder lets you choose fields from tables, mathematical and
string operators, and even Boolean operators like And and Or. After building an expression, simply
click the OK button to place the new expression into the query or other container.

NOTENOTE

450

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 450

FIGURE 13-6

The Expression Builder provides a simple interface for creating expressions.

Special identifier operators and expressions
Access has two special identifier operators: the period (.) and the exclamation point (!). You’ll fre-
quently see these operators used in VBA code, a query’s QBE grid, and object’s property box, and
other places in Access.

The exclamation point (often referred to as bang) and period (usually referred to as dot) are pro-
vided to help Access distinguish between objects, collections of objects, and properties and other
attributes. Together, these operators are often referred to as bang-dot notation. We’ll use tables and
fields within tables as our first example of bang-dot notation.

Access tables provide many ways to store and present data. You can use fields and their contents,
and field objects can be reused repeatedly. A field is often used in numerous forms and reports,
using the same reference (the field name) in each instance.

For example, the SaleDate field in the tblSales is used in several different forms. When you
want to use the SaleDate field in an expression for a comparison, how do you tell Access exactly
which instance of the SaleDate field to use in the expression? It is possible to have several different
forms open at the same time in an application. And, of course, there is always the field itself in
tblSales. Which of these instances of SaleDate should be used in an expression?

With all this repetition, there must be a way to tell Access which SaleDate field object you want the
expression to use. That is the purpose of the dot and exclamation point as operator identifiers.
These symbols clarify which field to use.

451

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 451

The ! (exclamation) operator
The exclamation mark (!) is used in conjunction with several reserved words. One such reserved
word is Forms, which is a reference to the collection of open forms in an Access application. You
cannot use Forms to refer to a form that is not currently open.

When Forms is followed by ! Access is being told that the next object name is the form object
that you want to refer to.

Additional keywords can be found in the next section, titled “Special Keywords and Properties.”

As an example, say that you have a Description field (Description) that is in two different forms —
frmProducts and frmSales, both of which are open on the screen at the same time. You want to
refer to the Description field in frmProducts. The way to specify this form is by use of the ! and the
Forms reserved word:

Forms![frmProducts]

or, more simply:

Forms!frmProducts

452

Programming Microsoft AccessPart II

A Few Words about Controls and Properties

When you create a form or report, you place many different objects on the form — fields bound
to text boxes, labels, buttons, check boxes, combo boxes, lines, rectangles, and so on.

As you select and place these objects on a form, each object is assigned a control name. Access sup-
plies a default control name according to predefined rules. For example, the name applied to a
bound control (like a text box) defaults to the name of the field underlying the control. The field
name appears in the text box on the form. The label for the text box is assigned the control name
Text, with a sequence number attached to it (for example, Text11 or Text12). The sequence number
is added to make each control name unique.

After all objects are placed on the form, you identify each object on the form (line, button, text box,
and so on) by its control name. This control name is how you refer to a specific table field (or field
on a form).

In most cases you change the default name that Access assigned to the object. The only requirement
for the new control name is that it must be unique within the form or report that contains it.

Every object on the form (including the form itself) has associated properties. These are the individ-
ual characteristics of each object; as such, they are accessible by a control name. Properties control
the appearance of the object (color, size, sunken, alignment, and so forth). They also affect the struc-
ture, specifying format, default value, validation rules, and control name. In addition, properties des-
ignate the behavior of a control — for instance, whether the field can grow or shrink and whether
you can edit it. Behaviors also affect actions specified for the event properties, such as On Enter
and On Push.

18_046732 ch13.qxp 11/21/06 8:52 AM Page 452

Now that the form is specified, further refine the expression to reference the Description field.

Although earlier chapters cover controls and properties, by this point you should have a
partial understanding of what properties and controls are (for a refresher, see the pre-

ceding sidebar).

Actually, what you are specifying is a control on the form. That control uses the field you need,
which is Description. In this case, the control has the same name as the field. Therefore, you
refer to this specific control with the following expression:

Forms![frmProducts]![Description]

The second exclamation mark specifies a control on a form — one identified by the reserved word
Forms.

Strictly speaking, the exclamation mark separates a collection (collections are nothing
more than aggregates of objects) from an item within the collection. In the preceding

example, Forms is the collection, and frmProducts is a single item within the Forms collection.

By following the properties of each object, starting with the Forms collection, you can trace the
control source object back to a field in the original table.

In summary, the exclamation-point separator is always followed by an object name. This object
name may be the name of a form, report, field, or other control.

The dot (.) identifier operator
The dot (.) is an operator used in expressions. Unlike the !, the dot(.)usually identifies a prop-
erty or other attribute of an object. The following expression refers to the Visible property of the
Description control in the previous example:

Forms![frmProducts]![Description].Visible

This expression refers to the value of the Visible property of the Description control on
frmProducts. (You’ll recall that the Forms collection refers only to forms that are currently open in
the application.)

Normally, the dot (.) identifier is used to obtain a value that corresponds to a property
of an object (frmProducts.Visible). It is also used between a table’s name and a

field within the table: tblSales.Buyer and to refer to object methods: DoCmd.OpenForm. A
method, as you’ll recall from earlier chapters, is an action supported by an object.

A thorough analysis of the two special identifier operators is beyond the scope of this book. Even so,
you’ll find that these identifiers enable you to create expressions that refer to any object in your
Access application, and the values associated with its properties. Whenever you see bangs and dots
you’ll know that they are nothing more than operators that separate objects, properties, and methods.

NOTENOTE

NOTENOTE

NOTENOTE

453

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/27/06 5:02 PM Page 453

The word Forms has special meaning to Access. It actually refers to a collection of form
objects. Each time you open a form in an Access application it is added to the Forms

collection. There are several ways to refer to an individual form (such as “frmSales”) within the Forms
collection:

Forms!frmSales.Caption
Forms(“frmSales”).Caption
Forms.Item(“frmSales”).Caption
Forms.Item(0).Caption

This assumes frmSales was the first form opened. Of these different ways (and, there are even
more!), most developers choose the first (bang-dot notation: Forms!frmSales.Caption) or
second (Forms(“frmSales”).Caption) syntax to refer to a form and its properties.

Special keywords and properties
Access uses many special keywords and properties to reference active objects. Two have already
been referenced earlier in this chapter — the property Me used in VBA to reference forms or reports
(as in Me!txtLastName) and Forms used to reference the current active form. Although there
are many keywords and properties, the following list includes the most common keywords and
properties you will use as references in your events and code for forms and reports:

n Forms: The complete collection of open forms in an application — used to specify a spe-
cific form. The Syntax is:

Forms!frmContacts

n Form: The current active form — used to access an object on a sub form within a specific
form. The syntax is:

Forms!frmMyForm.mySubFormObject.Form!theControlName

n Reports: The complete collection of open reports in a database — used to specify a spe-
cific report. The syntax is:

Reports!rptContacts

n Screen: The Screen object is used for the particular form, report, or control that has
focus. The Screen object provides many properties to reference objects that currently
have the focus. The syntax is:

n Screen.ActiveForm: Used for active form

n Screen.ActiveReport: Used for active report

n Screen.ActiveDatasheet: Used for active datasheet

n Screen.ActiveControl: Used for active control

Be aware that a reference to a Screen property may be invalid if the referenced object
(such as ActiveDatasheet) is not open on the screen, and does not have focus.

NOTENOTE

454

Programming Microsoft AccessPart II

18_046732 ch13.qxp 12/1/06 9:25 AM Page 454

n Me: Me is a special property that is used to reference the active form, report, or class mod-
ule. It can only be used in VBA code. The syntax is:

n Me!txtLastName: The same as Forms!frmContacts.txtLastName)

n Me!txtLastName: The same as Screen.ActiveForm.txtLastName)

As you work with your forms, report, and Visual Basic code, these special keywords and properties
will be useful for writing efficient events.

Understanding Functions
Functions are procedures that, by definition, return a value. The value returned can be string, logic,
or numeric, depending on the type of function. Access provides hundreds of built-in functions
(such as Date()) that can be used in tables, queries, forms, and reports. You can also create your
own user-defined functions (UDFs) using the Visual Basic for Applications language.

Using functions in Access
Functions perform specialized operations that enhance the utility of Access. Many times, you find
yourself using functions as an integral part of Access. The following are examples of the types of
tasks that functions can accomplish:

n Provide a default value for a field in a table

n Place the current date and time in a control on a report

n Convert data from one type to another

n Perform financial operations

455

Using Expressions in Queries and VBA Code 13

A Quick Review of Events and Properties

Simply put, an event is an indication that some action has occurred, or is occurring at this very
moment. An event may indicate an action such as opening a form or report, changing data in a

record, selecting a button, or closing a form or report. Access recognizes approximately 60 different
events in forms, reports, and controls.

Access uses special event properties to hook events to objects. Each event has an associated event
property. For example, the OnOpen event property is associated with a form or report’s Open event.

To perform some action when the event is triggered, you create a macro or VBA code and associate
it with the property (in the previous case, the OnOpen event property) through the event property on
the object’s property sheet. The event procedure runs when the event is raised by the object.

18_046732 ch13.qxp 11/21/06 8:52 AM Page 455

n Format data in a table’s field

n Look up and return a value based on some other value

n Perform an action upon the triggering of an event

Access functions perform financial, mathematical, comparative, and other operations. Functions
are used just about everywhere in Access applications — in queries, forms, reports, validation
rules, and so forth.

Many Access functions evaluate or convert data from one type to another; others perform an
action. Some Access functions require the use of parameters; others operate without them.

A parameter is a value that you supply to a function. The value can be an object name, a
constant, or a quantity. Not all functions require parameters, and not all parameters are

required.

Access functions can be quickly identified because they always end with parentheses. If a function
uses parameters, the parameters are placed inside the parentheses immediately after the function
name.

Examples of Access functions are as follows:

n Now(): Returns the current date and time

n Rnd(): Returns a random number

n DateAdd(): Returns a date based on an interval added or subtracted from a date

n Ucase(): Returns the uppercase representation of a string

n Format(): Returns a formatted expression

Types of functions
Access offers several types of functions. They can be placed in the following general categories:

n Conversion: Convert one value to another.

n Date/Time: Return date and/or time values.

n Financial: Perform financial operations (such as NPV) on numeric values.

n Mathematical: Perform mathematical operations (SQRT) on numeric values.

n String manipulation: Transform, combine, or otherwise manipulate strings.

Immediate window
Microsoft Visual Basic has an Immediate window that you can use to test your code or functions.
Figure 13-7 shows the Immediate window containing two lines of text — the UCase() function
and its return value.

NOTENOTE

456

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 456

FIGURE 13-7

The Immediate window demonstrating the UCase() function.

The Immediate window is a nice tool for checking on how a function works.

Activate the VBA editor by pressing Ctrl+G or by right-clicking a module in the Navigation Pane
and selecting Design View from the shortcut menu. When you are in the VBA editor, select View ➪

Immediate Window or press Ctrl+G. When you are active, use the print command (a question
mark: ?) to display the results of a function.

Conversion functions
Conversion functions change the data type from one type to another. A few common functions are
listed here:

n Str(): Returns a string, converted from a numeric. It always reserves (adds) a leading
space for the plus sign:

n Str(921.23) returns “ 921.23”. A leading space is added as a placeholder for a
plus or minus sign.

n Str(-123) returns “-123”. No leading space is added and the sign is displayed.

n LCase(): Returns a string that is converted to lowercase:

n LCase(“Woodrow Wilson”) returns “woodrow wilson”.

n UCase(): Returns a string that is converted to uppercase:

n UCase(“Abraham Lincoln”) returns “ABRAHAM LINCOLN”.

457

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 457

n Val(): Returns a numeric value found in a string up to the first non-numeric character
in the string:

n Val(“1234.56”) returns 1234.56.

n Val(“10 Farmview 2 Ct”) returns 10. The 2 is after the first non-numeric charac-
ter, F.

n CDate(): Converts a string to a date:

n CDate(“04 Feb 07”) returns 02/04/2007.

n CDate(“February 4, 2007”) returns 02/04/2007.

n CSTR(): Converts a numeric or Date to a string:

n CSTR(#Feb 04, 07#) is converted to “02/04/2007”.

n CSTR(12345) is converted to “12345”.

n Format(): Returns an expression according to the user-specified format:

n Format(“Next”,”>”) returns NEXT.

n Format(“123456789”,”@@@-@@-@@@@”) returns 113-45-6789.

n Format(#12/25/07#,”d-mmmm-yyyy”) returns 25-December-2007.

n Format(Date(), “Long Date”) returns the current date, such as Wednesday,
April 16, 2007.

n Format(Now(), “Long Time”) returns the current time, down to the second:
2:37:58 PM.

The Format function is one of the most powerful ways to display data in a specific format. You
provide a format specifier by using keywords or a mask of symbols telling the Format() function
how to display the data. Figure 13-8 shows a query using two Format() functions, both using a
keyword — Long Date for the date and Percent for the discount percent.

FIGURE 13-8

The Format() function used in a query to display data in specific formats

458

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 458

Figure 13-9 shows the resulting datasheet using the Format() function for the two fields. Notice
that it shows the fields alongside each formatted field.

FIGURE 13-9

The datasheet from the Format() function used in Figure 13-8.

Date/Time functions
Date/Time functions work with date and time expressions. The following are some common
Date/Time functions:

n Now(): Returns the current date and time: 04/16/2007 12:22:34 PM.

n Time(): Returns the current time in 12-hour format: 12:22:34 PM.

n Date(): Returns the current date (versus Now(), which returns date and time):
04/16/2007.

n Month(): Returns a whole number that represents the month portion of a date.

n Month(Now()) returns 04 (or today’s month number).

n Day(): Returns a whole number that represents the day portion of a date.

n Day(Date()) returns 16 (or today’s day number of the month)

n Weekday(): Returns a whole number that represents the day of week for a specific date.

n Weekday(Date()) returns 4 (for Wednesday or today’s day of week number).

n Year(): Returns a whole number that represents the year portion of a date.

n Year(Date()) returns 2007 (or today’s year).

n DateDiff(): Returns a number based on a specific time interval between two different
dates. The time interval can be d (day), ww (weeks), m (months), q (quarters), yyyy
(years). The syntax is:

n DateDiff(“d”, Date(), #02/04/92#) returns 5550 (the number of days) if
the current date is April 16, 2007.

459

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 459

n DateDiff(“yyyy”, Date(), #02/04/92#) returns 15 (the number of years) if

n DateDiff(“q”, Date(), #02/04/92#) returns 61 (the number of quarters) if
the current date is April 16, 2007.

n DateAdd(): Returns a new date based on a specific time interval. The time interval can
be d (day), ww (weeks), m (months), q (quarters), yyyy (years). The syntax is:

n DateAdd(“d”,22, Date()) returns 5/8/2007 if the current date is April 16,
2007.

n DateAdd(“ww”, 10, #01/01/2007#) returns 3/11/2007.

n DatePart(): Returns a number based on a specific time interval for a date. The time
interval can be d (day), y (day of year), w (weekday), ww (weeks), m (months), q (quar-
ters), yyyy (years). The syntax is:

n DatePart(“y”, Date()) returns 106 if the current date is April 16, 2007.

n DatePart(“ww”, Date()) returns 16 if the current date is April 16, 2007.

n DatePart(“q”, Date()) returns 2 if the current date is April 16, 2007.

Notice that all date manipulations are relative to the regional settings specified in Control Panel.
The examples here use the English (United States) regional setting.

Financial (SQL) functions
Financial (SQL) functions perform aggregate financial operations on a set of values. The set of values
is contained in a field. The field can be in a form, report, or query. Two common SQL functions are
listed below:

n Avg(): An example is Avg([Scores]).

n Sum(): An example is Sum([Gross Amount] + [Tax] + [Shipping]).

Financial (monetary) functions
Financial (monetary) functions perform financial operations. Several monetary functions are listed
below:

n DDB(): Returns the double-declining balance method of depreciation return. The syntax is:

DDB(InitialCost, SalvageValue, LifeOfProduct,
DepreciationPeriod)

where:

n InitialCost is a Double specifying the initial cost of the asset.

n SalvageValue is the value of the asset at the end of its useful life (also a Double).

n LifeOfProduct is an Integer that specifies the length of the useful life of the prod-
uct (usually months or years).

n DepreciationPeriod is a Double that specifies the period for which the deprecia-
tion is calculated.

460

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 460

n NPV(): Returns a Double floating-point value representing the net present value of an
investment. The syntax of NPV is:

NPV(DiscountRate, CashFlowArray())

where:

n DiscountRate is the discount rate (expressed as a Double floating-point number)
applied over the length of the period.

n CashFlowArray() is an array of Double floating point numbers representing the
cash flow values.

n FV(): Returns the future value of an annuity based on periodic, fixed payment and fixed
interest rate. The syntax is:

FV(Rate, PaymentPeriods, Payment [, PresentValue] [, Type])

where:

n Rate is a Double specifying the interest rate paid per period. If the interest rate is
specified on an annual basis, but payments are made every month, divide the interest
rate by 12 to get the interest rate per month.

n PaymentPeriods is an Integer specifying the total number of payments in the annuity.

n Payment is a Double indicating the payment made each period.

n PresentValue (optional) is a Variant indicating the present value (usually expressed
as a lump sum) of the series of payments.

n Type (optional) indicates when the payment is made. A 1 indicates the payment is
made at the beginning of each period, while 0 (zero) indicates the payment is made at
the end of each period.

n PV(): Returns the present value of an annuity based on periodic, fixed payments to be
paid in future and fixed interest rate. The syntax is:

PV(Rate, PaymentPeriods, Payment [, FutureValue] [, Type])

where:

n Rate is a Double specifying the interest rate paid per period. If the interest rate is
specified on an annual basis, but payments are made every month, divide the interest
rate by 12 to get the interest rate per month.

n PaymentPeriods is an Integer specifying the total number of payments in the annuity.

n Payment is a Double indicating the payment made each period.

n FutureValue (optional) is a Variant indicating the future value after making the last
payment.

n Type (optional) indicates when the payment is made. 1 indicates the payment is
made at the beginning of each period, while 0 (zero) indicates the payment is made at
the end of each period.

461

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 461

n SYD(): Returns the sum-of-years depreciation of an asset for a specific period. The
syntax is:

SYD(CostOfAsset, SalvageValue, LengthOfUsefulLife, Period)

where

n CostOfAsset is a Double representing the initial cost of the asset.

n SalvageValue is a Double indicating the value of the asset at the end of its useful
life.

n LengthOfUsefulLife is a Double specifying the useful life of the asset (usually
months).

n Period is a Double indicating the period for which depreciation is calculated.

n PMT(): Returns the payment for an annuity based on periodic, fixed payment and fixed
interest rate. The syntax is:

PMT(Rate, NumberOfPayments, PresentValue)

where:

n Rate is a Double specifying the interest rate per period.

n NumberOfPayments is an Integer indicating how many payments are made over the
life of the annuity.

n PresentValue is a Double indicating the present value (as a lump sum) that the
series of payments is worth.

PMT(.005, 360, -110000) returns payment amount of 659.51 for a 6 percent loan of
360 months for $110,000 USD.

Mathematical functions
Mathematical functions perform specific calculations. The following are some mathematical func-
tions, with examples of how to use them.

n Abs(): Returns the absolute value of a number (the number without a sign):

n Abs(-14) returns 14.

n Abs(14) results in 14.

n Fix(): Determines the correct integer for a negative number:

n Fix(-1234.55) results in -1234.

n Int(): Returns the integer of a specific value:

n Int(1234.55) results in 1234.

n Int(-55.1) results in -56.

n Round(): Returns a number rounded to the specified number of decimals:

n Round(14.245, 2) results in 14.24; rounding occurs over 5.

n Round(17.1351, 2) results in 17.14, rounding up to .14.

462

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 462

n Rnd(): Returns a random number:

n Rnd() (with no argument) returns a random number — the next in the sequence of
random numbers.

n Rnd(-1) or any negative number returns the same random number every time, using
the number as the seed (-1 in this case).

n Rnd(1) or any positive number returns a random number — the next in the
sequence.

n Sgn(): Determines the correct sign of a number:

n Sgn(-14) results in -1 as will any negative number.

n Sgn(12) results in 1 as will any positive number.

n Sgn(0) results in 0.

n Sqr(): Determines the square root of a number:

n Sqr(9) returns 3.

n Sqr(14) returns 3.742.

There is another mathematical operator, MOD (modulus division), which returns the remainder
when one number is divided by another. For example:

n 10 MOD 2 results in an answer of 0 (10 is evenly divisible by 2 with no remainder).

n 10 MOD 3 results in an answer of 1 (10 is divisible by 3, 3 times with a remainder of 1).

n 10 MOD 4 results in an answer of 2 (10 is divisible by 4, 2 times with a remainder of 2).

String manipulation functions
String functions manipulate text-based expressions. Here are some common uses of these
functions:

n InStr(): Returns a number that represents the first position of one string in another
string:

n Instr(“abcd123efg234”, “23”) returns 6, the start position of 23.

n Instr(7, “abcd123efg234”, “23”) returns 11— the 7 in the beginning tells
InStr() to start after position 7 of the string.

n Left(): Returns the leftmost characters of a string:

n Left(“abcdefg”,4) returns “abcd”.

n Len(): Returns the length of a string:

n Len(“abcdefgh”) results in 8.

n Lcase(): Returns the lowercase of the string:

n Lcase(“Angus Young”) returns angus young.

463

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 463

n LTrim(): Removes leading spaces from a string:

n LTrim(“ abcd”) returns “abcd”.

n Mid(): Returns characters from the middle of a string:

n Mid(“abcdefgh”,3,4) returns “cdef”, starting at position 3 and reading 4 char-
acters.

n Right(): Returns the rightmost characters of a string:

n Right(“abcdefg”,4) returns “defg”.

n RTrim(): Removes trailing spaces from a string:

n RTrim(“abcd “) returns “abcd”.

n Space(): Inserts the specific number of spaces:

n Space(6) returns six blank spaces.

n Trim(): Removes leading and trailing spaces from a string:

n Trim(“ abcd “) returns “abcd”.

Programming functions
Programming functions are those that don’t fit in a specific category, yet are very useful in program-
ming. The following are some programming functions, with examples of how to use them.

n Choose(): Returns a value based on an index parameter from a list.

n Choose(2, “Slow”, “Average”, “Fast”) returns “Average”.

n Choose(3, “A”, “B”, “C”, “D”) returns “C”.

n IsDate(): Determines whether an expression is a valid date.

n IsDate(“Feb 29, 2000”) returns TRUE because the year 2000 was a leap year.

n IsDate(“Jup 4, 2007”) returns FALSE.

n IIF(): Immediate IF (IIF) is used to return either of two parts, based on an evaluation
within the function:

Function TestIt(TestNum as Integer)
‘If TestNum is larger than 250, returns the word “Greater”
‘If TestNum is less than 250, returns the word “Smaller”
TestIt = IIF(TestNum > 250, “Greater”, “Smaller”)

End Function

n IsMissing(): Determines whether a parameter has been passed to a function:

Dim ReturnVal As Integer
ReturnVal = ReturnCheck()

ReturnVal = ReturnCheck(4)

Function ReturnCheck(Optional ABC As Integer)
If IsMissing(ABC) Then

464

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 464

ReturnCheck = NULL
Else

ReturnCheck = ABC * 2
End If

End Function

IsMissing is only valid when a parameter has been declared with the Optional key-
word.

n IsNull(): Determines whether an expression has no value (no data — Null), returning
True or False:

n IsNull([LastName]) returns False if there is a value in the field or True if no
value is present.

n NZ(): Use this function to return a zero, a zero-length string, or another value when a
variant is null. The default is a zero-length string.

n xName = “Mark”

n ? Nz(xName) results in “Mark”.

n ? Nz(yName) results in “”.

n ? Nz(yName, 0) results in 0.

Domain functions
A domain is a set of records contained in a table, a query, or an SQL expression. A query’s recordset
is an example of a domain. Domain aggregate functions return statistics about a domain. Domain
aggregate functions are often used to perform statistical calculations in VBA code. Domain aggre-
gate functions are also used to specify criteria, update values, or even create calculated fields in a
query expression.

Several examples of domain functions are listed here:

n DAvg(): Returns the arithmetic mean (average) of a set of values.

n DAvg(“Cost”,”tblProducts”) determines the average cost of vehicles sold.
Figure 13-10 shows an example (qryDAvg) using DAvg() to show only vehicles
where the cost is greater than or equal to the average of all cars in tblProducts.

n DCount(): Returns the number of records specified.

n DCount(“ProductID”,”tblProducts”, “Category = ‘cars’”) counts all
records in tblProducts whose Category value is ‘cars’. The answer should be
25 for the table.

n DFirst(): Returns a random record from a field in a table or query, when you need any
value.

n DFirst(“LastName”, “tblContacts”) returns a random name from the
LastName field. DLast() works the same.

465

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 465

n DLookup(): Returns the value of a specific field from the specified records.

n DLookUp(“[Short Name]”, “[tblPayType]”,
“[tblPayType].[PaymentType] =
‘“&[tblSales].[PaymentMethod]&”’”) finds the short name for all payment
types in the query. Figure 13-11 (qryDLookup) shows how the query’s field will
look.

n DMax(): Returns the highest value in a range of values.

n DMax(“Cost”,”tblProducts”) returns the highest cost ($165,000.00 USD) in
tblProducts.

n DMin(): Returns the lowest value in a range of values.

n DMin(“Cost”,”tblProducts”) returns the lowest price cost ($200.00 USD) in
tblProducts.

n DSum(): Returns the sum for a set of records specified.

n DSum(“Cost”,”tblProducts”, “Category = ‘cars’”) sums the Cost field
in all records where the Category is ‘cars’. The answer is $779,356.00 USD.

FIGURE 13-10

Here the DAvg() function is used to show only records that are valued greater than or equal to the aver-
age of all vehicles.

466

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 466

FIGURE 13-11

The DLookUp() function is being used in a query to show values found in a table not included in the
query.

Although VBA code and fancy queries can produce the same results as the domain aggregate func-
tions, using these functions is much easier and much faster than the equivalent code or queries.

Using the DLookUp() function for lookup tables
The DLookUp() function is difficult for people to understand. It is a way to find a specific field
value by looking up information based on a condition. As its name implies, DLookUp() looks up
information in a table (the domain) that is not currently open.

Although it can be easy to program and works well with small amounts of records, if your tables
contain more than 5,000 records, you should probably perform the lookup with VBA code.

DLookUp has the following general syntax:

DLookUp(“[Field]”, “[Table]”, “<Criteria>”)

“[Field]” is the field in the table you want to search. “[Table]” is the table containing the
field you want to display. “<Criteria>” specifies criteria used by the lookup function. The
Criteria parameter is optional, but if you want to use different criteria for each record, it is
essential.

The following simple example returns the address (“108 Thomas Road”) from tblContacts
where the ContactID is 27:

DLookup(“Address”, “tblContacts”, “ContactID = 27”)

When using DLookUp(), the format of your criteria is critical. Specifying the criteria is no prob-
lem when the lookup value is numeric, as in the preceding example. Formulating the criteria
becomes much more difficult when working with string values.

467

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 467

The Criteria parameter has the following general syntax:

“[Field in Table] = ‘<Example>’ “

You can replace the equal operator (=) with any Access operator such as > or <>.

‘<Example Data>’ in single quotes is usually a literal, such as ‘Cars’ or ‘AMEX’. An example is:

DLookup(“Address”, “tblContacts”, _
“Company = ‘Circle Auto Sales’”)

In this example, because the name of the company (Circle Auto Sales) is a string, it must be sur-
rounded by single-quotes.

DLookup becomes more complex when the Criteria value references a text field in a table. In
this case, you must reference the table and the field, and let Access extract values from the field
during the lookup. An example of a field reference is:

tblContacts.Company

You have to keep in mind that the field contains a string, so it must be surrounded by quote
marks:

“ & tblContacts.Company & “

The ampersands surround the value in the field with quotation marks.

Here comes the really confusing part. You’ll recall that the Criteria parameter is a string:

“Company = ‘Some String Value’”

In this case, the Criteria is a string that contains another string (the value in the field). Because
you are using a string contained within a field in another table, you must be sure that the field’s
value is surrounded by the single quote marks. You saw such an example in Figure 13-11. This
query was created by following these steps:

1. Select tblSales in the Query Design window.

2. Double-click the SaleDate field in the table, and any other fields you want to
look at.

3. In an empty field in the QBE pane, type the following:

How Pay: DLookUp(“ShortName”, “tblPayType”, _
“tblPayType.PaymentType = ‘“ _
& tblSales.PaymentMethod & “‘“).

468

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 468

“ShortName” is the name of a field in tblPayType.

tblPayType is the domain for the DLookup function. This means you will extract data
from tblPayType where the PaymentType field matches the PaymentMethod value in
tblSales. In other words, you want to see the ShortName (such as “CHCK”) from
tblPayType where the PaymentType field value is the same as the PaymentMethod
field in tblSales. The Criteria parameter for this example is:

“tblPayType.PaymentType = ‘“ & tblSales.PaymentMethod & “‘“

Notice that the tblSales.PaymentMethod field reference is surrounded by single quotes that
are added through concatenation operators (the ampersands). On the left side, the single quote is
enclosed within the double quotes containing the first part of the parameter, and the single quote
to the right of the field reference is enclosed in two double quotes. The field reference itself is not
enclosed in quotes (“tblSales.PaymentMethod”) because Access would interpret this refer-
ence as a string literal.

The results for qryDLookup are shown in Figure 13-12. Notice that several records have no
Payment method name, because these records have not yet been paid.

FIGURE 13-12

The datasheet using the DLookUp() function is used here in a query to show values found in another table.

Summary
Expressions are powerful tools you use in many places in Access applications. You use expressions
as validation rules, to create fields within queries, as control properties, and embedded within your
VBA code.

469

Using Expressions in Queries and VBA Code 13

18_046732 ch13.qxp 11/21/06 8:52 AM Page 469

Access provides many functions that can be combined with identifiers, operators, and other infor-
mation to build complex expressions. Very often a relatively simple expression replaces numerous
lines of VBA code or substitutes for a fairly complex query.

Chapter 14 explains the heart of VBA programming in Access applications. Although many Access
database applications are built entirely of bound forms, VBA procedures provide incredibly flexibil-
ity when dealing with data. As you’ll see in Chapter 14, there is no substitute for manipulating
individual records and fields using the ADO (ActiveX Data Objects) and DAO (Data Access
Objects) syntaxes.

470

Programming Microsoft AccessPart II

18_046732 ch13.qxp 11/21/06 8:52 AM Page 470

Data access and data management are at the core of any database
application. Although you can do a fine job building applications
with bound forms, using VBA code to access and manipulate data

directly provides far greater flexibility than a bound application can.
Anything that can be done with bound forms and controls can be done with
a bit of VBA code using ADO (ActiveX Data Objects) to retrieve and work
with data.

The Visual Basic for Applications (VBA) language offers a full array of power-
ful commands for manipulating records in a table, providing data for con-
trols on a form, or just about anything else. This chapter provides some
in-depth examples of working with procedures that use SQL and ADO to
manipulate database data.

In the Chapter14.accdb database, you will find a num-
ber of forms to use as a starting point and other completed

forms to compare to the forms you change in this example. All of the examples
in this chapter use modified versions of the frmProducts form and
tblProducts.

Understanding SQL
Many of the VBA procedures that you write for working with Access data uti-
lize Structured Query Language (SQL, usually pronounced “sequel” or “ess-
que-ell”) statements to retrieve data from a database, add new data to a
database, or update records in a database. When you use the Access Query
Designer to create a query, Access converts the query’s design into a SQL
statement. The SQL statement is what Access actually executes when the
query runs.

ON the CD-ROMON the CD-ROM

471

IN THIS CHAPTER
Viewing and using SQL
Statements

Using ADO

Updating tables

Updating a calculated field

Adding new records

Deleting records

Creating code that finds a record
by using a form field

Creating code that uses a
bookmark to find a record

Using a form’s filter options

Using a form to filter records

Creating a parameter query

Interfacing a parameter query to
a form dialog

Accessing Data with
VBA Code

19_046732 ch14.qxp 11/21/06 8:53 AM Page 471

SQL is a standardized language for querying and updating database tables, and it is used by many
relational databases. Although Access SQL does not comply with ANSI SQL-92 (the generally-
accepted specification for SQL language implementations), Access SQL shares many similarities
with all SQL implementations. Your Access SQL statements run with very few changes in SQL
Server or many other database systems.

Although forms and reports do have the ability to work with queries that are stored in an Access
database, many times you’ll find that creating a query on the fly in your code is quicker and easier
than working with Access queries. SQL is relatively easy to understand and work with. This is a
quick overview of SQL statements and how to create them in Access 2007.

Viewing SQL statements in queries
To view the SQL statement that Access creates while building a query, select View ➪ SQL View
from the Access ribbon. Figure 14-1 shows a typical SQL statement that returns the product
description, company name, and state for products purchased by contacts in Connecticut or
New York.

FIGURE 14-1

A SQL statement in the SQL view window for an Access query

Don’t be put off by the apparent complexity of the SQL statement in Figure 14-1. The same query
in Design view is shown in Figure 14-2. As you can easily see, the Access Query Designer hides
much of the complexity of the underlying SQL statement.

Behind the scenes, as you add tables and choose fields in the Access Query Designer, Access com-
poses a SQL statement that is stored within the database file. Anything you can do in the Query
Designer can be expressed using the Access SQL syntax. Opening a query actually instructs Access
to retrieve the SQL statement and compose the query view you see in the Query Designer.

You can make changes to the query using either the Design window or the SQL window. As you
work with the query, you can alternate between view modes using the View drop-down in the
Access ribbon. The changes you make in either view are immediately reflected in the alternative
view.

472

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 472

FIGURE 14-2

The same query in Design view

If you are proficient in creating SQL queries on your own, you can even create a new
query directly in the SQL window. To add new lines to the SQL statement, simply press

Enter, or add additional SQL text to the existing statement, while working in the SQL View window.

An SQL primer
As you can see, one way to learn SQL syntax is to build a query in Design view; then view the cor-
responding SQL statement in the SQL view window. The example in Figure 14-1 utilizes the four
most common SQL commands. Table 14-1 shows each command and explains its purpose.

TABLE 14-1

Four Common SQL Keywords

Keyword Purpose in SQL Statement

SELECT This keyword starts an SQL statement. It is followed by the names of the fields that are
selected from the table or tables (if more than one is specified in the FROM clause). SELECT
is a required keyword.

FROM FROM is followed by the name(s) of the table(s) containing the fields specified in the
SELECT command. FROM is a required keyword for SELECT queries. If more than one
table is used you must also specify a JOIN type so that Access knows how the data in the
tables are related.

WHERE The WHERE keyword specifies conditions used to filter (limit) the records that are returned
by the SELECT. The WHERE keyword is optional and is used only when you want to limit
the records to a specific group on the basis of the condition.

ORDER BY ORDER BY specifies the order in which you want the selected records to be sorted. The
ORDER BY clause is optional and used when you want records returned in a specific
sequence. Without an ORDER BY clause, Access returns records in an unpredictable order
determined by the database engine (Jet).

TIPTIP

473

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 473

Using these four basic keywords, you can build very powerful SQL statements to use in your
Access forms and reports. By convention, SQL keywords are entered in all uppercase. This is not a
requirement because Jet, the database engine built into Microsoft Access, is case-insensitive by
default.

SQL statements may span many, many lines. The Jet database engine doesn’t care how long a SQL
statement is, or whether it spans multiple lines, as long as the SQL syntax (spaces, commas, and so
on) is correct.

The SELECT keyword
The SELECT keyword is the first keyword used in two query types: in a select query or a make-
table query. SELECT specifies the field(s) you want displayed in the result data.

After specifying the keyword SELECT, specify the fields you want included and displayed by the
query. The general syntax is:

SELECT Field_one, Field_two, Field_three [,...]

where Field_one, Field_two, and so on, are replaced with the names of the table fields.
Virtually any number of fields may be included in the SELECT statement.

Notice that commas separate each field in the list from the others. For instance use the following
SELECT clause to specify Company Name and City fields in the Contacts table:

SELECT [Company Name], City

The last field name in the list is not followed by a comma.

The field name Company Name needs square brackets around it because it has a space
in the name (see sidebar).

If you need to view fields from more than one table, specify the name of the tables in which to find
the fields. The SELECT statement would, for example, look like this to select fields from both the
Contacts and Sales tables:

SELECT tblContacts.Company, tblContacts.City,
tblSales.SaleDate, tblSales.InvoiceNumber

You’ll recall that the “dot” between tblContacts and Company is an operator that indicates that
Company is contained within tblContacts. In this context, the dot does not mean that
Company is a property or method of tblContacts. This is an example of how context deter-
mines how Access interprets operators.

When you build a query using the Query Designer, Access automatically includes the table’s name
before the field name. Actually, the table name is optional. You only specify the table name if more
than one table in the SQL statement has fields with exactly the same name. For instance, a field
named Invoice Number may appear in both the Sales table and SalesLineItems tables. If you
want to SELECT an invoice number field in your SQL statement, you must specify which of these
to use — the one in Sales or the one in SalesLineItems.

NOTENOTE

474

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 474

The following SQL SELECT statement illustrates the syntax:

SELECT tblContacts.Company, tblContacts.City, _
tblSales.SaleDate, tblSales.InvoiceNumber

Although table names are not required for non-duplicate fields in an SQL statement, it’s
a good idea to use them for clarity. Anyone viewing your SQL statements will immedi-

ately know where each field is found in the database.

You can use the asterisk wildcard (*) to specify that all fields in a table should be selected. If you’re
going to select all fields from more than one table, specify the table, a period (.), and the asterisk
for each table:

SELECT tblContacts.*, tblContacts.*,
tblSales.*, tblSales.*

Generally speaking, it is not a good idea to use the asterisk to select all fields within a
table. Your queries are guaranteed to run more slowly than necessary if you routinely

extract more data than needed in your queries. By all means, select all of the fields that are necessary
to satisfy the user’s requirements, but do not make a habit of selecting all columns from all tables.
Keep in mind that your queries pull everything specified by the SQL statement, whether or not the
data is displayed on the form or report using the query.

Specifying SELECT predicates
When you create an SQL SELECT statement, several predicates are available for the SELECT clause:

n ALL

n DISTINCT

n DISTINCTROW

n TOP

A predicate restricts or modifies the number of records returned. A predicate works in conjunction
with the WHERE clause (actually, in SQL terminology, the WHERE condition) of an SQL statement.

TIPTIP

TIPTIP

475

Accessing Data with VBA Code 14

Using the Brackets around Field Names

Afield name that contains spaces requires the use of brackets. The brackets ([]) serve as delimiters
to let the SQL parser know you are referring to a specific field. If the field name does not contain

spaces, you do not need to use brackets. Access may insert brackets around field names, but they are
generally unnecessary unless the field name contains spaces.

The square brackets surround just the field name (tblMyTable.[My Field Name]), not the table
and field name ([tblMyTable.My Field Name]). Think of the square brackets as marking the
beginning and end of an identifier.

19_046732 ch14.qxp 11/21/06 8:53 AM Page 475

The ALL predicate selects all records that meet the WHERE condition specified in the SQL state-
ment. The ALL predicate is included by default. If you do not specify the keyword ALL, all records
indicated by the SQL statement are returned by the query.

Use the DISTINCT predicate when you want to omit records that contain duplicate data in the
fields specified in the SELECT statement. For instance, if you create a query and want to look at
both the company name and the products the customer purchased, without considering the num-
ber of products of a single category, the SELECT statement for the query
(qryCompaniesCategoriesDistinct) would be as follows:

SELECT DISTINCT tblContacts.Company, tblProducts.Category
FROM (tblContacts
INNER JOIN tblSales
ON tblContacts.ContactID = tblSales.Buyer)
INNER JOIN (tblProducts
INNER JOIN tblSalesLineItems
ON tblProducts.ProductID = tblSalesLineItems.ProductID)
ON tblSales.InvoiceNumber = tblSalesLineItems.InvoiceNumber
ORDER BY tblContacts.Company;

We’ll ignore everything past the first line of this query for the meantime. Notice the DISTINCT
clause that follows the SELECT keyword. The addition of the DISTINCT keyword has a profound
effect on the records returned by this query.

If a customer (Paul’s Best Autos) purchased two minivans — that is, has two minivan records (one
2002 Ford Mini Van and one 1992 Ford Conversion Van) in tblSalesLineItems— only one
record with “Minivan” as the category appears in the resultset. Without the DISTINCT keyword,
two records with “Minivan” as the category appear in the result set for Paul’s Best Autos (see
qryCompaniesCategoriesNotDistinct in Chapter14.accdb).

The DISTINCT predicate tells Access to show only one record if the values in the selected fields are
duplicates (that is, same company name and same product category) — other fields in the underly-
ing records may be different. Even though two different records are in tblSalesLineItems for
the customer, only one is shown. DISTINCT eliminates duplicates based on the fields selected by
the query.

The DISTINCT predicate is added to an Access query’s SQL statement by setting the query’s
Unique Values property. Right-click in the upper portion of the Access Query Designer, and select
Properties. Then, set the Unique Values property to Yes. Access adds the DISTINCT predicate to
the SQL statement underlying the query for you.

Records returned by a query that includes the DISTINCT predicate are not updateable. Each
record in the result set represents one or more records in the underlying tables, and there is no way
for Access to know which records to update. Therefore, the data returned by a DISTINCT query
are read-only.

476

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 476

The DISTINCTROW predicate is unique to Access. It works much like DISTINCT, with one big
difference: It looks for duplicates on the basis of all fields in the table(s) underlying the query, not
just the fields selected by the query.

For instance, if a customer has purchased two different product records in
tblSalesLineItems, use the predicate DISTINCTROW in this SQL statement:

SELECT DISTINCTROW tblContacts.Company, tblProducts.Category
FROM (tblContacts
INNER JOIN tblSales
ON tblContacts.ContactID = tblSales.Buyer)
INNER JOIN (tblProducts
INNER JOIN tblSalesLineItems
ON tblProducts.ProductID = tblSalesLineItems.ProductID)
ON tblSales.InvoiceNumber = tblSalesLineItems.InvoiceNumber
ORDER BY tblContacts.Company;

In this example, both product records are displayed. DISTINCTROW looks for duplicates across all
of the fields in the tables underlying the query, even if the field is not selected by the query. If any
field in the underlying tables is different (in this case, the description field in the products table is
different for the Minivan category), both records are displayed in the result set.

Generally speaking, Access queries behave as if DISTINCTROW is always included in the SQL
statement. The only time you’ll see a query with DISTINCTROW returns different records than a
query without DISTINCTROW is when all of the tables underlying the query contain exactly the
same records. Because all of the tables in a normalized database includes a primary key that
uniquely identifies each row, it is unlikely a DISTINCTROW query will find identical records in
tables joined by a query.

The DISTINCTROW predicate is added to a query’s SQL statement by setting the query’s Unique
Records property to Yes. Unique Values (DISTINCT) and Unique Records (DISTINCTROW) are
mutually exclusive and both cannot be set to Yes at the same time.

The TOP predicate enables you to restrict the number of records returned to the TOP <number> of
values. For instance, the following SELECT statement displays the first five contact records (see
qryCustomersTop5Sales in Chapter14.accdb):

SELECT TOP 5
Sum(tblSalesLineItems.Quantity*tblSalesLineItems.Price)
AS SaleAmount, tblContacts.Company
FROM (tblContacts
RIGHT JOIN tblSales ON tblContacts.ContactID=tblSales.Buyer)
RIGHT JOIN tblSalesLineItems
ON tblSales.InvoiceNumber=tblSalesLineItems.InvoiceNumber
GROUP BY tblContacts.Company
ORDER BY
Sum(tblSalesLineItems.Quantity*tblSalesLineItems.Price) DESC;

477

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 477

You can use the TOP predicate in conjunction with the ORDER BY clause to answer some practical
business questions. This example (qryCustomersMostRecentSales) uses the TOP predicate
with the ORDER BY clause:

SELECT TOP 5 Company FROM tblContacts
ORDER BY LastSalesDate DESC

This example returns a list of companies with the five most recent sales dates. In other words, the
query lists all the companies and orders them by their last sales date in descending order (so that
the most recent sales are at the top of the list), and then picks the first five companies in the
ordered list.

The TOP predicate has an optional keyword, PERCENT, that displays the top number of records on
the basis of a percentage rather than a number. To see the top two percent of your contacts, you
use a SELECT statement like this example ((qryCustomersTop10PercentSales) :

SELECT TOP 10 PERCENT Company FROM tblContacts
ORDER BY LastSalesDate DESC

The FROM clause of an SQL statement
As the name suggests, the FROM clause specifies the tables (or queries) that contain the fields
named in the SELECT statement. The FROM clause is required for SELECT queries. The FROM
clause tells SQL where to find the records. If you fail to include a FROM clause in a SELECT state-
ment, you will receive an error. Due to the required use of the FROM clause, some people refer to
the SELECT statement as the SELECT ... FROM statement.

When you’re working with one table, the FROM clause simply specifies the table name:

SELECT Company, City
FROM tblContacts

When you are working with more than one table, you can supply a table expression to the FROM
clause to specify how to retrieve data from the multiple tables. The FROM clause is where you set
the relationship between two or more tables for the SELECT statement. The table expression can
be one of three types:

n INNER JOIN ... ON

n RIGHT JOIN ... ON

n LEFT JOIN ... ON

Use INNER JOIN ... ON to specify the Access default inner or equijoin. To join two tables, you
link them using a field that both tables have in common. For instance, the Contacts and Sales
tables have a common field that identifies the buyer. To join the sales and contacts tables, the table
expression syntax is (see qryInvoicesAndBuyers in Chapter14.accdb):

478

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 478

SELECT tblSales.InvoiceDate, tblSales.InvoiceNumber,
tblContacts.Company
FROM tblContacts
INNER JOIN tblSales
ON tblContacts.ContactID = tblSales.Buyer;

Notice that the FROM clause specifies the tables to use (tblContacts). Then the INNER JOIN
portion of the FROM clause specifies the second table to use (tblSales). Finally, the ON portion
of the FROM clause specifies which fields (ContactID in tblContacts and Buyer in
tblSales) are used to join the table.

In the case of an inner join, it really makes no difference which table is specified in the FROM
clause. Because records are selected only when values exist in both sides of the join (for instance,
when ContactID 13 in tblContacts is joined to Buyer 13 in tblSales), Access gets data
from both tables, regardless of which table is specified in the FROM clause.

The LEFT JOIN and RIGHT JOIN work exactly the same, except that they specify an outer join
instead of an inner join. You use outer joins when you want to return records from a parent table
even if the dependent table does not contain any records with matching values specified in the ON
clause. The following example (qryContactsAndInoviceNumbers) shows a query coded as
an outer join:

SELECT tblContacts.Company, tblSales.InvoiceNumber
FROM tblContacts
LEFT JOIN tblSales
ON tblContacts.ContactID = tblSales.Buyer;

In this example, the query includes contacts and the invoice numbers associated with sales placed
by the contact.. If the query does not find a match in the Sales table, the Company is still shown
in the resultset even if the Sales table contains no records matching the ContactID in the
Contacts table. The InvoiceNumber field is blank when the contact has not yet placed a sale.

If you’d like to see all contacts who haven’t placed a sale, add a simple filter to the query’s design.
In this case (qryContactsWithNoInoviceNumbers), the query selects records where the
InvoiceNumber is Null:

SELECT tblContacts.Company, tblSales.InvoiceNumber
FROM tblContacts
LEFT JOIN tblSales
ON tblContacts.ContactID = tblSales.Buyer
WHERE tblSales.InvoiceNumber IS NULL;

In this particular example, there is no reason to include the InvoiceNumber as part of the
SELECT clause because it will be blank (Null) in every record returned by the query. However,
InvoiceNumber is included to clarify the query’s intent.

479

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 479

The WHERE clause of an SQL statement
Use the WHERE clause of the SQL statement only when you want to specify a condition. This clause
is optional, unlike SELECT and FROM.

The SQL statement in Figure 14-1 specifies the following WHERE clause:

WHERE (tblContacts.State=”NY”) Or (tblContacts.State=”CT”)

The WHERE condition can be any valid Boolean (True or False) expression. It can be an evalua-
tion on a single field, as in the previous example, or a complex expression based on several criteria.

If you use the WHERE condition, it must follow the FROM clause of the SQL statement.

The ORDER BY clause
Use the ORDER BY clause to specify a sort order. It sorts the displayed data by the field(s) you
specify after the clause, in ascending or descending order. Using the example in Figure 14-1, the
query was sorted by all three of the fields in the SELECT clause:

ORDER BY tblSalesLineItems.Description, tblContacts.State,
tblContacts.Company;

The fields specified in the ORDER BY clause do not have to be the same fields specified in the
SELECT clause. You can sort by any of the fields included in the tables you specify in the FROM
clause.

Specifying the end of an SQL statement
Because an SQL statement can be as long as 64,000 characters, a way is needed to tell the database
language that you’ve finished creating the statement. End an SQL statement with a semicolon (;).

Access is very forgiving about the ending semicolon. If you forget to place one at the
end of an SQL statement, Access assumes that it should be there and runs the SQL state-

ment. On the other hand, if you accidentally place a semicolon inside an SQL statement, Access
reports an error and attempts to tell you where it occurred.

When you become proficient at creating SQL statements, you can begin using them to create very
powerful programs that retrieve and manipulate data in your applications.

Creating Programs to Update a Table
Updating data in a table by using a form is easy. You simply place controls on the form for the
fields of the table that you want to update. For example, Figure 14-3 shows frmSales. The con-
trols on the form update data in tblSales, tblSalesLineitems, and tblSalesPayments.

NOTENOTE

NOTENOTE

480

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 480

FIGURE 14-3

Using a form to update data in tables

Sometimes, however, you want to update a field in a table that you do not want displayed on the
form. When information is entered in the Sales form, for example, the field for the last sales date
(LastSalesDate) in tblContacts should be updated to reflect the most recent date on which
the contact purchased a product. When you enter a new sale, the value for the LastSalesDate
field is the value of the txtSaleDate control on the Sales form.

Because the contact’s last sales date refers to the control labeled Sale Date on the Sales form,
you do not want the user to have to enter it in two places. Theoretically, you could place the
LastSalesDate field as a calculated field that is updated after the user enters the Sale Date.
Displaying this field, however, could be confusing and is irrelevant to the items for the current sale.

The best way to handle updating the LastSalesDate field is to use a VBA (Visual Basic for
Applications) procedure. You can use VBA procedures to update individual fields in a record, add
new records, or delete records.

Updating fields in a record using ADO
To update the LastSalesDate field in tblContacts by using a VBA procedure, you use the
After Update event for the Sales form. The procedure is shown in Figure 14-4.

The Form_AfterUpdate procedure for the Sales form updates the LastSalesDate field in
tblContacts. This procedure uses a special programming language to operate directly on a table
in the Access Auto Auctions database.

481

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 481

FIGURE 14-4

Using ADO to update a table.

The programming syntax used to access and manipulate the data in an Access database is called
ActiveX Data Objects, or ADO. ADO is a number of different objects, each with a set of properties
and methods that enable you to perform a wide variety of data-oriented operations.

ADO is a versatile means of accessing data from various locations. The Access Auto Auctions exam-
ples you have seen so far show you how to use Access to update data in a local Access database.
That is, all tables, queries, forms, and reports are stored in one Access database located either in a
folder on your desktop or on a server. But Access, as a generic database development tool, can
interact with all kinds of databases. You can develop forms and reports in one Access database that
get their data from another Access database that may be on your local desktop or on a remote file
server. You can even link to non-Access server databases like Oracle and SQL Server just as easily
as linking to an Access database.

As a data access interface, ADO allows you to write programs to manipulate data in local or remote
databases. Using ADO, you can perform database functions including querying, updating, data-
type conversion, indexing, locking, validation, and transaction management.

Earlier versions of Access included the Data Access Objects (or DAO) data access interface.
Improvements in data access technology have taken Access to new levels as a client-server develop-
ment tool. ADO represents these improvements and provides a simpler, more powerful array of
data access tools.

482

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 482

VBA currently supports DAO. However, Microsoft does not plan to provide any future
DAO enhancements. All new features will be incorporated only into ADO. You should

use ADO for any new development projects. However, because DAO has been used for so long, you
will frequently encounter DAO in existing Access applications. Therefore, this book includes examples
of both the ADO and DAO syntaxes.

To use ADO properties and methods, you first declare an ADO object variable, instantiate it (create
an instance of it), set its properties, and invoke its methods. When you are done with the variable,
you should always set it to Nothing to remove it from memory. You’ll see many examples of these
steps throughout this book.

DAO and ADO share some object names. Because both ADO and DAO have a
Recordset type, you must precede the variable name with the appropriate class. When

you are referring to a DAO recordset, you use the DAO.Recordset data type. ADO recordsets are
referred to as type ADODB.Recordset.

Here is a fragment of a procedure showing how to use the ADO Recordset object to open a table:

Dim rs As ADODB.Recordset

Set rs = New ADODB.Recordset

rs.ActiveConnection = CurrentProject.Connection
rs.Source = “tblContacts”
rs.CursorType = adOpenDynamic
rs.LockType = adLockOptimistic

rs.Open

The ADO Recordset object provides the Open method to retrieve data from a table or query. A
recordset is simply a set of records from a database table or the set of records that result from run-
ning a query.

The Open method has four parameters:

n Source: The data source to open. Source can be the name of a table (as in this exam-
ple), the name of a query, or a SQL statement that retrieves records. When referencing a
table, the table can be a local or linked table.

n ActiveConnection: Refers to a connection to a database. A connection is a communi-
cation line into the database. You use CurrentProject.Connection to refer to the
current Access database.

n CursorType: ADO supports a number of different cursor types. A cursor is a pointer, or
set of pointers, to records. Think of a cursor the way ADO keeps track of records.
Depending on the property settings used to retrieve data, ADO cursors can move only
forward through records (adOpenForwardOnly), or permit forward and backward
movement (adOpenDynamic). A dynamic cursor (adOpenDynamic) allows movement
in both directions, while adOpenForwardOnly permits only forward movement. The
CursorType is explained in detail in Table 14-2.

TIPTIP

CAUTION CAUTION

483

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 483

n LockType: Determines how ADO locks records when updating. adLockOptimistic
allows other users to work with a record that is locked by the ADO code, while
adLockPessimistic completely locks other users out of the record while changes are
made to the record’s data.

This same ADO statement can be rewritten in a somewhat more condensed fashion:

Dim rs As ADODB.Recordset

Set rs = New ADODB.Recordset

rs.Open “tblContacts”, CurrentProject.Connection, _
adOpenDynamic, adLockOptimistic

In this example, the recordset properties are set as part of the Open statement. Either syntax is cor-
rect, and is completely the choice of the developer.

Here is another simple example extracting a single record, based on a ContactID:

Dim rs As ADODB.Recordset

Set rs = New ADODB.Recordset

rs.ActiveConnection = CurrentProject.Connection
rs.Source = _
“SELECT * FROM tblContacts WHERE ContactID = 17”

rs.CursorType = adOpenDynamic
rs.LockType = adLockOptimistic

rs.Open

The SQL statement used to extract records returns a single record, based on the ContactID. In this
case, because the LockType property is set to adLockOptimistic, the data in the record can
be changed by the user.

Table 14-2 describes the permissible values for the CursorType property.

TABLE 14-2

ADO Cursor Values

ADO Cursor Type Description

adOpenForwardOnly You can only scroll forward through records. This improves performance in
situations where you do not need to update, but are finding records and
printing reports.

adOpenDynamic Additions, changes, and deletions by other users are visible, and all types of
movement through the recordset are allowed.

484

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 484

ADO Cursor Type Description

adOpenStatic A static copy of a set of records that you can use to find data or generate
reports. Additions, changes, or deletions by other users are not visible.

adOpenKeySet Returns a set of primary key values pointing to a snapshot of records in
underlying tables. This cursor type is useful when data must be updated in the
underlying tables, but viewing changes made by other users is not important to
the user.

If you don’t specify a CursorType or LockType, ADO creates the recordset as an
adOpenForwardOnly/adLockReadOnly type recordset by default. This type of recordset is
not updatable. If you need to make changes to the data in the recordset, you need an understand-
ing of the various CursorType and LockType combinations and how they affect the capabilities
of a recordset.

When you use ActiveX Data objects, you interact with data almost entirely through Recordset
objects. Recordsets are composed of rows and columns, just like database tables. Once a recordset
has been opened, you can begin working with the values in its rows and columns.

You’ve seen recordsets many times in this book. The records returned by a query are delivered as a
recordset. Actually, when you open an Access table, Access arranges the table’s records as a record-
set, and presents it in Datasheet view. You never really “see” an Access table — you see only a repre-
sentation of the table’s data as a recordset displayed in Datasheet view.

Opening an updatable recordset — that is, by using the adOpenDynamic or adOpenKeySet cur-
sor type, and specifying the adLockOptimistic lock type — the recordset opens in edit mode.

Before you change data in any of the recordset’s fields, however, you need to make sure that you
are in the record you want to edit. When a recordset opens, the current record is the first record. If
the recordset contains no records, the recordset’s EOF property is True.

A runtime error occurs if you attempt to manipulate data in a recordset that contains no
records.

To update a field in the current record of the recordset, you simply assign a new value to the field.
In Form_AfterUpdate procedure in Figure 14-4, you assign the value of txtSaleDate on the
frmSales form to the recordset’s LastSaleDate field.

After you change the record, use the recordset’s Update method to commit the record to the data-
base. The Update method copies the data from the memory buffer to the recordset, overwriting
the original record. The entire record is replaced, not just the updated field(s).

Changes to an ADO recordset are automatically saved when you move to another record or close
the recordset. In addition, the edited record is also saved if you close a recordset or end the proce-
dure that declares the recordset or the parent database. However, you should use the Update
method for better code readability and maintainability.

CAUTION CAUTION

485

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 485

To cancel pending changes to a recordset in either ADO, use the record’s CancelUpdate method.
If it is important to undo changes to a record, you must issue the CancelUpdate method before
moving to another record in an ADO recordset.

The Close statement at the end of the Form_AfterUpdate procedure closes the recordset.
Closing recordsets when you finish using them is good practice. In Figure 14-4 notice also that the
Recordset object is explicitly set to nothing (Set rsContacts = Nothing) to clear the recordset
from memory. Omitting this important step can lead to “memory leaks” because ADO objects tend
to persist in memory unless they are explicitly set to Nothing and discarded.

Updating a calculated field for a record
In the Sales form example, the txtTaxAmount control displays the tax that must be collected at
the time of the sale. The tax amount’s value is not a simple calculation. The tax amount is deter-
mined by the following items:

n The sum of the item amounts purchased that are taxable

n The customer’s tax rate that is in effect on the sale date

n The value in txtOtherAmount and whether or not the txtOtherAmount is a taxable
item

When the user changes information for the current sale, any one or all three of these factors can
change the tax amount. The tax amount must be recalculated whenever any of the following events
occur in the form:

n Adding or updating a line item

n Deleting a line item

n Changing the buyer to another customer

n Changing txtTaxLocation

n Changing txtOtherAmount

You use VBA procedures to recalculate the tax amount when any of these events occur.

Recalculating a field when updating or adding a record
Figure 14-5 shows the code for adding or updating a line item on the Sales form.

A single event can handle recalculating the tax amount when new line items are added or when a
line item is changed — when an item’s price is changed, for example. For both of these events, you
can use the subform’s AfterUpdate event. AfterUpdate occurs when a new record is entered
or when any value is changed for an existing record.

The Form_AfterUpdate procedure for fsubSalesLineItems executes when a line
item is added to the subform, or when any information is changed in a line item. The
Form_AfterUpdate procedure recalculates the tax amount field on the Sales form. The

486

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 486

dblTaxRate variable holds the customer’s tax rate (the value of txtTaxRate on frmSales)
and curTaxAmount stores the value returned by the CalcTax() function. CalcTax()
calculates the actual tax amount. When the After_Update procedure calls CalcTax(), it
passes two parameters: the value of dblTaxRate and the current line item’s invoice number
(Me.InvoiceNumber). Figure 14-6 shows the CalcTax() function.

FIGURE 14-5

Recalculating a field after a form is updated

FIGURE 14-6

Using ADO to recalculate a total field

487

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 487

CalcTax uses ADO to create a recordset that sums the quantities and prices for the taxable items
in tblSalesLineItems for the current sale. The function receives two parameters: the tax rate
(dblTaxPercent) and the invoice number (lngInvoiceNum). The function’s return value is
initially set to 0 (zero) at the top of the function. The ADO code checks to see if the recordset
returned a record. If the recordset is at the end of the field (EOF), the recordset did not find any
line items for the current sale — and CalcTax remains set to 0. If the recordset does contain a
record, the return value for CalcTax is set to the recordset’s TaxableAmount field times the tax
rate (dblTaxPercent).

When the Form_AfterUpdate procedure receives the result of the CalcTax() function, it con-
tinues to the next statement in the procedure. The next statement in Form_AfterUpdate checks
to see if the Sales form’s other taxable control (chkOtherTaxable) is True. If chkOtherTaxable
is True, the procedure must also calculate tax on the Other Amount control. The calculation for
the tax on Other Amount simply multiplies the value txtOtherAmount) by the tax rate
(dblTaxRate) and adds this result to the curTaxAmount value returned by CalcTax().

At the end of the procedure, the txtTaxAmount is set to the curTaxAmount value.

When the Buyer, Tax Location, or Tax Rate controls are changed in the Sales form, you use the
AfterUpdate event for the individual control to recalculate the tax amount. Figure 14-7 shows
the code for the txtTaxRate_AfterUpdate event.

FIGURE 14-7

Recalculating a control after a control is updated

The logic implemented in txtTaxRate_AfterUpdate is identical to the logic in
fsubSalesLineItems_AfterUpdate. In fact, you can use the same code for the Buyer and
Tax Location controls as well. The only difference between the code in Figures 14-5 and 14-7 is
that the procedure in Figure 14-5 runs whenever a change occurs in the sales line items subform,
while the code in Figure 14-7 runs whenever a change is made to txtTaxRate on the main form.

488

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 488

Checking the status of a record deletion
Use the form’s AfterDelConfirm event to recalculate the txtTaxAmount control when deleting a
line item. The form’s AfterDelConfirm event (shown in Figure 14-8) is similar to the code for
the subform’s AfterUpdate event.

FIGURE 14-8

Recalculating a control after a record is deleted

Access always confirms deletions initiated by the user. Access displays a message box asking the
user to confirm the deletion. If the user affirms the deletion, the current record is removed from
the form’s recordset and temporarily stored in memory so that the deletion can be undone if neces-
sary. The AfterDelConfirm event occurs after the user confirms or cancels the deletion. If the
BeforeDelConfirm event isn’t canceled, the AfterDelConfirm event occurs after the delete
confirmation dialog box is displayed. The AfterDelConfirm event occurs even if the
BeforeDelConfirm event is canceled.

The AfterDelConfirm event procedure returns status information about the deletion. Table
14-3 describes the deletion status values.

TABLE 14-3

Deletion Status Values

Status value Description

acDeleteOK Deletion occurred normally

acDeleteCancel Deletion canceled programmatically

acDeleteUserCancel User canceled deletion

489

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 489

The Status argument for the AfterDelConfirm event procedure can be set to any of these values
within the procedure. For instance, if the code in the AfterDelConfirm event procedure deter-
mines that deleting the record may cause problems elsewhere in the application, the Status argu-
ment should be set to acDeleteCancel:

If <Condition Indicates a Problem Elsewhere> Then
Status = acDeleteCancel
Exit Sub

Else
Status = acDeleteOK

End If

The Status argument is provided to enable your VBA code to override the user’s decision to
delete a record if conditions warrant such an override. In the case that Status is set to
acDeleteCancel, the copy of the record stored in the temporary buffer is restored to the record-
set, and the delete process is aborted. If, on the other hand, Status is set to acDeleteOK, the
deletion proceeds and the temporary buffer is cleared after the user moves to another record in the
recordset.

Adding a new record
You can use ADO to add a record to a table just as easily as you can to update a record. Use the
AddNew method to add a new record to a table. The following shows the ADO procedure for
adding a new customer to the Customer table:

Private Sub New_Contact_Click()

Dim rs As ADODB.Recordset

On Error GoTo HandleError

Set rs = New ADODB.Recordset

rs.Open “tblContacts”, CurrentProject.Connection, _
adOpenDynamic, adLockOptimistic

With rs

‘Add new record to end of Recordset:
.AddNew

‘Add data:
![LastName] = “Townshend”
![LastName] = “Charles”

‘Commit the changes:
.Update

End With

490

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 490

rs.Close
Set rs = Nothing

ExitHere:

Exit Sub

HandleError:

MsgBox Err.Description
Resume ExitHere

End Sub

As you see in this example, using the AddNew method is similar to using ADO to edit recordset
data. The AddNew method creates a buffer for a new record. After entering the AddNew command,
you simply assign values to fields in the recordset. The recordset object’s Update method adds the
new record buffer to the end of the recordset, and to the underlying table.

Deleting a record
To remove a record from a table, you use the ADO method Delete. The following code shows the
ADO procedure for deleting a record from tblContacts.

Private Sub Delete_Contact_Click()

Dim rs As ADODB.Recordset
Dim strSQL as string

On Error GoTo HandleError

Set rs = New ADODB.Recordset

strSQL = “SELECT * FROM tblContacts “ _
& “WHERE [ContactID] = “ _
& Me![txtContactID]

rs.Open strSQL, CurrentProject.Connection, _
adOpenDynamic, & adLockOptimistic

With rs
If not .EOF Then
‘Delete the record:
.Delete

End If
End With

ExitHere:

491

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 491

rs.Close
Set rs = Nothing
Exit Sub

HandleError:

MsgBox Err.Description
Resume ExitHere

End Sub

Notice that you do not follow the Delete method with Update. As soon as the
Delete method executes, the record is removed from the recordset permanently.

Deleting records using ADO does not trigger the deletion confirmation dialog box. Generally
speaking, changes made to data with ADO code are not confirmed because confirmation would
interrupt the user’s workflow.

Deleting related records in multiple tables
When you write ADO code to delete records, you need to be aware of the application’s relation-
ships. The table containing the record you are deleting may be participating in a one-to-many rela-
tionship with another table.

Take a look at the relationships diagram (see Figure 14-9) for the tables used in the Sales form
example. tblSales has two dependent tables associated with it: tblSalesLineItems and
tblSalesPayments.

FIGURE 14-9

Examining the tables of a one-to-many relationship

NOTENOTE

492

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 492

The Edit Relationships dialog box shows how the relationship is set up between the tables
tblSales and tblSalesLineItems. The relationship type is a one-to-many (1:M) and refer-
ential integrity is enforced. A one-to-many relationship means that the parent table (tblSales),
has a dependent table (tblSalesLineItems); whereas tblSales can contain only unique
instances of the values in its primary key (InvoiceNumber), tblSalesLineItems may con-
tain several records in the corresponding foreign key fields (InvoiceNumber) with the same
value. This simply means that each InvoiceNumber may have many different sales line items
associated with it.

When you enforce referential integrity on a one-to-many relationship, you are telling Access that a
record in tblSales cannot be deleted if records with the same invoice number value exist in
tblSalesLineItems. If Access encounters a delete request that violates referential integrity,
Access displays an error message and the delete will be cancelled.

When you write ADO code to delete a record, you need to first check to see if there are any one-to-
many relationships between the table containing the record to delete and any other tables in the
database. If there are dependent tables, the records in the dependent tables need to be deleted
before Access allows you to delete the record in the parent table.

Fortunately, you can write a single procedure using ADO code to delete records in both the
dependent table or tables and the parent table. Figure 14-10 shows the code for the cmdDelete
command button in the frmSales form.

FIGURE 14-10

Using ADO code to delete multiple records

493

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 493

The cmdDelete_Click event procedure deletes records in tblSalesPayments,
tblSalesLineItems, and tblSales that have an invoice number matching the current
invoice number.

The first statement in cmdDelete_Click uses the NewRecord property to check to see if the
current Sales form record is new. If the record is a new record, Me.Undo rolls back changes to the
record. If the current record is not new, the procedure displays a message box to confirm that the
user really wants to delete the record. If the user clicks the Yes button, the procedure deletes the
records from the tables.

strSQL holds a SQL statement for locating and deleting records in tblSalesPayments with an
invoice number that matches the invoice number on the Sales form. strSQL is passed as a param-
eter to the Execute method of the current project’s (CurrentProject) connection. You can
pass either the name of a query or an SQL statement as a parameter to the Execute method. The
Execute method simply runs the specified query or SQL statement.

If the query or SQL statement contains a WHERE clause and the Execute method does
not find any records that meet the WHERE condition, no error occurs. If the query or

SQL statement contains invalid syntax or an invalid field or table name, however, the Execute
method fails and an error is raised.

The same process is used to delete records in tblSalesLineItems.

After the tblSalesLineItems records are deleted, the tblSales record can then be deleted.
The following listing shows the cmdDelete_Click procedure from frmSales in
Chapter14.accdb:

Private Sub cmdDelete_Click()

Dim intAnswer As Integer
Dim strSQL As String

If Me.NewRecord Then
Me.Undo
Exit Sub

End If

intAnswer = MsgBox(“Are you sure you want to “ _
& “ delete this invoice?”, vbQuestion + vbYesNo, _
“Delete Invoice”)

If intAnswer = vbNo Then
Exit Sub

End If

‘Delete payments for this invoice:
strSQL = “DELETE * FROM tblSalesPayments “ _
& “WHERE InvoiceNumber = “ & Me.InvoiceNumber

NOTENOTE

494

Programming Microsoft AccessPart II

19_046732 ch14.qxp 11/21/06 8:53 AM Page 494

CurrentProject.Connection.Execute strSQL

‘Delete line items:
strSQL = “DELETE * FROM tblSalesLineItems “ _
& “WHERE InvoiceNumber = “ & Me.InvoiceNumber

CurrentProject.Connection.Execute strSQL

‘Delete invoice record:
RunCommand acCmdSelectRecord
RunCommand acCmdDeleteRecord

End Sub

Notice that this procedure includes two different Exit Sub statements. The first is executed if the
current record happens to be a new record. Presumably, there is no reason to delete a new record,
and, in fact, an attempt to delete a new record raises an error.

The second Exit Sub executes if the user chooses not to delete the record (the MsgBox function
returns vbNo, in this case) after clicking the Delete button. If the user confirms the deletion (the
value of MsgBox, in this case, is vbYes) , the code proceeds to delete the invoice records match-
ing the current InvoiceNumber, then deletes the current record displayed on frmSales.

Summary
In the previous few chapters, you learned the basics of programming, reviewed some of the built-in
functions, and experienced the various logical constructs. You learned about ADO and how to
access data in tables and queries through SQL recordsets. You also learned a lot about forms and
queries in previous chapters. In this chapter, you use all of this knowledge and learn how to dis-
play selected data in forms or reports using a combination of techniques involving forms, VBA
code, and queries.

You’ll see many other examples that use ADO (and DAO) to manipulate data in Access tables and
recordsets throughout this book. A little bit of VBA code, coupled with either the ADO or DAO
syntax, is able to perform complex operations without the use of queries or other database objects.
Whenever possible the examples in this book are written in a generic fashion that is easily modi-
fied to fit other situations by replacing the names of fields, tables, and other objects. You should
use VBA code whenever complex data management tasks are required by your applications, or in
situations where users require more flexibility than provided by queries and forms alone.

495

Accessing Data with VBA Code 14

19_046732 ch14.qxp 11/21/06 8:53 AM Page 495

19_046732 ch14.qxp 11/21/06 8:53 AM Page 496

Access database applications prepared by even the very best develop-
ers have problems. By their very nature, database applications tend
to be pretty complicated — especially by the time you consider table

and query design, forms design and implementation, and all that VBA code
that needs to be written for most databases. Something inevitably goes wrong
and causes problems. If you’re lucky, the problem and its cause are obvious
and easily fixed. A somewhat worse condition exists when you know there’s
a problem but its source is not immediately apparent. The worst situation for
all concerned are those bugs that silently and perniciously damage data or
the representation of the data in an application without warning.

This chapter takes a look at the types of problems you’ll encounter in Access
applications and some of the steps you can take to uncover and repair these
critters. This chapter largely ignores the errors caused by poor design: mis-
representation of data caused by ill-designed queries, update and insert
anomalies causes by inappropriate application of referential integrity rules,
and so on. For the most part, these problems occur because of failing to con-
form to proper design disciplines, misunderstanding Access query design,
and so on. We can’t do much to help you avoid these problems other than to
encourage you to read — and reread — the chapters in Part I of this book.

What we can help you with, however, are the bugs that creep into your VBA
code, particularly those bugs that cause noticeable problems with the data or
user interface in your applications. Debugging Access VBA code is the focus
of this chapter. This chapter assumes that you’re comfortable designing and
implementing the data structures in your applications and that the tables,
queries, and other structural components of your databases are not a source
of problems.

497

IN THIS CHAPTER
Testing and debugging your
applications

Getting help with VBA

Compiling procedures

Handling runtime errors

Using the Immediate window

Using the Locals window

Setting and working with
breakpoints

Viewing the Call Stack window

Using the VBA Debugging
Tools

20_046732 ch15.qxp 11/21/06 8:53 AM Page 497

This chapter is a departure from the other example files you’ve used in the book. The
sample database file (Chapter15.accdb) contains the basic example code shown

throughout this chapter. The code in Chapter15.accdb does not necessarily do anything useful. It’s
provided mostly as a “test bench” for practicing with the Access debugging tools, rather than as good
examples of practical VBA code.

Many of the statements in the examples have been commented out because they contain syntax
errors and other types of problems. You may have to remove the single quotes in front of some of the
example statements to experience the error or view the assistance already built into Microsoft Access.

There are many more examples in Chapter15.accdb than are described in the text of this chapter.
After you read the chapter, go back through all of the examples and try them. You’ll learn more about
debugging than you probably ever wanted to know, but the experience will serve you well as you
develop and debug your programs.

It’s no secret that testing and debugging VBA programming statements takes quite a bit of time.
Good developers easily spend a third of their time designing a program, another third writing
code, and another third testing and debugging. Very often, it’s a good idea to have someone other
than the developer test a program’s operation. A person who is unfamiliar with an application will
often do something the developer never expected, leading to new and surprising bugs.

Testing and Debugging Your Applications
Testing Access applications is an ongoing process. Each time you switch a form or report from
design view to normal view, or leave the VBA Editor to run a bit of code, you’re testing your appli-
cation. Every time you write a line of code and move to another line, the VBA syntax parser checks
the code you just wrote. Each time you change a property in a form or report and move your cur-
sor to another property or another control, you’re testing the form or report.

Testing is the time to see if your application runs the way you intend, or even if it runs at all. When
you run an application and it doesn’t work, you’ve found a bug. Fixing problems is most often
referred to as debugging. This term dates back to the earliest electron tube computers. Legend has it
that a moth shorted out an electrical circuit. The late Admiral Grace Hopper, an early pioneer in
computing, coined the term debugging to describe the process of removing the moth.

You’ve already learned a lot about testing and debugging. When you run a report and no data
appears, you’ve had to check the report’s RecordSource property to ensure that the report is
pulling the correct data. You may have viewed the data in a query or table to see if the data source
is the problem. If you run a form and you see #Name or #Error in individual controls, you’ve
learned to check the control’s ControlSource property. Perhaps you have an incorrect reference
to a table field or you spelled something wrong, and Access is unable to evaluate the reference.

Maybe you have too many parentheses in an expression, or you’ve used a control name in a for-
mula that conflicts with an Access keyword. Each time you had this problem, you may have asked

ON the CD-ROMON the CD-ROM

498

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 498

someone with more experience than you what the problem was, or perhaps you looked it up
online or in a book, or you researched the syntax of the formula.

Most problems with query, form, and report design are pretty obvious. You know you have a prob-
lem when a query returns the wrong data, or a form or report fails to open or displays an error
message as it opens. Behind the scenes, Access does a great deal to help you notice and rectify
problems with your application’s design. When you run forms and reports, Access often reports an
error if it finds something seriously, and obviously, wrong.

It’s much more difficult for Access to help you with incorrectly written code. Very often a problem in
VBA code exists for months or even years before a user notices it. Even very poorly written code
often runs without throwing errors or exhibiting obvious problems. However, determining exactly
where a bug exists in VBA code, and figuring out what to do to repair the bug, can be very challeng-
ing. When you create VBA code, you’re pretty much on your own when it comes to detecting and
resolving problems. Fortunately, there are a wide variety of tools built into the editor to help you.

Understanding the Sources of Errors
Generally speaking, VBA errors fall into two broad categories. Syntactical errors are usually easily
fixed by consulting the online language reference or a good book (such as this one!). Logical errors
are another issue altogether. Logical errors occur when code does not do what is intended, yet does
not cause overt problems like crashing or displaying error messages. Most of the time that you
spend debugging Access applications involves uncovering the causes and resolving the logical
errors that inevitably creep into VBA code. A third category of error (runtime errors) can often be
avoided through proper end-user training, building defensive routines into your code, and so on.

Syntactical errors
Syntax errors are caused by using the VBA language incorrectly, much like mispronouncing a sen-
tence in a foreign language. By far the most common bug in Access VBA code is the simple syntac-
tical error caused by misspelling a keyword or a variable name; or misusing a procedure, property,
or method. These errors are so easy to detect and correct that Access includes an option to auto-
matically check for syntax errors. Figure 15-1 shows the Options dialog box (Tools ➪ Options
while the VBA code editor window is open) open to the Editor tab. The Code Settings area in the
upper-left quadrant of this dialog box contains a number of important options that help you write
and debug the VBA code in your applications.

Notice the Auto Syntax Check check box in the Code Settings area. This option causes Access to
check your code for syntax errors line by line as you type it into the code editor window. Figure
15-2 illustrates automatic syntax checking. In this figure, the MsgBox statement contains an error.
Do you see it?

499

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 499

FIGURE 15-1

The Modules tab of the Options dialog box contains a number of important VBA coding options.

FIGURE 15-2

Automatic syntax checking can save you from simple bugs.

Notice the stray comma right after the “sSQL: “ portion of the MsgBox line. No comma is
needed here because the arguments to the MsgBox statement are not separated with commas. (The
arguments to the MsgBox function, however, are separated with commas!) Access detects the stray
comma and displays the statement in a red typeface to tell you there’s a problem on that line. (If
you don’t like red, you can change the color of Syntax Error Text in the Code Colors area of the
Editor Format tab of the Options dialog box).

500

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 500

Fixing syntax errors is straightforward: Simply examine the line for a misspelling, stray character,
missing quotation marks, and so on. Very often, syntax errors are introduced by using parentheses
where they aren’t needed (or omitting them when they are necessary!), improperly placing square
brackets, and so on.

Many syntax errors can be avoided by adhering to the naming conventions frequently
mentioned in this book: avoid spaces in object names, use mixed-case names to make

them easier to read, and so on. Anything you can do to make your code easier to understand goes a
long way toward avoiding silly syntax errors.

Logical errors
Logical errors can be somewhat more difficult to detect and remove. A logical bug occurs because
of some mathematical error, misuse of the data in a record set, or other problem dealing with the
data or program flow in the application.

Logical errors can be extremely dangerous and expensive if they go undetected for very long.
Consider an application that calculates sales tax and adds the sales tax amount to invoices.
Obviously, the sales tax must be calculated correctly or the customer will pay the wrong sales tax
amount. The tax collector expects to collect the correct amount, even for customers who under-
paid sales taxes on every sale during the fiscal year. Such an error can be very costly to a company
in terms of extra expenses, fines, interest, and other penalties.

Here’s another example of a logical error: Consider a situation in which a patient management pro-
gram assumes that the user has entered both the first name and last name of the patient. After all,
the patient data-entry form contains text boxes for both these values, so the user will certainly
make sure both values are filled in, right? For perfectly valid reasons (for instance, an patient too
young to know her own name or an elderly patient who can’t recall his last name) either of these
values may be missing from the data. A text box left empty contains a null value unless a default
value has been provided. A logical error is generated when the application then tries to use the
patient’s first name in a find or sorting operation. If you’re lucky, the logical error will be noticed by
the user (perhaps through a pop-up dialog box or error message) and corrected before the data is
committed to the database.

Other logical errors are created when an application incorrectly calculates the days between dates,
uses the wrong value in a division or multiplication operation, and so on. Virtually any time data is
mishandled or inappropriately used in your application, a logical error results.

Logical errors often require extensive debugging effort to correct. It goes without saying that
debugging a complex application with many different forms and reports is more difficult than
debugging a simple, straightforward desktop application.

Runtime errors
Runtime errors are usually traceable to some hardware failure. A hard-drive crash, of course, is an
easily recognized runtime failure. Other runtime errors may be more subtle and difficult to deal

TIPTIP

501

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 501

with. For instance, a network glitch may cause data loss or make lookup data temporarily unavail-
able. Running out of swap disk space makes Windows run erratically or crash. Many computers
are equipped with marginal memory, making it difficult or impossible to run large queries or use
the built-in Access wizards.

Avoiding and dealing with runtime errors is difficult. There are many Windows applica-
tion program interface (API) calls for performing system tests such as reporting free disk

space, and checking the network. Chapter 30 discusses how to add Windows API function calls to
your applications, including things like checking for available disk space. The examples in Chapter 30
are easily added to any Access application and may help you determine when the user’s computer has
run out of disk space or encountered other hardware failures.

A second approach to avoiding runtime errors is to keep the database’s .data file (mdb or accdb)
well-maintained. Compact the data file frequently, particularly if data is frequently deleted or mod-
ified. The built-in repair utility is also useful for ensuring the physical integrity of the data file on
the hard drive. Both the Compact and Repair commands are available by choosing the Manage tab
on the Office menu (opened by clicking the large, round button in the upper-left corner of the
main Access screen).

Avoiding errors
It shouldn’t come as any surprise that your coding habits have a lot to do with the errors you
encounter in your applications. Very often, the adoption of simple coding conventions eliminate all
but the toughest syntax and logical errors in VBA code.

One coding suggestion is to put but a single variable declaration on a line of code. Consider the
code you see in Figure 15-3. Although it’s perfectly permissible to put all nine variable declarations
together as a single Dim statement, you must scan the entire line to find the declaration of each of
the variables.

FIGURE 15-3

Multiple declarations on a line make finding a variable’s Dim statement difficult.

CROSS-REFCROSS-REF

502

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 502

The problem in Figure 15-3 is that it’s far too easy to overlook a variable or to misunderstand the
data type assigned to a variable. It’s quite easy to create a bug by assigning a variable an incorrect
value. Other errors are caused by using a variable in an inappropriate context, such as using a
string variable in a mathematical expression. In this particular case, VBA will use a numeric value
stored in the string variable without throwing an error, but a runtime error is thrown if the string
variable contains a text value (such as a person’s name).

The long declaration in Figure 15-3 contains another, more subtle error. Notice that the declaration
contains i, j As Integer at the end of the statement. Apparently the programmer intended that
both i and j are declared as the Integer data type, but this is not what actually happens. VBA
requires the As <DataType> clause for each variable declaration. If the As <DataType> is omit-
ted, the variable is established as a Variant data type. Although the code you see in Figure 15-3
runs without errors, because the i variable is a variant, the code runs somewhat more slowly than
it would if i were an Integer.

Figure 15-4 shows the same declarations reconfigured as multiple Dim statements. It’s much easier
to see the data type of the rs1 variable in Figure 15-4. Let your eye run down the list of variable
names until you reach rs1 and see that it’s a Recordset type variable. This is another reason
why short, descriptive variable names are preferred over long descriptive names.

FIGURE 15-4

Single-variable Dim statements are easier to work with than declaring several variables as a single VBA
statement.

A second, less obvious change in Figure 15-4 is the fact that variables are grouped by data type. All
of the Recordset variables are grouped together as are the Integer variables. You could carry
this grouping one step farther by sorting the variables alphabetically by data type.

503

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 503

Spreading out your variable declarations does not appreciably affect compile times or runtimes.
There is no difference in code module size once the code has been reduced to a binary format by
the Access VBA compiler. In other words, there is nothing to be gained by condensing variable
declarations into a few lines of code. Spreading out variable declarations makes them much easier
to read without sacrificing execution or compilation speed.

Using the Module Options
The Editor tab in the Options dialog box (refer to Figure 15-1) contains a number of options that
are important to the integrity of your VBA code. These options are summarized in the following
sections.

The only drawback to the auto help built into Access 2007 is that the popup messages
and help is sometimes obtrusive. But you can easily turn off these help features in the

Modules tab. Also, on slow computers there can be a noticeable delay while Access retrieves the auto
help. If you discover that the help you receive is not worth the wait, consider turning off the auto
help features.

Auto Syntax Check
When you select the Auto Syntax Check option, Access checks each line of code for syntax errors
as you enter it in the code editor. Most of the syntax errors caught by Auto Syntax Check are the
most obvious spelling errors, missing commas, and so on. It will not catch more subtle errors such
as data type mismatch, and, of course, it won’t catch logical errors.

Most Access developers leave Auto Syntax Check unselected. This option causes a message box to
pop up over your code whenever Access detects a syntax error in your VBA statements. Access also
turns the erroneous statement to red to indicate a problem whether or not Auto Syntax Check is
selected. Most developers find that turning the statement to red is enough indication of a problem,
and they don’t want to be interrupted by the message box.

Break on All Errors
Break on All Errors forces Access stops at each and every error (regardless of the error handling you
may have added to your application) to allow you to debug the statement generating the error.
During the development process, you’ll want to see errors as they occur instead of relying on the
error handling you built into your code to make sure you understand what’s generating the errors.

Be sure to turn this option off before distributing the application to its end users.NOTENOTE

TIPTIP

504

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 504

Require Variable Declaration
The Require Variable Declaration setting automatically inserts the Option Explicit directive into all
VBA modules in your Access application. This means, of course, that all variables must be explic-
itly declared (with the Dim, Private, Public, or Static keyword) before they’re used. This option is
selected by default and is preferred by most experienced Access developers.

Compile on Demand
Compile on Demand instructs Access to compile modules only when their functions are required
somewhere else in the database. When this option is unchecked, all modules are compiled any
time any function is called. Unchecking this option makes sure that you see all errors that are
detected by the compiler each time you make changes to the modules in your application. If you
leave this option selected, the Access compiler will not recompile all of the code in the application,
which means that some errors may slip through.

Auto List Members
This option pops up a list box containing the members of an object’s object hierarchy in the code
window. In Figure 15-5, you can see the list of Application objects that appeared as soon as I typed
the period following Application in the VBA statement. It’s your choice to locate an item in this
list and select it or to continue typing in the object reference.

FIGURE 15-5

Auto List Members makes it easy to recall the members of an object’s object hierarchy.

Auto Quick Info
When you select Auto Quick Info, Access pops up syntax help (see Figure 15-6) when you enter
the name of a procedure (function, subroutine, or method) followed by a period, space, or opening
parenthesis. The procedure can be a built-in function or subroutine or one that you’ve written
yourself in Access VBA. This option helps you learn and understand the proper syntax of each
command and method.

505

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 505

FIGURE 15-6

Auto Quick Info provides syntax reminders in the module window.

Auto Data Tips
Figure 15-7 shows Auto Data Tips in action. This option displays the value of variables when you
hold the mouse cursor over a variable with the module in break mode. Auto Data Tips is an alter-
native to setting a watch on the variable and flipping to the Immediate window when Access
reaches the break point. (You can find out more about watches in the “Setting watches” section,
later in this chapter.)

FIGURE 15-7

Auto List Members makes it easy to recall the members of an object’s object hierarchy.

Compiling VBA Code
After you create a subprocedure or function and want to make sure that all of your syntax is cor-
rect, you should compile your procedures by choosing Debug ➪ Compile <Project Name> from the
VBA code editor window menu (where <Project Name> is the name of the project set in the Tools ➪

Project dialog box). This action checks your code for errors and also converts the programs to a
form that your computer can understand. If the compile operation is not successful, an error win-
dow appears, as shown in Figure 15-8.

506

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 506

This level of checking is more stringent than the single-line syntax checker. Variables are checked
for proper references and type. Each statement is checked for all proper parameters. All text strings
are checked for proper delimiters such as the quote marks surrounding text string. Figure
15-8 illustrates a typical compile-time error. In this case, the name of a method (GetOption) has
been misspelled, and the compiler is unable to resolve the misspelled reference.

FIGURE 15-8

Viewing a compile error

Access compiles all currently uncompiled procedures, not just the one you’re currently viewing. If
you receive a compilation error, you should immediately modify the code to rectify the problem.
Then try to compile the procedure again. If there are further compile errors, you’ll see the next
error.

Unfortunately, the VBA compiler reports compilation errors one at a time. Most other compilers (such
as the compilers in Visual Studio .NET) show you as many errors as they find during compilation.

When your application is compiled, you can’t choose Debug ➪ Compile. Before imple-
menting an application at the customer’s site, you should make sure that your applica-

tion is compiled.

Your database is named with a standard Windows name, such as Chapter15.accdb, but there is
an internal project name that Microsoft Access uses to reference the VBA code in your application.
You’ll see this name when you compile your database. When the database file is first created, the
project name and the Windows filename will be the same. The project name is not changed when
you change the Windows filename. You can change the project name by choosing Tools ➪ <Project
Name> Properties (where <Project Name> is the current internal project name).

Compiling your database only makes sure that you have no syntax errors. The compiler can only
check for language problems by first recognizing the VBA statement and then checking to see that
you specify the right number of options and in the right order. The VBA compiler cannot detect
logical errors in your code, and certainly cannot help with runtime problems.

TIPTIP

507

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 507

After you compile your program, you should also compact your database. Every time you make a
change to your program, Access stores both the changes and the original version. When you com-
pile your program, it may double in size as the compiled and uncompiled versions of your code are
stored. Compacting the database will reduce the size of the database by as much as 80 to 90 per-
cent, because it eliminates all previous versions internally.

Traditional Debugging Techniques
There are two widely used debugging techniques that have been available since Access 1.0. The
first is to insert MsgBox statements to display the value of variables, procedure names, and so on.
The second common technique is to insert Debug.Print statements to output messages to the
Immediate window.

Using MsgBox
Figure 15-9 shows an example of a MsgBox statement and the message box produced by the state-
ment. In this example a long SQL statement is displayed in a message box to enable the developer
to verify the statement was properly composed by the application.

FIGURE 15-9

The MsgBox statement makes a satisfactory debugging tool (with some limitations).

The advantages of using the MsgBox statement are obvious. MsgBox is easy to use and can be
used to output virtually any type of data. The message box itself pops up right on the user inter-
face, and you don’t have to have the Immediate window open or flip to the Immediate window to
view the message box. Also, the MsgBox statement is simple and easy to use and only occupies a
single line of code.

There are also some problems associated with MsgBox statements. Never, ever forget to remove all
MsgBox statements from your code before shipping to end users. There is nothing about the
MsgBox statement to prevent it from popping up in front of an end user, causing all kinds of con-
fusion and other problems. Also, message boxes are modal, which means you cannot flip to the
code editor window or Immediate window to examine the value of variables or examine the code
underlying the application. Using the MsgBox statement is an all-or-nothing proposition (with one
exception described in the next section).

508

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 508

Using compiler directives
A refinement of the MsgBox technique is to use compiler directives to suppress the MsgBox state-
ments unless a special type of constant has been set in the code or within the Access environment.
Examine the code in Figure 15-10. Notice the #Const compiler directive above the MsgBox state-
ment and the #If and #End If directives surrounding the MsgBox statement.

FIGURE 15-10

Compiler directives make it easy to include or exclude blocks of code from an application.

All of the keywords beginning with the pound sign (#) are seen only by the VBA compiler. These
keywords (#Const, #If, #Else, and #End If) constitute directives to the VBA compiler to
include (or exclude) certain statements in the compiled version of your project.

The #Const directive you see in Figure 15-10 can appear anywhere in the module as long as it is
placed above the #If directive. The logical place for the #Const is in the module’s declaration
section, since #Const values are global to the module. In Figure 15-10, the compiler constant is
set to True, which means the statements between #If and #End If will be compiled into the
application’s VBA project. In this case, the MsgBox statement is processed and appears in the user
interface. Removing the #Const directive (perhaps by commenting it out) or setting its value to
False suppresses the MsgBox statement.

Obviously, compiler directives are used for statements other than MsgBox. You could, for instance,
use compiler directives to conditionally compile features, additional help, or other capabilities into
an application. Compiler directives are particularly effective for suppressing MsgBox statements
that are used for debugging purposes and must be squelched before giving the application to users.

509

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 509

Perhaps the biggest impediment to using compiler constants is that the #Const statement is
module-level in scope. A compiler constant declared in one module is not seen by other modules
in the application. This means that you must add the same compiler constants to every module
you want to employ conditional compilation.

Access provides the Conditional Compilation Arguments option in the General tab of the applica-
tion’s Project Properties dialog box (Tools ➪ <Application Name> Properties) to get around this con-
straint. As shown in Figure 15-11, you use the Conditional Compilation Arguments section to
specify any number of compiler constants that apply to the entire application. These settings make
it very easy to toggle conditional compilation from a single location in the application, instead of
changing the #Const statements in every module.

FIGURE 15-11

The Project Properties dialog provides a convenient way to set conditional compilation arguments for the
entire application.

The Conditional Compilation Arguments and other settings set in the Project Properties dialog are
relevant only to the current application. Unlike the options you set in the Tools ➪ Options dialog,
the Project Properties settings are not shared among multiple Access applications.

In Figure 15-11, notice that the values assigned to the Conditional Compilation
Arguments are all numeric. Assigning zero to a Conditional Compilation Argument sets

the argument’s logical value to False. Any nonzero value is interpreted as True. You cannot use the
words “True” and “False” in the Conditional Compilation Arguments setting in the Project Properties
dialog box.

If you’re confused about the conflicting terminologies applied to the VBA conditional compilation
feature, you’re not alone. In a VBA code module, you assign conditional compilation constants using
the #Const keyword, yet in the Project Properties dialog box you set Conditional Compilation

TIPTIP

510

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 510

Arguments. Also, you assign the True and False keywords to conditional compilation constants
in a VBA module, but use 1 and 0 to assign True and False, respectively, to conditional compilation
arguments. This is one place where the terminology and syntax used for the same purpose are
quite different in different parts of an Access VBA project.

Using Debug.Print
The second commonly used debugging statement is using Debug.Print to output messages to
the Immediate window. (Print is actually a method of the Debug object.) Figure 15-12 shows
how the sSQL variable appears in the Immediate window.

FIGURE 15-12

Use Debug.Print to output messages to the Immediate window.

Unlike the MsgBox statement, you don’t have to do anything special to suppress its output from
the user interface. The output of Debug.Print only goes to the Immediate window, and because
end users never see the Immediate window, you don’t have to worry about a user encountering
debug messages.

The problems with Debug.Print are obvious from Figure 15-12. Long strings do not wrap in the
Immediate window. Also, the Immediate window must be brought to the top in order for you to
view its output. But these limitations are relatively harmless and you’ll frequently use
Debug.Print in your applications.

Some people have reported that excessive numbers of Debug.Print statements
can slow an application. Even though the Immediate window is not visible, Access

executes the Debug.Print statements it finds in its code. You might consider surrounding each
Debug.Print statement with the compiler directives described in the preceding section to remove
them from the end user’s copy of the application.

NOTENOTE

511

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 511

Using the Access Debugging Tools
Access 2007 features full debugging capabilities. Access 2007 includes a full complement of
debugging tools and other capabilities.

Getting to know the Immediate window
Open the Immediate window (also called the Debug window) by choosing View ➪ Immediate or
by pressing Ctrl+G. You can open the Immediate window any time. (For instance, you can open
the Immediate window while you’re working on a form’s design.) You’ll sometimes find it useful to
test a line of code or run a procedure (both of which are supported by the Immediate window)
while you’re working on a form or report.

The Immediate window is shown in Figure 15-13. The Immediate window permits certain interac-
tivity with the code and provides an output area for Debug.Print statements.

FIGURE 15-13

Get to know the Immediate window! You’ll use it a lot in Access 2007.

The basic debugging procedures include stopping execution so that you can examine code and
variables, dynamically watching variable values, and stepping through code.

Running code with the Immediate window
One of the most basic uses of the Immediate window is to run code, such as built-in functions, or
subroutines and functions that you’ve written. Figure 15-14 shows several examples of code that
has been run in the Immediate window.

512

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 512

FIGURE 15-14

Running code from the Immediate window is a common operation.

The Now() function has been run at the top of the Immediate window, returning the current
date and time. The question mark (?) in front of the Now() function name is a directive to the
Immediate window to display (or print) the value returned by Now(). The second example in
Figure 15-14 shows the same convention used to run a function that’s been added to the VBA proj-
ect. You see the result of the function’s execution, as long as the function is declared with the
Public keyword, and any arguments required by the function are provided.

The third example in Figure 15-14 shows calling a subroutine from the Immediate window.
Because subroutines do not return values, the question mark is not used. The Call keyword is
optional when calling subroutines, but it’s often included for clarity.

Suspending execution with breakpoints
You suspend execution by setting a breakpoint in the code. When Access encounters a breakpoint,
execution immediately stops, allowing you to switch to the Immediate window to set or examine
the value of variables.

Setting a breakpoint is easy. Open the code window and click on the gray Margin Indicator bar to
the left of the statement on which you want execution to stop (see Figure 15-15). Alternatively,
position the cursor on the line and click on the Breakpoint button. The breakpoint itself appears as
a large brown dot in the gray bar along the left edge of the code window and as a brown highlight
behind the code. The text of the breakpoint statement appears in a bold font. (All of these colors
and font characteristics can be changed in the Modules tab of the Options dialog box.)

Removing a breakpoint involves nothing more than clicking on the breakpoint indicator in the
Margin Indicator bar. Breakpoints are also automatically removed when you close the module.

513

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 513

FIGURE 15-15

Setting a breakpoint is easy.

When execution reaches the breakpoint, Access halts execution and opens the module at the
breakpoint (see Figure 15-16). You now use the Immediate window to examine the values of vari-
ables and perform other operations, or use any of the other debugging tools described in this sec-
tion. Neither the code window nor the Immediate window are modal, so you still have full access
to the development environment.

FIGURE 15-16

Execution stops on the breakpoint.

Figure 15-17 illustrates two techniques for viewing the values of variables while execution is
stopped at a breakpoint. The Locals window contains the names and current values of all the vari-
ables in the current procedure. If you want to see the value of a variable in a slightly different for-
mat, use the Debug print command (?) to display the variable’s value in the Immediate window. In
Figure 15-17, the value of sSQL is displayed in the Immediate window.

514

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 514

FIGURE 15-17

The Immediate window contains a lot of valuable information.

An alternative to setting breakpoints is to use Stop statements. The Stop statement halts execu-
tion but is more permanent than breakpoints. A Stop statement, like any other VBA statement,
persists from session to session until explicitly removed. You can, however, surround the Stop
statement with conditional compilation expressions and toggle their action by changing the value
assigned to a conditional compilation constant. Figure 15-18 illustrates using the Stop statement.

FIGURE 15-18

Stop statements are a type of permanent breakpoint.

Stepping through statements
The most fundamental operation at a breakpoint is to walk through the code, one statement at a
time, to view what’s happening to the application’s logic and variables. Once you’ve reached a
breakpoint, you use a few keystroke combinations to control the execution of the application.
You’re able to step through code one statement at a time, automatically walk through the local pro-
cedure, or step over the procedure and continue execution on the “other side” of the procedure.

In Figure 15-19, a breakpoint has been inserted near the top of the FillRecordset1() func-
tion. When execution reaches this point a break asserts itself, allowing us to take control of pro-
gram execution.

515

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 515

FIGURE 15-19

Insert a breakpoint near the location of the code you want to step through.

In Figure 15-20, the break has occurred and we’ve clicked on the Step Into button (or pressed F8).
The Step Into button executes the next statement in the program’s flow of execution. In this case,
the SQL statement is composed and assigned to sSQL. If we wanted to view the value of sSQL at
this point, we could flip to the Immediate window (Ctrl+G) and use ?sSQL to print its value in the
Immediate window. We could also have a watch set on sSQL and view its value in the Watch win-
dow (described in the section titled “Setting watches,” later in this chapter).

FIGURE 15-20

Step Into executes one line at a time.

Notice the execution pointer (a yellow arrow) in the Margin Indicator bar pointing at the last line
of the SQL statement. This arrow tells you where execution is actually stopped. The line pointed to
by the arrow has not yet executed, so any action performed in the statement has not occurred.

516

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 516

Consecutive clicks on the Step Into button (or pressing F8) walks through the code one statement
at a time. If a statement includes a call to another procedure, you’ll be taken to that procedure and
walked through it. If you want, you can use the Step Over button (or press Shift+F8) to step
“through” the called routine. If you’ve previously debugged the called routine and you’re sure it
contains no errors, there is no reason to walk through its code. The code in the called routine is
actually executed when you click on the Step Over button, changing any variables involved.

Once you’re satisfied that you don’t need to continue walking through the code, click on the Step
Out button (or press Ctrl+F8) to complete the procedure. The Step Out button is handy if you’ve
stepped into a called routine and you’re sure there’s nothing interesting going on in it.

One very nice feature in Access 2007 is the Auto Data Tips option in the Modules tab in the
Options dialog box. With this option selected, you’re able to view the value of any variable in a
tooltip-like window by hovering the mouse pointer over the variable’s name in the module window
(see Figure 15-21).

FIGURE 15-21

Auto Data Tips are a powerful tool for debugging.

Keep in mind that the Auto Data Tips option must be selected in the Modules tab for the data tip
you see in Figure 15-21 to appear.

Using the Locals window
The Locals window (View ➪ Locals Window) shows all variables that are currently in scope, sav-
ing you from having to examine each variable one at a time. The variable’s name, its data type, and
its current value are displayed.

Notice the items in the Locals window in Figure 15-22. Any line in the Locals window that begins
with a plus sign icon will unfold to reveal more information. For instance, you can set a breakpoint
on the End Function statement at the bottom of the function to halt execution so that you can
examine the results of the rs assignment statement. Unfolding the rs entry in the Locals window
reveals all the properties of the rs object and its contents (see Figure 15-22).

517

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 517

FIGURE 15-22

Use the Locals window to examine the values of complex objects.

Setting watches
The Locals window can be overrun with variables in a large application, or in an application with
many variables in scope. The Watch window enables you to specify just which variables you want
to monitor as you single-step through your code. The value of a watched variable changes dynami-
cally as the code runs (you need to be at some kind of breakpoint, of course, to actually see the
values). The advantage of using the Watch window is that the variables displayed do not have to be
from the local procedure. In fact, the variables in the Watch window can be from any part of the
application.

Setting a watch is more complicated than using the Locals window or setting a breakpoint:

1. Click on the Watch tab.

2. Right-click anywhere in the Watch window and select Add Watch from the shortcut
menu.

3. Enter the name of the variable or any other expression in the Expression box of the
Add Watch dialog box (see Figure 15-23).

518

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 518

FIGURE 15-23

The Add Watch dialog box includes some powerful options.

The Add Watch dialog box includes some important options. In addition to the name of a variable
or expression (an expression might be something like sSQL = “”), there are options for specifying
the module and procedure within the module to watch. In Figure 15-23, the Add Watch dialog
box is set up to watch the sSQL variable in all procedures in all modules.

At the bottom of the Add Watch dialog box are the following options:

n Watch Expression: The variable’s value will dynamically change in the Watch window.
You must use an explicit breakpoint or Stop statement in order to observe the value of
the watched variable.

n Break When Value Is True: This option asserts a break whenever the value of the
watched variable or expression becomes True. If you set the expression to sSQL = “”, a
breakpoint occurs whenever the value of the sSQL variable changes to an empty string.

n Break When Value Changes: This directive causes Access to halt execution whenever
the value of the variable or expression changes. Obviously, this setting can generate a lot
of breakpoints!

Use watches wisely. You don’t want to be breaking into program execution too fre-
quently or you’ll never get through the code. On the other hand, you don’t want to

overlook some important change in the value of a variable because you didn’t set a watch
appropriately.

Figure 15-24 shows the Watch window in action. The sSQL variable is displayed for all procedures
in all modules.

TIPTIP

519

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 519

FIGURE 15-24

The Watch window reveals all uses of a variable’s details.

Using conditional watches
Although it can be quite entertaining to watch variables in the Locals or Watch windows, you may
spend a great deal of unproductive time hoping to see something unexpected happen. You’ll proba-
bly find it much more efficient to set a conditional watch on a variable, and instruct the VBA
engine to break when the condition you’ve established is met.

The Add Watch dialog box (see Figure 15-25) accepts a Boolean (true or false) expression, such as
SalesTax < 0 in the text box near the top. You specify where in the application (which proce-
dures and which modules) the expression is applied, and you tell Access what you want the VBA
engine to do when the expression is evaluated. For our purposes, we want execution to break
when the expression is True.

FIGURE 15-25

A conditional watch halts execution when the expression is true.

There are other ways to use conditional watches, such as using compound conditions (X = True
And Y = False), and forcing a break whenever a value changes from the value set in the expres-
sion text box. The small example illustrated in Figure 15-25 only hints at the capabilities possible
with conditional watches.

520

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 520

Using the Call Stack window
The last debugging tool we’ll examine is a bit more difficult to understand because it involves mul-
tiple dimensions of execution. In many applications, you’ll have procedures that call other proce-
dures that call still other procedures. To our knowledge, there is no practical limit on the number
of procedures that can be sequentially called in a VBA project. This means you may have a “tree” of
procedures many levels deep, one level of which is causing problems in your application.

Imagine a function that performs a common operation (such as calculating sales tax) in an applica-
tion. As a general rule, rather than include this function in every module in the application, you’ll
put the function into a single module, declare it with the Public keyword so that it’s recognized
and used by the entire application, and then call it from whichever procedure needs a sales tax
calculation.

Furthermore, imagine that this application has many such functions and subroutines, each calling
the other, depending on the application’s logic at that moment. Finally, imagine that users report
that the sales tax appears to be incorrectly calculated under some conditions, but not others.

It’d be possible to single-step through all of the code in the application, hoping to discover the
cause of the erroneous sales tax. However, this would not be an efficient approach. It’d be much
more efficient to set a conditional watch on an important variable within the sales tax function,
forcing the code to break when the condition is True. Then, open the Call Stack window (see
Figure 15-26) to view the path that the VBA engine has taken to reach this particular point in
the code.

FIGURE 15-26

The Call Stack window shows you how the execution point reached its current position.

Double-click on any of the items listed in the Call Stack to be taken to the statement that sent exe-
cution to the next procedure. Using the Call Stack window in conjunction with conditional
watches enables you to stop code wherever relevant, and to diagnose how code has executed up to
the breakpoint.

521

Using the VBA Debugging Tools 15

20_046732 ch15.qxp 11/21/06 8:53 AM Page 521

Summary
This chapter takes a quick look at the important topic of debugging Access VBA code. The tech-
niques you apply and the tools you use in debugging your code are highly individual choices. Not
all developers feel comfortable using the Immediate window to watch variables. Not every devel-
oper uses breakpoints and the Step buttons to stop and control execution. At the same time, it’s
nice to know that these tools are available for your use when you’re ready!

This chapter ends the section on VBA programming in Microsoft Access. You’ll see many different
ways of using VBA code to strengthen and enhance your Access applications in the following parts
and chapters of this book.

The next part revisits the basic application building tasks you read about in the first part of this
book. The next several chapters explain many of the most important aspects of application devel-
opment, such as using external data in your Access applications, creating advanced queries, and
building complex forms and reports. These chapters take the basic skills explained in the first two
parts of this book and extend your understanding of Access application development.

522

Programming Microsoft AccessPart II

20_046732 ch15.qxp 11/21/06 8:53 AM Page 522

More Advanced
Access Techniques

Microsoft Access is a very sophisticated database-
development system. Although the majority of casual
Access developers never move beyond building sim-

ple forms and reports, you can do much more with Microsoft
Access if you know how. The chapters in this part cover many,
but not all, of the capabilities possible with Microsoft Access.
The topics in these chapters range from creating advanced
queries and integrating Access with other applications, to con-
trolling the user interface and manipulating data with the VBA
programming language.

This section of this book contains many examples that show
how to use these techniques in Microsoft Access applications.
You’ll make good use of this book’s CD as you work through the
examples presented in these chapters.

This section also contains a chapter on multiuser database
development. As you’ll soon see, there are considerations in
multiuser applications that never arise in single-user environ-
ments. You’ll have to keep these principles and concerns in
mind as you work on applications destined for multiuser envi-
ronments to ensure that your applications don’t confuse users or
cause data loss as one user overwrites another user’s work.

IN THIS PART
Chapter 16
Working with External Data

Chapter 17
Importing and Exporting Data

Chapter 18
Advanced Access Query
Techniques

Chapter 19
Advanced Access Form Techniques

Chapter 20
Advanced Access Report
Techniques

Chapter 21
Building Multiuser Applications

Chapter 22
Integrating Access with Other
Applications

Chapter 23
Integrating Access with SharePoint

Chapter 24
Using ActiveX Controls

Chapter 25
Handling Errors and Exceptions

21_046732 pt03.qxp 11/21/06 8:54 AM Page 523

21_046732 pt03.qxp 11/21/06 8:54 AM Page 524

So far, you’ve worked with data in Access tables found within the cur-
rent database. In this chapter, you explore the use of data from other
types of files. You learn to work with data from database, spreadsheet,

HTML, and text-based files. After we describe the general relationship
between Access and external data, we explain the major methods of working
with external data: linking and importing/exporting.

This chapter uses the Chapter16.accdb database as well
as several other files that you will use for linking. If you have

not already copied these files onto your machine from the CD, you’ll need to
do so now.

The data linked or imported into Access applications comes in a bewildering
variety of formats. There is no practical way to document every possible type
of import or linking operation in a single chapter. Therefore, this chapter dis-
cusses the essential steps required to import or link to external data, and
gives a few examples demonstrating how these processes are performed in
Access 2007, instead of filling page after page with examples that may or
may not be relevant to your work.

As you’ll soon see, knowledge of the external data format is critical to a suc-
cessful import or linking operation. You must have some notion of the exter-
nal data format before you can successfully import data into your Access
application or incorporate the data into your Access application through
linking. This chapter points out many of the issues involved if you choose to
import or link to external data; it’s intended to be a guide as you perform
these operations in your Access applications.

ON the CD-ROMON the CD-ROM

525

IN THIS CHAPTER
Linking to external data

Splitting an Access database into
programs and data

Working with linked tables

Using the Linked Table Manager

Using code to link to external
data sources

Verifying linked tables

Working with External Data

22_046732 ch16.qxp 11/21/06 8:54 AM Page 525

Access and External Data
Exchanging information between Access and another program is an essential capability in today’s
database world. Information is usually stored in a wide variety of application programs and data
formats. Access, like many other products, has its own native file format, designed to support ref-
erential integrity and provide support for rich data types, such as OLE objects. Most of the time,
this format is sufficient; occasionally, however, you need to move data from one Access database
file to another, or even to or from a different software program’s format.

Types of external data
Access has the capability to use and exchange data among a wide range of applications. For exam-
ple, you may need to get data from other database files (such as FoxPro, dBASE, or Paradox files)
or obtain information from a SQL Server, Oracle, or a text file. Access can move data among several
categories of applications:

n Other Windows applications

n Macintosh applications (FoxBASE, FoxPro, Excel)

n Spreadsheets

n PC database-management systems

n Server-based database systems (SQL Server)

n Text and mainframe files

Methods of working with external data
Often, you need to move data from another application or file into your Access database, or vice
versa. You may need to obtain information you already have in an external spreadsheet file. You
can re-enter all the information by hand — or have it automatically imported into your database.
Access has tools that enable you to move data from a database table to another table or file. It could
be a table in Access, FoxPro, or Paradox; it could be an Excel spreadsheet file. In fact, Access can
exchange data with more than 15 different file types:

n Access database objects (all types, all versions)

n dBASE

n Microsoft FoxPro

n Paradox

n Text files (ANSI and ASCII; DOS or OS/2; delimited and fixed-length)

n Lotus 1-2-3

n Microsoft Excel

n ODBC databases (Microsoft SQL Server, Sybase Server, Oracle Server, and other ODBC-
compliant databases)

526

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 526

n HTML tables, lists, documents

n XML documents

n Microsoft Outlook and Outlook Express

n Microsoft Exchange documents

n Microsoft IIS

n Microsoft SharePoint

n Microsoft Active Server Pages

n Microsoft Word Merge documents

n Rich Text Format documents

Access works with these external data sources in several ways: linking, importing, and exporting.
Table 16-1 describes these methods.

TABLE 16-1

Methods of Working with External Data

Method Description

Link Creates a link to a table in another Access database or links to the data from a different
database format

Import Copies data from a text file, another Access database, or another application’s format into
an Access table

Export Copies data from an Access table to a text file, another Access database, or another
application’s format

As Table 16-1 shows, you can work with data from other sources in two ways: linking or import-
ing. Both methods enable you to work with the external data. There is a distinct difference between
the two methods:

n Linking uses the data in its current file format (such as Excel or FoxPro). The link to
data remains in its original file. The file containing the link data should not be moved,
deleted, or renamed. Otherwise, Access will not be able to locate the data the next time
it’s needed.

n Importing makes a copy of the external data and brings the copy into the Access
table. The imported data is converted to the appropriate Access data type and is managed
by Access from that point on.

Each method has clear advantages and disadvantages, covered in the following sections.

527

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 527

When to link to external data
Linking in Access enables you to work with the data in another application’s format — thus, shar-
ing the file with the existing application. If you leave data in another database format, Access actu-
ally changes the data while the original application is still using it. This capability is useful when
you want to work with data in Access that other programs also need to work with. Another exam-
ple is when you use Access as a front end for a SQL Server database — you can link to a SQL
Server table and directly update the data, without having to batch-upload it to SQL Server.

If you plan to use a table from another Microsoft Access database, it’s a good idea to simply link to
it rather than import it. If another application continues to update and work with data, it’s best to
link to it.

You can link to the following types of data in Access: other Access tables (.accdb, .accde,
.mdb, .mda, .mde), Excel spreadsheets, Exchange documents, Outlook documents, FoxPro,
Paradox or dBASE, text files, HTML documents, SharePoint Team Services, and ODBC databases.

Access 2007 has the capability to link to HTML tables and text tables for read-only
access. You can use and look at tables in HTML or text format; however, the tables can-

not be updated and records cannot be added to them using Access. Also, if you are working with
Paradox files and they don’t have a primary key field defined, you will only be able to read the data —
not change it.

The biggest disadvantage of working with linked tables is that you lose the capability to enforce
referential integrity between tables (unless you’re linked to an Access database).

When to import external data
Importing data enables you to bring an external table or data source into a new Access table. By
doing this, Access automatically converts data from the external format and copies it into Access.
You can even import data objects into a different Access database or Access project than the one
that is currently open. If you know that you’ll use your data in Access only, you should import it.
Generally, Access works faster with its own tables.

Because importing makes another copy of the data, you may want to erase the old file
after you import the copy into Access. Sometimes, however, you won’t want to erase it.

For example, the data may be sales figures from an Excel spreadsheet still in use. In cases such as this,
simply maintain the duplicate data and accept that storing it will require more space.

One of the principal reasons to import data is to customize it to meet your needs. After a table has
been imported, you can work with the new table as if you’d built it in the current database.

With linked tables, on the other hand, you’re greatly limited in the changes you can make. For
example, you cannot specify a primary key or assign a data-entry rule, which means that you can’t
enforce integrity against the linked table.

Access opens only one database at a time. Therefore, you can’t work directly with a
table in a different database. If you need to work with tables or other Access objects

(such as forms and queries) in another Access database, simply import the object from the other data-
base into your current database.

TIPTIP

NOTENOTE

CAUTION CAUTION

528

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 528

Data is frequently imported into an Access database from an obsolete system being replaced by a
new Access application. When the import process is complete, the obsolete application can be
removed from the user’s computer. The data formerly managed by the obsolete system, such as an
old FoxPro or dBASE application, is preserved in the Access database.

Data in unsupported programs
Although uncommon, there may be times when you need to work with data from a program that is
not stored in the supported external database or file format. In cases such as this, the programs
usually can export or convert their data in one of the formats recognized by Access. To use the data
in these programs, export it into a format recognized by Access and then import it into Access. For
example, many applications can export to the dBASE file format. If the dBASE format is not avail-
able, most programs, even those on different operating systems, can export data to delimited or
fixed-width text files, which you can then import into Access.

Automating import operations
If you will be importing data from the same source frequently, you can automate the process with a
macro or a VBA procedure. This can be very helpful for those times when you have to import data
from an external source on a regular schedule or you have complex transformations that must be
applied to the imported data.

Linking External Data
As the database market continues to grow, the need to work with information from many different
sources will escalate. If you have information captured in a SQL Server database or an old Paradox
table, you don’t want to reenter the information from these sources into Access. Ideally, you want
to open an Access table containing the data and use the information in its native format, without
having to copy it or write a translation program to access it. For many companies today, this capa-
bility of accessing information from one database format while working in another is often an
essential starting point for many business projects.

Copying or translating data from one application format to another is both time-consuming and
costly. The time it takes can mean the difference between success and failure. Therefore, you want
an intermediary between the different data sources in your environment.

Access can directly simultaneously link to multiple tables contained within other database systems.
After an external file is linked, Access builds and stores a link to the table. Access easily links to
other Access database tables as well as to non-Access database tables such as dBASE, FoxPro, and
Paradox. A common practice is to split an Access database into separate databases, for easier use in
a multiuser or client-server environment.

529

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 529

Linking to external database tables
In the “Methods of working with external data” section, earlier in this chapter, you saw a list of
database tables and other types of files that Access links to. Access displays the names of link tables
in the object list but uses a special icon to indicate that the table is linked and not contained within
the current Access database. An arrow pointing to an icon indicates that the table name represents
a link data source. Figure 16-1 shows several linked tables in the list, which are all external tables.
Notice that all the linked tables have an icon containing is an arrow. (The icon clues you in to the
type of file that is linked.)

FIGURE 16-1

Linked tables in an Access database. Notice that each linked table has an icon indicating its status as a
linked table.

The icon indicates which type of file is linked to the current Access database. For instance, Excel
has an X symbol in a box, Paradox has a Px symbol, and dBASE tables have a dB symbol.

After you link a table to your Access database, you use it as you would any other table. For exam-
ple, Figure 16-2 shows a query using several linked tables: Contacts (from a dBase table),
Sales (from a Paradox table), SalesLineItems (from a comma-delimited text file), and
Products (from an Excel file).

This query shows the potential benefit of linking to a variety of data sources and seamlessly dis-
plays data from internal and linked tables. Figure 16-3 shows the datasheet returned by this query.
Each column in this datasheet comes from a different linked data source.

530

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 530

FIGURE 16-2

A query designed using externally linked tables

FIGURE 16-3

The datasheet view of externally linked data

In Figure 16-3, the column heading names come from the field names in the underlying external
tables. For instance, the first column (BuyerName) is a combination of the FNAME and LNAME
fields from the dBASE table, while the invoice number is from Paradox, and the Description
field comes from Excel.

531

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 531

Figure 16-3 illustrates an important concept regarding using linked data in Access. Users will not
know, nor will they care, where the data resides. All they want is to be able to see the data in a for-
mat they want and expect. Only you, the developer, understand the issues involved in bringing
this data to the user interface. Other than the limitations of linked data (explained in the
“Limitations of linked data” section), users will not be able to tell the difference between native and
linked data.

After you link an external table to an Access database, you should not move the table to
another drive or directory. Access does not bring the external data file into the .accdb

file; it maintains the link via the filename and the file’s path. If you move the external table, you have
to update the link using the Linked Table Manager, explained in the “Viewing or changing information
for linked tables” section, later in this chapter.

Limitations of linked data
Although this chapter describes using linked data as if it existed as native Access tables, certain
operations cannot be performed on linked data. Furthermore, the prohibited operations depend, to
a certain extent, on the type of data linked to Access.

These limitations are relatively easy to understand. Linked data is never “owned” by Access.
External files that are linked to Access are managed by their respective applications. For instance,
an Excel worksheet is managed by Microsoft Excel. It would be presumptive — and dangerous —
for Access to freely modify data in an Excel worksheet. As an example, because many Excel opera-
tions depend on the relative positions of rows and columns in a worksheet, inserting a row into a
worksheet may break calculations and other operations performed by Excel on the data. Deleting a
row may distort a named range in the Excel worksheet, causing similar problems. Because there is
no practical way for Access to understand all of the operations performed on an external data file
by its respective owner, Microsoft has chosen to take a very conservative route and not allow
Access to modify data that may cause problems for the data’s owner.

The following list describes the limitations of linked data:

n Excel data: Existing data in an Excel worksheet cannot be changed, nor can rows be
deleted or new rows added to a worksheet. For all intents and purposes, Excel data is
treated in a read-only fashion by Access.

n Text files: For all practical purposes, data linked to text files is treated as read-only in
Access. Although the data can be used in forms and reports, you can’t simply and easily
update rows in a link text file, nor can you delete existing rows in a text file. Oddly
enough, you can add new rows to a text file. Presumably, this is because new rows will
not typically break existing operations the way that deleting or changing the contents of a
row may.

NOTENOTE

532

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 532

n HTML: HTML data is treated exactly as Excel data. You cannot modify, delete, or add
rows to an HTML table.

n Paradox and dBASE: Because these are database files, you can pretty much perform the
same data operations on Paradox and dBASE tables as you can on native access tables.
This general statement applies only if a primary key is provided for each Paradox or
dBASE table.

n ODBC: Briefly, ODBC is a data access technology that utilizes a driver between an Access
database and an external database file, such as Microsoft SQL Server or Oracle. Again,
generally speaking, because the linked data source is a database table, you can perform
whatever database operations (modify, delete, add) as you would with a native Access
table.

We discuss ODBC database tables in some detail in the “Linking to ODBC data sources” section,
later in this chapter.

Linking to other Access database tables
Access easily incorporates data located in the other Access files by linking to those tables. This
process makes it easy to share data among Access applications across the network or on the local
computer. The information presented in this section applies to virtually any data file you linked to
from an Access database. Rather than include examples of linking to every type of data file, this
section explains the principles involved when linking to any type of data file. Later in this chapter,
you’ll see short sections explaining the differences between linking to an Access table and linking
to each of the other types of data files recognized by Access.

A very common practice among Access developers is splitting an Access database into
two pieces. One piece contains the forms, reports, and other user interface components

of an application, while the second piece contains the tables, queries, and other data elements of the
application. There are many advantages to splitting Access databases, including certain performance
benefits as well as easier maintenance. You can read about splitting Access databases in the “Splitting
an Access database” section, later in this chapter. The process of linking to external Access tables
described in this section is an essential part of a split database paradigm. The steps described in this
section are frequently performed win managing split databases.

After you link to another Access table, you use it just as you use another table in the open data-
base. Follow these steps to link to tblSalesPayments in the Chapter16_Link.accdb database
from the Chapter16.accdb database file:

1. Open the Chapter16.accdb database.

2. Select the External Data ribbon, and then choose the type of data you want to
access.

Access opens the Get External Data dialog box, shown in Figure 16-4.

NOTENOTE

533

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 533

FIGURE 16-4

Use the Get External Data dialog box to select the type of operation you want to per-
form on the external data sources.

3. Use the Browse button to open the Windows File Open dialog box, and locate the
.accdb file you want to link to.

4. Find and select the Chapter16_Link file in the File Open dialog box and click the
Open button.

The File Open dialog box closes and you’re taken back to the Get External Data dialog
box.

5. Click the OK button in the Get External Data dialog box.

The Link Tables dialog box enables you to select one or more tables from the selected
database (in this case, Chapter16_Link). Figure 16-5 shows the Link Tables dialog
box open on Chapter16_Link.accdb.

6. Select tblSalesPayments and click OK.

Double-clicking the table name will not select the table — you must highlight it and then
click OK.

534

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 534

FIGURE 16-5

Use the Link Tables dialog box to select the Access table(s) for linking.

After you link tblSalesPayments from the Chapter16_Link database, Access returns to the
object list and shows you the newly linked table. Figure 16-6 shows tblSalesPayments linked
to the current database. Notice the special icon attached to tblSalesPayments. This icon indi-
cates that this table is linked to an external data source. Hovering over the linked table with the
mouse reveals the linked table’s data source.

FIGURE 16-6

The Navigation Pane with tblSalesPayments added. Notice the icon indicating that this is a linked table.

535

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 535

You can link more than one table at a time by selecting multiple tables before you click
the OK button. Clicking the Select All button (naturally!) selects all the tables.

Linking to ODBC data sources
One significant advance with regard to data sharing has been the creation and support of Open
Database Connectivity (ODBC) by Microsoft and other vendors. ODBC is a specification that
software vendors use to create drivers for database products. This specification lets your Access
application work with data in a standard fashion across platforms. If you write an application
conforming to ODBC specifications, then your application will be able to use any other ODBC-
compliant back end.

For example, say you create an Access application that uses a SQL Server database back end. The
most common way to accomplish this requirement is to use the Microsoft SQL Server ODBC
driver. After developing the application, you find that one of your branch offices would like to use
the application as well, but they’re using Oracle as a database host. If your application has con-
formed closely to ODBC syntax, then you should be able to use the same application with Oracle
by purchasing an Oracle ODBC driver. Not only are vendors supplying drivers for their own prod-
ucts, but there are now software vendors who only create and supply ODBC drivers.

Linking to dBASE databases (tables)
Unlike Access, dBASE (and FoxPro and other xBase systems) store each table as a separate file with
a .dbf extension. Each .dbf file may be accompanied by an .ndx or .mdx file containing the
indexes associated with the dBASE table.

When you link to a dBASE table, Access may ask you if you want to link to the index file associ-
ated with the dBASE table. In almost every case, you’ll want to include the index file in the linking
operation. Otherwise, the dBASE data will be read-only and not updatable.

One other significant difference between Access and dBASE is that the links of table and field
names are much shorter in dBASE than in Access, and are almost always expressed in all uppercase
characters.

Linking to dBASE or other xBase data files is much like linking to an external Access table. The
main difference is that you select dBASE (or FoxPro) from the Files of Type drop-down list in the
File Open dialog box, and, because each xBase file is a table, you don’t have to specify which table
to link. Otherwise, the processes are virtually identical.

This book’s CD includes a dBASE IV file named CONTACTS.dbf containing a copy of the
Contacts table from the Access Auto Auctions application. You may want to use this file to prac-
tice linking the base tables.

TIPTIP

536

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 536

Linking to Paradox tables
Linking to Paradox tables is much like linking to dBASE files. Each Paradox table is kept in a sepa-
rate file with a .db extension. Each table’s primary key and indexes is kept in a file with a .px or
.mb extension. Otherwise, the Paradox linking operation parallels linking to dBASE files. Be sure
to include the index file (if it exists) when linking to a Paradox .db file.

Linking to non-database data
You can also link to non-database data, such as Excel, HTML, and text files. When you select one
of these types of data sources, Access runs a Link Wizard that prompts you through the process.

Linking to Excel
The main issues to keep in mind when linking to Excel data are:

n An Excel .xls workbook file may contain multiple worksheets. You must choose which
worksheet within a workbook file to link.

n You may link to individual named ranges within an Excel worksheet.

n Excel columns may contain virtually any type of data.

The last bullet above is fairly important. Just because you have successfully linked to an Excel
worksheet does not mean that your application will be able to use all of the data contained in the
Excel worksheet. Because Excel does not limit the types of data contained in a worksheet, your
application may encounter multiple types of data within a single column of a linked Excel work-
sheet. This means you may have to add code or provide other strategies for working around the
varying types of data contained in an Excel worksheet.

This book’s CD contains an Excel worksheet created by exporting the Products table from the
Access Auto Auctions application. Use this file to practice importing Excel data, keeping in mind
that, in practice, the data you’re likely to encounter in Excel worksheets is far more complex and
less orderly than the data contained in the Products.xls file.

By linking to an Excel table, you can update its records from within Access or any other applica-
tion that updates Excel spreadsheets.

Follow these steps to link to the Excel Products spreadsheet:

1. In the Chapter16 database, select the Excel button on the External Data ribbon.

2. In the Get External Data dialog box, select Link to the Data Source by Creating a
Linked Table, then click the Browse button.

The same Get External Data dialog box (see Figure 16-7) is used for both import and link
operations. Therefore, be sure the correct operation is elected before continuing.

Importing data into Access is discussed in Chapter 17.CROSS-REFCROSS-REF

537

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 537

FIGURE 16-7

The first screen of the Link Spreadsheet Wizard

3. Use the File Open dialog box to locate and open the Excel workbook file.

You’ll be returned to the Link Spreadsheet Wizard (see Figure 16-8).

FIGURE 16-8

The main Link Spreadsheet Wizard screen

538

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 538

Notice that the Link Spreadsheet Wizard dialog contains options for selecting either
worksheets or named ranges within the workbook file. In this example, there are
three different worksheets (named Products, Sales, and Contacts) within the
workbook file.

4. Select the Products worksheet for this demonstration.

5. The Link Spreadsheet Wizard walks you through a number of different screens
where you specify details such as First Row Contains Column Headings and the
data type you want to apply to each column in the Excel worksheet.

6. The last screen of the Link Spreadsheet Wizard asks for the name of the newly
linked table. The linked table is established as you click the Finish button and are
returned to the Access environment.

As with so many other things in database development, many decisions involved in linking to
external data sources are based on how the data is to be used in the application. Also, the names
you provide for fields and other details have a direct impact on your application.

Linking to HTML files
Linking to data contained in HTML documents is not covered in any detail in this book because of
the rather severe limitations imposed by Access on this process. For instance, Access is unable to
retrieve data from an arbitrary HTML file. The data must be presented as an HTML table, in a row
and column format, and the data has to be relatively clean (absent any unusual data or mix of data,
such as text, image, and numeric data combined within a single HTML table).

You’re likely to encounter problems if more than one HTML table appears on the page, or if the
data is presented in a hierarchical fashion (parent and child data).

All things considered, linking to arbitrary HTML documents is hit-or-miss at best. You’re much
better off linking to an HTML document specifically prepared as a data source for your Access
application than to try working with arbitrary HTML files.

Furthermore, if someone is going to the trouble of creating specialized HTML documents to be
used as Access data sources, it is probably more reliable for them to produce comma-separated val-
ues (CSV) or fixed-width text files. Comma-separated values, where the fields in each row are sepa-
rated by commas, are a very common way to move data from one application to another. CSV and
fixed-width file types are discussed in the next section.

Having said that, the process of linking HTML data is very similar to linking to Excel worksheets.
Use the More drop-down list in the External Data tab and select HTML Document from the list.
This action opens the same Get External Data dialog box you saw when linking to Excel work-
sheets. And, when you select the Link to the Data Source by Creating a Link Table option and click
the Browse button, the File Open dialog box appears, enabling you to search for the HTML file you
want to link. From this point on, the process of linking to HTML data is exactly parallel to linking
to other types of data files, including providing field names and other details of the linked data
(see Figure 16-9).

539

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 539

This book’s CD includes a very simple HTML file named CustomerTypes.html in the
Chapter16 folder. The data in this file is, perhaps, overly simplistic, but it gives you the opportu-
nity to practice linking to HTML documents. Because of the wide variety of ways that data is
stored in HTML documents, it is not possible to generalize an approach to linking to HTML data.
However, as you gain proficiency with the ability to link to external data sources, you may find
linking to HTML a valuable addition to your Access skills.

FIGURE 16-9

The HTML Wizard screen that is used to name the column headings (field names) for the linked table

Linking to text files
A far more common situation is linking to data stored in plain text files. Most applications, includ-
ing Microsoft Word and Excel, are able to publish data in a variety of text formats. The most com-
mon formats you’re likely to encounter are fixed-width and comma separated values (CSV).

In a fixed-width text file, each line represents one row of a database table. Each field within a line
occupies exactly the same number of characters as the corresponding field in the lines above and
below the current line. For instance, a Last Name field in a fixed-width text file may occupy 20
characters, while a phone number field may only use 10 or 15 characters. Each data field is padded
with spaces to the right to fill out the width allocated to the field. Figure 16-10 shows a typical
fixed-width file open in Windows Notepad.

540

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 540

FIGURE 16-10

A typical fixed-width text file

Comma-separated values are somewhat more difficult to understand. Each field is separated from
the other fields by a comma character (,) and each field occupies as much space is necessary to
contain the data. Generally speaking, there is little blank space between fields in a CSV file. The
advantage of CSV files is that much more data can be contained in a CSV file because each field
occupies only as much disk space as necessary to contain the data.

CSV files can be difficult to read when opened in Windows Notepad. Figure 16-11 shows a
typical CSV text file.

FIGURE 16-11

CSV data is more compact than fixed-width text but is more difficult to read.

541

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 541

Text files are often used as intermediate data transfer vehicles between dissimilar applications. For
instance, there may be an obsolete data-management system in your environment that is incompat-
ible with any of the link or import data types in Access. If you’re lucky, the obsolete system is able
to output either fixed width or CSV files. Linking to or importing the fixed-width or CSV files may
be the best option for sharing data with the obsolete system. At the very least, much less time is
required linking or importing the data that would be involved in re-keying all of the information
from the obsolete system into Access.

Finally, follow these steps to link to the SalesLineItems text file:

1. Open the Chapter16 database and select the External Data ribbon.

2. Click on the Text File button to open the Get External Data dialog box.

3. Be sure the Link to the Data Source by Creating a Link Table option is selected, and
then click the Browse button.

The File Open dialog box appears.

4. Locate the text file (either fixed-width, or CSV) and click the Open button.

5. Dismiss the other dialog boxes that appear.

You’ll be taken to the Link Text Wizard dialog box.

Generally speaking, Access makes pretty good guess at how the data in the file is delim-
ited. Linking to text data involves nothing more than clicking on the Next button and
verifying that Access has correctly identified the data in the file. Rather than show or
describe each of the dialog boxes in the Link Text Wizard, you’re encouraged to link to
Contacts_CSV.txt and Contacts_FixedWidth.txt, both included on this
book’s CD.

As you’ll see when you link to these files, about the only input required from you is to
provide a name for each of the fields Access finds in the text files. If you’re lucky, the text
file includes field names as the first row in the text file. Otherwise, linking to text files is a
very simple operation.

Splitting an Access database
Very often, developers split an Access application into two databases. One (usually called the back
end) contains only tables and (perhaps) queries, while the other (called the front end) contains the
forms, queries, reports, macros, and modules included in the application. Splitting an Access data-
base into multiple pieces is an extremely important operation when building applications for
multiuser environments. The front-end database is installed on each user’s machine, while the
back-end database containing the tables is installed on the server. The split database arrangement
has several major benefits:

n Everyone on the network shares one common set of data.

n Many people can simultaneously use and update data.

542

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 542

n Updating forms, reports, or other portions of the application generally means nothing
more than providing a new front end to your users. The new front end can be put into
service without affecting the data underlying the application, and, in fact, different users
may work with different versions of the front-end database at the same time.

When creating an application for a multiuser environment, you should consider designing the
objects that will be in your database, anticipating putting them into two Access databases. In gen-
eral, putting all data elements (tables) in a separate database and all the visual objects (forms and
reports) and code in another database usually proves more efficient. You will find it much easier to
provide updates to your users by replacing the front-end database without having to worry about
damaging the data underlying the application.

There are some things you just can’t do with a linked table without doing a little extra work. These
tasks include finding records and importing data. By using different techniques with linked tables,
however, you can do anything you can do with a single database.

If you’re starting from scratch, you first create a back-end database with just the tables for the
application. You then create the front-end database and link the tables in the front end to the back
end. This process is described in detail in Chapter 21. In the meantime, it is enough to understand
that the primary consideration in a split database application is maintaining the linkage between
the front-end and back-end databases.

Working with Linked Tables
After you link to an external table from another database, you use it just as you would any another
Access table. You use linked tables with forms, reports, and queries just as you would native Access
tables. When working with external tables, you can modify many of their features (for example,
setting view properties and relationships, setting links between tables in queries, and renaming the
tables).

One note on renaming linked tables: Providing a different name for the table inside of Access does
not change the name of the file that is linked to the application. The name that Access refers to a
link table is maintained within the Access application and does not influence the physical table
that is linked.

Setting view properties
Although an external table is used like another Access table, you cannot change the structure
(delete, add, or rearrange fields) of an external table. You can, however, set several table properties
for the fields in a linked table:

n Format

n Decimal Places

n Caption

n Input Mask

543

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 543

n Unicode Compressions

n IME Sequence Mode

n Display Control

Setting relationships
Access enables you to set permanent relations at the table level between linked non-
Access tables and native Access tables through the Relationships Builder. You cannot,

however, set referential integrity between linked tables, or between linked tables and internal tables.
Access enables you to create forms and reports based on relationships set up in the Relationships
Builder, such as building a SQL statement used as the RecordSource property of a form or report.

Linking to external Access tables maintains the relationships that may exist between the external
tables. Therefore, when linking to a back-end database, the relationships you have established in
the back end are recognized and honored by the front-end database.

Optimizing linked tables
When working with linked tables, Access has to retrieve records from another file. This process
takes time, especially when the table resides on a network or in an SQL database. When working
with external data, optimize performance by observing these basic rules:

n Avoid using functions in query criteria. This is especially true for aggregate functions,
such as DTotal or DCount, which retrieve all records from the linked table before per-
forming the query.

n Limit the number of external records to view. Create a query using criteria that limit
the number of records from an external table. This query can then be used by other
queries, forms, or reports.

n Avoid excessive movement in datasheets. View only the data you need to in a
datasheet. Avoid paging up and down and jumping to the last or first record in very large
tables. (The exception is when you’re adding records to the external table.)

n If you add records to external linked tables, create a form to add records and set the
DataEntry property to True. This makes the form an entry form that starts with a
blank record every time it’s executed.

Deleting a linked table reference
Deleting a linked table from the object list is a simple matter of performing three steps:

1. In the object list, select the linked table you want to delete.

2. Press the Delete key, or right-click on the linked table and select Delete from the
shortcut menu.

3. Click OK in the Access dialog box to delete the file.

TIPTIP

544

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 544

Deleting an external table deletes only its name from the database object list. The actual
file is not deleted.

Viewing or changing information for linked tables
Use the Linked Table Manager Wizard to update the links when you move, rename, or modify
tables or indexes associated with a linked table. Otherwise, Access will not be able to find the data
file referenced by the link.

Select the Database Tools ribbon and click the Linked Table Manager button. Access displays the
Linked Table Manager dialog box (shown in Figure 16-12), enabling you to locate the data files
associated with the linked tables in the database. Click the check box next to a linked table and
click OK. Access verifies that the file cannot be found and displays a Select New Location dialog
box. Using this dialog box, find the missing file and reassign the linkage to Access. If all the files
are already linked correctly, clicking OK makes Access verify all the linkages associated with all the
selected tables.

If you know all of the linked data sources have been moved, click the Always prompt for a
new location button. Access then prompts you for the new location, and links all of the tables
as a batch process. You’ll find this operation much faster than linking one or two tables at a time.

FIGURE 16-12

The Linked Table Manager enables you to relocate external tables that have been moved.

If the Linked Table Manager Wizard is not present on your computer, Access automati-
cally prompts you to provide the original Office CD so that Access can install the wiz-

ard. This may happen if you didn’t instruct Office to install the Additional Wizards component during
the initial installation process.

NOTENOTE

NOTENOTE

545

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 545

Using Code to Link Tables in Access
This section describes how to link tables to your Access application in code, instead of using the
Access menus. It would be nice if you could just make the link once at development time and be
done with the whole process. Occasionally, however, you may want to attach tables on the fly, to
avoid losing a link. Testing your links whenever your application starts is a good practice — that
way, you can keep users from getting any unplanned crashes or error messages. You’ll find some
examples of these routines in this section.

The following code examples use DAO instead of ADO. For purposes such as linking tables, DAO
works just as fast (actually, considerably faster), and is simpler to implement, than ADO. The rea-
son DAO is faster than ADO for simple operations such as linking tables is because DAO does not
involve the overhead associated with declaring, instantiating, and discarding ActiveX controls.
Because DAO is a much simpler object model, you’ll find DAO is, arguably, a better fit for simple
operations such as linking tables. ADO is definitely a better choice for complex data-management
operations, but in some domains DAO still rules.

The Connect and SourceTableName properties
Open sample database for this chapter (Chapter16.accdb) and type the following in the
Immediate pane of the Immediate window (use Ctrl+G to open the Immediate window):

? CurrentDB.TableDefs(“ContactLog”).Connect

you receive a Null value as the return. If, however, you type

? CurrentDB.TableDefs(“Products”).Connect

you receive a much different result. Access returns a long string that looks something like this (the
path indicated at the end of this string may point to a different location):

Excel 8.0;HDR=NO;IMEX=2;DATABASE=C:\Data\AccessAutoAuctions.xls

In the first case, the ContactLog table is part of the current database, and Access finds it without
any trouble. The Products_Linked table, on the other hand, is linked to an external Excel
workbook file. The Connect property of the linked Products contains information that Access
uses to physically locate the Excel workbook file and form a link to it.

The difference between the Connect property for the Contacts and Products tables is where
the tables originate. The Connect property of an Access table found within the current database is
null because the table originates in the database you’re in. There’s nothing to connect to, or more
appropriately, by default, the connection always exists. However, your ODBC, Excel, and linked
Access data sources will always have a Connect property that explicitly tells Access what type of
data is contained in the linked data source, and where the data source file can be found.

546

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 546

The Connect property string is composed of a number of different parameters, some of which are
required, depending on the type of external data you’re using. If you’re accessing one of the ISAM
formats that Access directly supports (Excel, dBASE, FoxPro, Paradox, and so on), the connect
string is much more abbreviated, taking this form:

Object.Connect=”Type;DATABASE=Path”

where Object is the name of the object variable for your TableDef, and Type is the type of
database you’re connecting to, such as dBASE IV, Excel 8.0, Text, and so on.

The Path parameter can be the complete path to the file, not including the filename itself, or it might
include the filename as well, depending on the type of data source. For instance, when connecting to
another Access table, you include the entire path, like C:\Access\Samples\Nwind.mdb. The
same is true of an Excel file.

To connect to a dBASE file, however, you only have to tell Access the path to the file, not the
.dbf file itself. The difference is in whether or not the object you’ll be connecting to exists within
another object, or whether the table is the file that you’re going after. That’s where the
SourceTableName property comes in.

The SourceTableName property tells Access which object to take data from. If you want to con-
nect to a dBASE file, you want your table definition to come from the .dbf itself. If, however, you’re
connecting to an Excel file, you might want the table to be based on a range of cells or a single work-
sheet within the workbook in the .xls file, not the entire spreadsheet file. Connecting to another
Access .accdb or .mdb is the same way. To link to the Customers table in Northwind.accdb,
your connect string tells Access that the value of the DATABASE parameter is C:\Access\
Samples\Northwind.mdb and that the SourceTableName property of your TableDef is
Customers. If you want to connect to a dBASE file named NewEmp.dbf located in the root
directory of C:, you tell Access that the DATABASE is C:\ and the SourceTableName is
NewEmp.dbf.

The AttachExcel function (listed below) shows you how to connect to a named range within an
Excel spreadsheet. To connect to a spreadsheet, you have to specify what kind of spreadsheet it is,
where the spreadsheet file exists, and the range you want to connect to. You can use either a
named range or a range of cells (such as A1:B20). You can also tell Access that the spreadsheet
you’re connecting to contains field names in the first row. The default for this parameter is Yes.

To use the AttachExcel() function, the calling procedure must pass the spreadsheet name, the
new name for the Access table, and a valid Excel range name.

The following function is located in the basAttachExcel module in
Chapter16.accdb on the book’s companion CD-ROM.

The following statement invokes the AttachExcel function, linking a range named Names to a table
named ExcelDemo:

AttachExcel(“”Emplist.xls””, “”ExcelDemo””, “Names”)

ON the CD-ROMON the CD-ROM

547

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 547

The AttachExcel function returns a Boolean value reporting whether the Excel file was successfully
attached (True) or not (False):

Function AttachExcel(_
ByVal sFileName As String, _
ByVal sTableName As String, _
ByVal sRangeName As String _
) As Boolean

Const conCannotOpen = 3432
Const conNotRange = 3011
Const conTableExists = 3012

Dim db As DAO.Database
Dim td As DAO.TableDef

Dim sConnect As String
Dim sMsg As String
Dim sFunction As String

On Error GoTo HandleError

AttachExcel = False
sFunction = “AttachExcel”

‘ Check for existence of worksheet:
sFileName = CurDir() & “\” & sFileName

‘ If the file isn’t found, notify
‘ the user and exit the procedure:
If Len(Dir(sFileName)) = 0 Then
MsgBox “The file “ & sFileName _

& “ could not be found”
MsgBox “Please move the file to “ _

& CurDir() & “ to continue”
Exit Function

End If
Set db = CurrentDb

‘ Create a new tabledef in the current database:
Set td = db.CreateTableDef(sTableName)

‘ Build connect string:
sConnect = “Excel 8.0;HDR=YES;DATABASE=” & sFileName
td.Connect = sConnect

‘ Specify Range Name sRangeName:
td.SourceTableName = sRangeName

548

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 548

‘ Append new linked table to TableDefs collection:
db.TableDefs.Append td

‘Return True:
AttachExcel = True

ExitHere:

Exit Function

HandleError:

Select Case Err
Case conCannotOpen

sMsg = “Cannot open “ & sFileName

Case conTableExists
sMsg = “The table “ & sTableName & _

“ already exists.”

Case conNotRange
sMsg = “Can’t find the “ & sRangeName & “ range.”

Case Else
sMsg = “Error#” & Err & “: “ & Error$

End Select

MsgBox sMsg, vbExclamation + vbOKOnly, _
“Error in Procedure “ & sFunction

AttachExcel = False
Resume ExitHere

End Function

Connect strings and source table names are more involved when you’re using ODBC data sources.
For instance, when you connect to a SQL Server ODBC data source, you have the option of speci-
fying the type of source you’ll be using (ODBC), the DSN (data source name), the application
you’re using, the table within the data source that contains the data you want, the workstation
using the application, and a user ID and password. Not all of these parameters are available to
every ODBC data source, so you need to consult your ODBC driver manual to find out what you
can and can’t use.

By the way, you might not want to hard-code a user ID and password in your connect string but
instead use some combination of Access and a customized security setup that allows you to capture
a user’s ID and password when the user logs in to your application and then pass those values
dynamically.

549

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 549

One final example we’ve included in this section is one that shows you how to connect to a text
file. As we mention in the “Linking to text files” section, earlier in this chapter, you can link to
delimited or fixed-width text files. Linking to a text file follows the same process as the previous
examples; the biggest difference is the DSN parameter. Before you can link to a text file, you must
create an import specification that tells Access what the file looks like.

In previous versions of Access, you created import/export specs only when you imported or
exported fixed files; but Access 2007 lets you create a spec for delimited files as well. If you use the
Import Wizard, Access creates an import specification for you. The connect string for a text file is
the name of the import spec you’ve created. The Database parameter is the path to the file, and
the SourceTableName property is the filename you want to link to, without the file extension.

The following function is located in the basLinkText module in Chapter16.accdb on this
book’s companion CD-ROM.

Function LinkText(_
ByVal sFileName As String, _
ByVal sDSN As String, _
ByVal sFMT As String, _
ByVal sHDR As String, _
ByVal sIMEX As String, _
ByVal sTableName As String _
) As Boolean

Dim db As DAO.Database
Dim td As DAO.TableDef
Dim x As Integer
Dim sType As String
Dim sPath As String
Dim sPathAndFileName As String
Dim sDatabase As String
Dim sConnect As String
Dim sMsg As String
Dim sFunction As String
Const conTableExists = 3012

On Error GoTo HandleError

LinkText = False
sFunction = “LinkTxt”

‘ Check for existence of file:
sPath = CurDir() & “\”
sDatabase = sPath & sFileName

If Len(Dir(sDatabase)) = 0 Then
MsgBox “The File “ & sFileName & _

“could not be found”

550

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 550

MsgBox “Copy the file to “ & CurDir() _
& “ to continue”

Exit Function
End If

‘ Create Tabledef:
Set db = CurrentDb
Set td = db.CreateTableDef(sTableName)

sType = “Text;”
sDSN = “DSN=” & sDSN & “;”
sFMT = “FMT=” & sFMT & “;”
sHDR = “HDR=” & sHDR & “;”
sIMEX = “IMEX=” & sIMEX & “;”

sDatabase = “DATABASE=” & sPath
sConnect = sType & sDSN & sFMT & sHDR & sIMEX & sDatabase

td.Connect = sConnect
td.SourceTableName = sFileName
db.TableDefs.Append td

LinkText = True

ExitHere:

Exit Function

HandleError:

Select Case Err

Case conTableExists
sMsg = “The table “ & sTableName _

& “ already exists.”

Case Else
sMsg = “Error#” & Err & “: “ & Error$

End Select

MsgBox sMsg, vbExclamation + vbOKOnly, _
“Error in Procedure “ & sFunction

LinkText = False
Resume ExitHere

End Function

551

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 551

Assuming you have created an import link specification named EmployeeImport Link
Specification, the following statement uses the LinkText() function to link data from the
Empimp.txt text file to a new table named EmployeeLink.

The sample database, Chap16Start.accdb, already contains this import link specifi-
cation and the LinkText() function.

The text file ImpFixed.txt, which contains fixed-length data, is also found in the Chapter16
folder on the companion CD. Use a statement like the following to link ImpFixed.txt to a table
named EmployeeLink:

LinkText(“ImpFixed.txt”, _
“EmployeeImport Link Specification”, _
“Fixed”, “NO”, “2”, “EmployeeLink”)

To import a comma-delimited text file named ImpDelim.txt (also found on the companion
CD-ROM) for which you have created a corresponding import link specification, you can use the
following statement:

LinkText(“ImpDelim.txt”, _
“EmployeeImport Link Specification Delimited”, _
“Delimited”, “NO”, “2”, “EmployeeLink2”)

As you can see, there are dozens of combinations you can use when linking to external data sources.
The connect strings for each can get a little confusing, but there is a way to make connecting easy. If
you pretend you’re an end user and use the wizards, the process can be a lot easier. Once you step
through the process of linking the table you want using the Link Wizard, open the Debug window
and query the Connect and SourceTableName properties of the table you’ve linked. Once you
do, you’ll have all you need to build the VBA code for doing the same thing programmatically. Just
copy the connect string from the Debug window and paste it into your procedure.

Checking links
You (or, more accurately, your users) will at some point encounter a situation where a linked table
in one of your applications becomes unavailable. For example, suppose your application links to a
SQL Server database and the network goes down. One of your users, who does not know the net-
work is down, sits down at his workstation and tries to pull up your application. As soon as the
attempt is made to access data from the attached table, an error occurs and your uninformed user
panics. Here’s another common scenario: Suppose your application is linking to an Excel spread-
sheet, but someone decides to clean up a directory and moves, renames, or deletes the spreadsheet.
Again, an error occurs when someone tries to access data from the linked table. You may not be
able to prevent these situations, but you can plan for them ahead of time.

The following function, CheckLinks, should probably be run as a startup routine for your appli-
cation, or in addition to any procedures you run when your application is accessed. You can pass
the function the name of an attached table, and test to see if the link is still valid. All the procedure
does is try to open the table as a recordset. If the OpenRecordset method fails, either the table

NOTENOTE

552

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 552

doesn’t exist in the database or the link has been lost. All this function has to do is flash a descrip-
tive message to the user and a return value to announce that the application should proceed no
further.

The following function is located in the basTestLinks module in Chapter16.accdb on the
book’s companion CD-ROM.

Function TestLink(sTablename As String) As Boolean
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim iStartODBC As Integer
Dim iEndODBC As Integer
Dim sDataSrc As String
Dim iODBCLen As Integer
Dim sMessage As String
Dim iReturn As Integer

On Error GoTo HandleError

Set db = CurrentDb

‘Open a recordset to force an error:
Set rs = db.OpenRecordset(sTablename)

‘If the link is valid, exit the function:
TestLink = True

ExitHere:

If Not rs Is Nothing Then
rs.Close
Set rs = Nothing

End If

Exit Function

HandleError:
‘If the link is bad, determine what the problem
‘is, let the user know, and exit the function:
Select Case Err

Case 3078 ‘Table doesn’t exist:

sMessage = “Table ‘“ & sTablename _
& “‘ does not exist in this database”

Case 3151 ‘Bad link
‘Extract the name of the odbc DSN
‘to use in your custom error message:

553

Working with External Data 16

22_046732 ch16.qxp 11/21/06 8:54 AM Page 553

iStartODBC = InStr(Error, “to ‘“) + 4

iEndODBC = InStr(Error, “‘ failed”)
iODBCLen = iEndODBC - iStartODBC

sDataSrc = Mid$(Error, iStartODBC, iODBCLen)

sMessage = “Table ‘“ & sTablename _
& “‘ is linked to ODBC datasource ‘“ _
& sDataSrc _
& “‘ which is not available at this time”

Case Else
sMessage = Err.Description

End Select

iReturn = MsgBox(sMessage, vbOKOnly)

‘Return failure:
TestLink = False

Resume ExitHere

End Function

Summary
Linking to external data sources is an essential requirement for many access applications. Microsoft
Access is equipped to deal with virtually any type of external data, including obsolete database
types such as dBASE and Paradox as well is more modern data types such as HTML and XML.

With few exceptions, linking to virtually any external data source requires very few steps on the
part of a developer. The Access linking wizards are very similar, regardless of the data type involved
in the link operation. The code required to automatically link to external data sources is not exten-
sive and is easily incorporated into Access applications. Access also provides tools such as the
Linked Table Wizard to help you manage linked tables in your applications.

Chapter 17 deals with the important topic of importing data into Access applications. Although the
process is very similar to linking to external data sources, importing moves the data into an Access
database permanently. As you’ll see in Chapter 17, virtually the same steps are required to import
data as were required to link to external data.

554

More Advanced Access TechniquesPart III

22_046732 ch16.qxp 11/21/06 8:54 AM Page 554

In Chapter 16, you discovered how Access 2007 can be used to link to
external data sources and files. A link allows you to view data in Access,
where the data is stored in something like an Oracle database, or an

XML document. So, in the case of linking, Access is being used as an inter-
face into data, which is stored outside of Access. In this chapter, you’ll dis-
cover that importing and exporting are quite different from linking. An
import into Access allows the creation of data inside an Access database,
from some external source such as an XML document. An export from
Access means you create something. For example, export to an XML docu-
ment from data stored in an Access database.

This chapter uses various files for importing, plus two
Access 2007 databases: Chapter17_1.accdb and

Chapter17_2.accdb. Both databases will be used for importing and export-
ing. If you haven’t already copied these files onto your machine from the CD,
you’ll need to do so now.

Types of Imports and Exports
Before examining the processes of importing and exporting, let’s take a brief
look at the various options for importing into Access and exporting from
Access.

Access can use and exchange data among a wide range of applications. For
example, you may need to get data from other databases, such as FoxPro,
dBASE, or Paradox databases. Or you might need to obtain information from

ON the CD-ROMON the CD-ROM

555

IN THIS CHAPTER
Importing and exporting
external data

Creating import/export
specifications

Exporting to external tables and
files

Importing and Exporting
Data

23_046732 ch17.qxp 11/21/06 8:54 AM Page 555

a SQL Server, an Oracle database, a text file, or even an XML document. Access can move data
among several categories of applications, database engines, and even different platforms (main-
frames and Macintosh computers).

We cover all these items in Chapter 16.

Open up the Chapter17.accdb database in Access 2007, and you can see for yourself. Click the
External Data ribbon tab at the top of the screen in Access 2007. You’ll see options for Import,
Export, Collect Data, and SharePoint Lists. At this point, what all these things are is not too impor-
tant. The point is, you’re now looking at all the numerous options for importing and exporting
with Access 2007.

Both the Import and Export options include the following:

n Another Access database (virtually any Access version)

n Excel spreadsheet

n SharePoint List

n Text file

n XML document

At the bottom-right corner of both the Import and the Export options, you’ll see a drop-
down button. That’s the thing with the little down arrow on the right. Click the More

drop-down list and you’ll see additional import or export options.

The additional Import options include the following:

n ODBC connected database (SQL Server, Oracle, another Access database)

n HTML document

n Outlook folder

n dBase and Paradox file

n Lotus 1-2-3 file

The Export option includes the following in addition to those listed earlier:

n ODBC connected database (SQL Server, Oracle, another Access database)

n HTML file

n dBase and Paradox databases

n Lotus 1-2-3 file

n Merge with a Word document

NOTENOTE

CROSS-REFCROSS-REF

556

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 556

Importing External Data
An import copies externally stored data into an Access database, resulting in the imported data uti-
lizing the format of an Access database. When you import a file (unlike when you link tables), you
copy the contents from an external file into an Access table. You can import external file informa-
tion from several different sources, as we discussed in the previous section.

You can import information to new tables or existing tables, depending on the type of data being
imported. All data types can be imported to new tables. However, some types of imports — such as
spreadsheets and text files — may have to be imported into existing tables, because text files and
spreadsheets don’t necessarily have table structure. So, it has to already exist.

When Access imports data from an external file, it does not erase or destroy the external file or
external data source, because Access merely reads the data. Therefore, you’ll have two copies of the
data: the original file (in its original format) and the new Access table.

Importing from another Access database
You can import objects from a source database into the current database. The objects you import
can be tables, queries, forms, reports, macros, or modules. Import an object into the current Access
database by following these generic steps:

1. Open the target database you want to import into.

In this case open the Chapter17_1.accdb database.

2. Click the External Data tab.

3. Click the Access option in the Import section and select the filename of the source
Access database as Chapter17_2.accdb.

4. The next screen will give you options as to what you can import, as shown in Figure
17-1, where all sorts of things can be imported.

5. Select one of the tables and click OK.

If an object already exists in the target database, then a sequential number will be added
to the imported object, distinguishing it from the original already present in the open tar-
get database. If tblDepartments already exists, the new imported table will be
tblDepartments1.

6. The next screen you get is a very useful feature in that it allows you to store the
import process in a VBA macro coded procedure; that procedure can be executed
again at a later date by opening the Saved Imports option on the Import section of
the External Data tab in Access 2007.

You simply click on the task and the import will be executed again. It couldn’t be easier.

557

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 557

FIGURE 17-1

Many types of Access database objects can be imported from one Access database into
another.

7. You can also import the VBA export macro process as a regularly scheduled Outlook
Task (which executes periodically in the calendar scheduling system of your
Outlook e-mail software).

Now, isn’t that just neat!

Importing spreadsheet data
You can import data from Excel or Lotus 1-2-3 spreadsheets to a new or existing table. The key to
importing spreadsheet data is that it must be arranged in tabular (columnar) format. Each cell of
data in a spreadsheet column must contain the same type of data. Figure 17-2 demonstrates correct
and incorrect columnar-format data.

You can import or link all the data from a spreadsheet, or just the data from a named
range of cells. Naming a range of cells in your spreadsheet can make importing into

Access easier. Often a spreadsheet is formatted into groups of cells. One group of cells may contain a
listing of sales by customer, for example. The section below the sales listing may include total sales for
all customers, totals by product type, or totals by month purchased. By naming the range for each
group of cells, you can limit the import to just one section of the spreadsheet.

NOTENOTE

558

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 558

FIGURE 17-2

Access can import data from a spreadsheet, but there are some restrictions.

Figure 17-2 represents cells in a spreadsheet to be imported. There is a problem with Column C in
the spreadsheet in Figure 17-2. The Age column should contain all numbers, but it contains a sin-
gle text description of the age of 49. This is likely to cause an error so it has to be changed to that
shown in Figure 17-3.

FIGURE 17-3

Data types between a spreadsheet and Access should be the same for each column

559

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 559

To import the Excel spreadsheet named emplist.xls, follow these steps:

1. Click the Excel button under the External Data tab.

2. Select the filename for the Excel spreadsheet file and click OK.

The next screen displays the first step in the Import Spreadsheet Wizard, resembling that
shown in Figure 17-4.

FIGURE 17-4

The first Import Spreadsheet Wizard screen

3. Click Next to move to the second screen and select the First Row contains Column
Heading check box.

You don’t want the column headings FirstName, LastName, and Age being stored as
fields. Apart from that, the Age header will change the field Age to a text datatype, and a
number is best stored as a number.

4. Click Next.

5. On the next screen, you can remove fields from the import. You can also specify a
new name for the field, set its data type, and even create an index on a field. When
you’re done, click Next.

6. You can now set a primary key. Assuming you didn’t change the name of the
FirstName field, select the radio button to select your own primary key, and select
the FirstName field as the primary key.

A primary key uniquely identifies each row in a table, in this case prohibiting more than
one employee with the same name.NOTENOTE

560

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 560

7. Click Next, specify the new table name, and click the Finish button.

8. Again, you can save the import process as a macro for later re-execution.

The new table will now appear in your target Access database window. A standard Access table has
been created from the original spreadsheet file.

Importing an Excel file with the same name as a linked Excel file could cause problems.
It might be best to give the newly imported table a new name and avoid issues, unless

you actually intend to replace an existing table.

Importing a SharePoint list
A SharePoint list is essentially a data source, which is available from a SharePoint site, running a
SharePoint server. It’s a way of sharing data over the Internet. We examine SharePoint Services in
Chapter 23 and Chapter 38.

Importing text file data
There are many reasons for text file output such as B2B (Business to Business data transfers and
mainframes). Mainframe data, is ordinarily output from the mainframe computer using text files,
when used in desktop applications. You can import from two different types of text files: delimited
and fixed-width. Access uses a single wizard for both types of text files. The Import Text Wizard
assists you in identifying the fields for the import/export specification. You may recognize this wiz-
ard structure and its screens if you’ve ever imported text data into something like Excel or Word.

Delimited text files
Delimited text files are sometimes known as comma-delimited or tab-delimited files; each record is on
a separate line in the text file. The fields on the line contain no trailing spaces, normally use com-
mas or tab characters as field separators, and might have certain fields be enclosed in delimiters
(such as single or double quotation marks). Sometimes text fields are enclosed in quotation marks
or some other delimiter. This is an example comma delimited text file:

1,Davolio,Nancy,5/1/92 0:00:00,4000
2,Fuller,Andrew,8/14/92 0:00:00,6520
3,Leverling,Janet,4/1/92 0:00:00,1056
4,Peacock,Margaret,5/3/93 0:00:00,4000
5,Buchanan,Steven,10/17/93 0:00:00,5000
6,Suyama,Michael,10/17/93 0:00:00,1000
7,King,Robert,1/2/94 0:00:00,1056
8,Callahan,Laura,3/5/94 0:00:00,1056
9,Dodsworth,Joe,11/15/94 0:00:00,1056

Notice that the file has nine records (rows of text) and six fields. A comma separates each field.
Text fields are not delimited with double quotation marks, as this behavior is a little dated. The
starting position of each field, after the first one, is different. Each record has a different length
because the field lengths are different.

CAUTION CAUTION

561

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 561

To import a delimited text file named impdelim.txt, follow these steps:

1. Open the Chapter17_1.accdb database.

2. Select the External Data tab.

3. Click Text File in the Import section.

4. Find the text file using the Browse button, select it, and click OK.

The next screen you get is the Import Text Wizard, as shown in Figure 17-5.

FIGURE 17-5

The first Import Text Wizard screen

This screen in Figure 17-5 displays the data in the text file and lets you choose between
delimited or fixed-width. The default for the wizard is delimited.

Notice, at the bottom of the screen, the button marked Advanced. Click it to further
define the import specifications. You’ll learn more about this option in the “Fixed-width

text files” section; generally, it’s not needed for delimited files. Click the Cancel button to return to
the Import Text Wizard.

5. Click Next to display the next Import Text Wizard screen.

As you can see in Figure 17-6, this screen enables you to determine which type of separa-
tor to use in the delimited text file. Generally, this separator is a comma, but you could
use a tab, semicolon, space, or other character (such as an asterisk), which you enter in
the box next to the Other option button. You can also decide whether to use text from the
first row as field names for the imported table. It has correctly assigned the comma as the
separator type and the text qualifier as quotation marks (“).

NOTENOTE

562

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 562

A separator is the specific character that was placed between the fields in a delimited text
file — often it is a comma or semicolon, although it can be any specific character. There

can be a problem with the separator used — for example, in this case, the separator is a comma — if any
of the fields have a comma in them. It could cause a problem when trying to import the data. (With the
last name of JONES, Peter versus the next name of SMITH, Johnathan, Sr., Smith’s record has what
appears to be an extra field in the last name — Sr.) This can cause all sorts of problems when importing
the data. The Text Qualifier, for delimited text files refers to the marks that are often placed around text
fields versus numeric and date fields. Often they are single quotation marks or double quotation marks.

FIGURE 17-6

The second Import Text Wizard screen

6. The next few screens allow you to change field names, do things with primary keys,
set an import table name, save the import steps as a VBA macro — all the same stuff
as before. The detailed specifications of importing and exporting are fairly consis-
tent for many types of importing and exporting.

Access creates a new table, using the same name as the text file’s name; then it displays an
information box informing you that it created the table successfully. Clicking the OK but-
ton returns you to the database. The filename appears in the Access Database window,
where Access has added the table Names.

You can import records from a delimited text file that has fields with no values. To spec-
ify a field with no value, simply leave no characters between the commas (not even a

space character). An empty field at the end of a row is indicated by the line ending with a comma.
Obviously, a field containing a comma will cause a problem and the entire field should be enclosed in
double quotes. This prevents the contained comma from being interpreted as a field delimiter.

NOTENOTE

NOTENOTE

563

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 563

Fixed-width text files
Fixed-width text files also place each record on a separate line. However, the fields in each record are
of a fixed length. If the field contents are not long enough, trailing spaces are added to the field, as
shown in the following example (the same as the previous example, except without the commas):

1 Davolio Nancy 5/1/92 0:00:00 4000
2 Fuller Andrew 8/14/92 0:00:00 6520
3 Leverling Janet 4/1/92 0:00:00 1056
4 Peacock Margaret 5/3/93 0:00:00 4000
5 Buchanan Steven 10/17/93 0:00:00 5000
6 Suyama Michael 10/17/93 0:00:00 1000
7 King Robert 1/2/94 0:00:00 1056
8 Callahan Laura 3/5/94 0:00:00 1056
9 Dodsworth Joe 11/15/94 0:00:00 1056

Notice that the fields are not separated by delimiters. Rather, they start at exactly the same position
in each record. Each record has exactly the same length. If the data in a field is not long enough,
trailing spaces are added to fill the field.

Notice that text values, such as first and last names, are not surrounded by quotation marks. There
is no need for delimiting text values because each field is a specific width. Anything within a field’s
position is considered data and does not require delimiters such as quotation marks.

You can import either a delimited or a fixed-width text file to a new table or existing Access table.
If you decide to append the imported file to an existing table, the file’s structure must match that of
the Access table you’re appending to.

If the Access table being imported has a primary key field, the text file cannot have any
duplicate primary key values or the import will report an error and fail to import rows

with duplicate primary key values.

In fixed-width text files, each field in the file has a specific width and position. Files downloaded
from mainframes are the most common fixed-width text files. As you import or export this type of
file, you must specify an import/export setup specification. You create this setup file by using the
Advanced options of the Import Table Wizard.

To import a fixed-width text file, follow these steps:

1. Open the Ch17_1.accdb database in Access 2007.

2. Click the External Data tab and select Text File import.

3. When browsing (by clicking the Browse button), find a file called impfixed.txt,
select it to import, and click OK.

4. You get the same screen as shown in Figure 17-5, except with the Fixed Width radio
button option selected (Access guesses for you). Click Next.

Your next screen looks like the one shown in Figure 17-7.

NOTENOTE

564

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 564

FIGURE 17-7

An Import Text Wizard screen for fixed-width text files

5. Read the text at the top of the window.

You can actually create more break lines (to break data into fields), move the break lines
around, and delete existing ones. Access guesses at the best split of data into columns,
based on the most consistent breakup of data across the different rows. In this case, the
data columnar splitting is very consistent.

6. Click Next to display the next Import Text Wizard screen.

This screen makes intelligent guesses as to where columns begin and end in the file, bas-
ing the guess on the spaces in the file.

7. Click the Advanced button to activate the Import Specification screen (see Figure
17-8) for the table to be imported.

Figure 17-8 shows the Import Specification screen active. This window is atop the Import
Text Wizard window. This Import Specifications window is activated by clicking the
Advanced button in the Import Text Wizard.

565

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 565

FIGURE 17-8

The Import Specification screen for importing a fixed-width text file

The section labeled Dates, Times, and Numbers describes how date, time, and numeric
information is formatted in the import file.

8. Make sure that the Four Digit Years check box is selected.

9. Click the Leading Zeros in Dates check box.

The month and day in the data being imported includes a leading zero for numbers less
than 10.

10. Click in the Date Order combo box and make sure it’s set to MDY (month day year).

The bottom half of the Import Specifications dialog box has a section named Field
Information. This section lists the name, data type, and position of each field in the
import table. Although you can manually type the specifications for each field in this file,
in this example you can accept the field information that Access has created for you and
return to the Import Text Wizard.

11. Click a sequence of OK buttons and Next buttons. You get to specify a primary key
and other import details, and eventually reach the Finish button, which you click to
execute the import process.

If you made a mistake and Access could not import the records correctly, perhaps you
failed to specify the correct type of date conversion to get this type of error. Access will

report a message like this: “Finished importing file XXX to table XXX. Not all your data was success-
fully imported. Error descriptions with associated row numbers of bad records can be found in
Microsoft Access table YYYErrors.” Note that XXX and YYY will be actual names. You can read about
troubleshooting import errors in the “Troubleshooting import errors” section, later in this chapter.

CAUTION CAUTION

566

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 566

Using the Import Specification window
In earlier versions of Access, you had to specify the import/export specifications manually, specify-
ing field lengths, delimited or fixed text, type of delimiter, how to export date fields, and so on.
You can still specify this information by using the Import Specification window, as shown in the
previous step-by-step example. Using the graphical tools (built into the Import Wizard) of Access
is easier, though.

Although the Import Text Wizard generally does a good job of importing your data correctly, at
times you may need to specify field lengths and data types manually. If you use the Import
Specification dialog box (shown in Figure 17-8), you can change or set all the options on one
screen, which can be helpful.

One advantage of using this screen is the capability to specify the type of file to be imported from
or exported to. The Language and Code Page fields determine the type of format. The default lan-
guage is English. The Code Page combo box displays the code page types that are available for the
language you select. Specifically, these choices are available for the English language:

n OEM United States

n Unicode

n Unicode (Big-Endian)

n Unicode (UTF-7)

n Unicode (UTF-8)

n Western European (DOS)

n Western European (ISO)

n Western European (Windows)

The default value is the Western European (Windows). Notice that in Figure 17-8 it has been
changed to OEM United States. You may need to set this value if you’re running a language that
does not use the Roman character set used in English, French, German, and so on. You can also
specify the Field Delimiter option for delimited text files; the delimiter is used to separate the
fields. You do this by using a special character such as a comma or semicolon. Four field-separator
choices are available in this combo box:

; Semicolon

{tab} Tabulation mark

{space} Single space

, Comma

When working with delimited files, you can also specify your own field separator directly in this
combo box.

567

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 567

Also, when working with delimited files, you can specify the Text Qualifier. It specifies the type of
delimiter to be used when you’re working with Text-type fields. Normally, the text fields in a
delimited file are enclosed by specified delimiters (such as quotation marks). This is useful for
specifying Number-type data (such as Social Security numbers) as Text type rather than Number
type (it won’t be used in a calculation). You have three list box choices:

{none} No delimiter

“ Double quotation mark

‘ Single quotation mark

The default value is a double quotation mark. This list box is actually a combo box; you can enter
your own delimiter. If the one you want is not among these three choices, you can specify a different
text delimiter by entering a new one directly in the combo box — for example, the caret symbol (^).

If you use comma-delimited files, created by other PC-based databases, you should set
the text qualifier to the double quotation mark (“) and the field delimiter to a comma (,)

if that is what they are in the text file being imported or linked. You can always open the incoming
data file in Notepad or Word to examine how the data is delimited.

When Access 2007 imports or exports data, it converts dates to a specific format (such as MMD-
DYY). In the example MMDDYY, Access converts all dates to two digits for each portion of the date
(month, day, and year), separating each by a specified delimiter. Thus, January 19, 2006, would be
converted to 1/19/06. You can specify how date fields are to be converted, using one of six choices
in the Date Order combo box:

n DMY

n DYM

n MDY

n MYD

n YDM

n YMD

These choices specify the order for each portion of a date. The D is the day of the month (1–31), M
is the calendar month (1–12), and Y is the year. The default date order is set to the U.S. format of
month, day, and year. When you work with European dates, the order must be changed to day,
month, and year.

You use the Date Delimiter option to specify the date delimiter. This option tells Access which type
of delimiter to use between the parts of date fields. The default is a forward slash (/), but this can
be changed to any user-specified delimiter. In Europe, for example, date parts are separated by
periods, as in 22.10.06.

When you import text files with Date-type data, you must have a separator between the
month, day, and year or else Access reports an error if the field is specified as a

Date/Time type. When you’re exporting date fields, the separator is not needed.

NOTENOTE

NOTENOTE

568

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 568

With the Time Delimiter option, you can specify a separator between the segments of time values
in a text file. The default value is the colon (:). In the example 12:55, the colon separates the hours
from the minutes. To change the separator, simply enter another in the Time Delimiter box.

You select the Four Digit Years check box when you want to specify that the year value in date
fields will be formatted with four digits. By checking this box, you can export dates that include
the century (such as in 1881 or 2001). The default is to include the century.

The Leading Zeros in Dates option is a check box where you specify that date values include lead-
ing zeros. You can specify, for example, that date formats include leading zeros (as in 02/04/03). To
specify leading zeros, check this box. The default is without leading zeros (as in 2/4/03).

Importing an XML document
Importing XML documents is easy with Access 2007. This type of processing can be used to trans-
fer information between disparate platforms, databases, operating systems, applications, compa-
nies, planets, universes — you name it! That’s the intention of XML. XML creates standards for
data, metadata, and even the processing of that data. Those standards are more than adequately
provided for in Access 2007.

Presenting XML in Access 2007 needs to be done in an odd way. You could easily import a simple
XML document in your Access database. However, the best way to find out how well Access 2007
caters to XML is to begin by exporting something into XML.

Follow these steps to export data from Access 2007 into an XML document:

1. Open the Chapter17_1.accdb database in Access 2007.

2. Under the External Data tab, in the Export section, click the More drop-down but-
ton, and click XML File.

3. Browse to and select an XML file to export to, and click the OK button.

4. The next screen is like the one shown in Figure 17-9.

FIGURE 17-9

The first export window for exporting to an XML document

569

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 569

The screen in Figure 17-9 shows that multiple layers and levels of XML data, metadata,
and processing capability can all be exported. It gets even better. Click the More Options
button. XML is the basic XML document. A basic XML document includes both data in
its textual values, plus metadata in its elements, attributes, and relationships between the
elements across the entire document. XML Schema Definition (XSD), gives the capability
to essentially map relational tables to XML documents — directly! In other words, the
Access 2007 database will understand everything in the XML document, without any extra
processing. That’s what XSD is used for.

Also eXtensible Style Sheets (XSL) provides for transformation processing. A direct dis-
play of an XML document in a browser is very technical and quite ugly. XSL allows for
transformation to beautify, personalize, and functionally empower the presentation of
XML data in a browser.

5. The next screen on from Figure 17-9 will give you further capabilities to exercise
Access 2007 taking, what appears to be, full advantage of the power of XML.

We’re very impressed with the way that Access 2007 deals with XML. The only thing that
is missing is an internally stored database and fully XML functionally XML datatype. The
most sophisticated relational databases have only just introduced XML datatypes.

To import that same XML document just created, select the External Data tab, go to XML file in the
Import section, find the XML file by browsing to it, and click OK. Importing is the same process as
exporting, implementing the same process as in Steps 1 to 5 above — in reverse.

Importing an HTML document
Access 2007 enables you to import HTML tables as easily as any other database, Excel spreadsheet,
or text file. You simply select the HTML file you want to import and use the HTML Import Wizard.
It works exactly like the link HTML Wizard described in detail earlier in this chapter.

And just like demonstrating XML in the previous section, let’s do this one in reverse as well. First,
you export a table to get HTML data. Then import from the HTML document created, to create a
new table in Access.

Follow these steps to export data from Access 2007 into an HTML document:

1. Open the Chapter17_1.accdb database in Access 2007.

2. Under the External Data tab, in the Export section, click the More drop-down but-
ton, and click HTML File.

3. Browse to and select an HTML file to export to. Check the top two check boxes
under the header “Specify export options.” The first of the two options preserves
relational table information, which you need for later importing.

4. The next screens will present you with HTML output options, and VBA macro
export processing save options. Keep clicking until you finish.

570

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 570

As for XML import and export, the result is similar for HTML. The fundamental difference between
importing XML and HMTL documents, is based on the basic difference between HTML and XML.
The HTML import process imports data in much the same way as would a text file import, using
similar wizard options. XML, on the contrary, is metadata and functionally empowered in itself.
Access 2007 takes advantage of the power of XML.

Importing Access objects other than tables
You can import other Access database tables or any other object in another database. You can,
therefore, import an existing table, query, form, report, macro, or module from another Access
database. You can also import custom toolbars and menus.

As a simple demonstration, follow these steps:

1. Open the Chapter17_1.accdb database in Access 2007.

2. Under the External Data tab, in the Import section, click the Access option to
import from another Access database.

3. Browse to the Chapter17_2.accdb database and click OK.

Figure 17-10 shows that you can import tables, queries, forms, reports, macros, and
modules. This encompasses anything and everything.

FIGURE 17-10

Importing Access object other than tables

When including tables, queries, forms, reports, macros, or modules — all in the same import —
you can select objects from each and then import them all at once.

571

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 571

Importing an Outlook folder
Importing Outlook folders means you can pick folders in your e-mail tools (Outlook Express and
Outlook). And you can import them into a database. For example, you can import your Contacts
folder in your Outlook e-mail installation, into a table in your database. Figure 17-11 demonstrates
this very clearly to anyone ever having used Outlook or Outlook Express — and that’s something
that anyone with Microsoft Windows on his computer is likely to have indulged in.

FIGURE 17-11

Importing Outlook folders from your e-mail tool

In fact, importing an Outlook folder such as your list of contacts in Outlook even allows you to
create a table with a primary key, adjust the import to include specific fields and set datatypes. You
can even save the import process as a VBA macro for later execution.

Importing through ODBC drivers
In this situation, you need to connect to an external relational database, which can be connected to
using an Object Database Connectivity (ODBC) driver. ODBC drivers are one of the industry stan-
dards for establishing some of heterogeneous communication between database engines and appli-
cation software development kits, quite often from multiple vendors.

Follow these steps in Access 2007 just to show you how easy this is:

1. Open the Chapter17_1.accdb database in Access 2007.

2. Under the External Data tab, in the Import section, click the More drop-down but-
ton, and select the ODBC option.

572

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 572

3. You will be asked to select a table name to export to. Leave as is and click OK.

4. You will get a window with title Select Data Source. Click on the Machine Data
Source tab and you get the window as shown in Figure 17-12.

FIGURE 17-12

Importing Outlook folders from your e-mail tool

5. So, Figure 17-12 shows you that you have to create a data source.

A File Data Source stores it connection data in a file and is easily shared among a number
of different computers. A Machine Data Source is stored in the Windows registry and is
much more difficult to use on multiple machines. In our situation, we used Oracle
Database. We create a Machine Data Source called demographics.

6. You will be prompted to log in to our Oracle Database using the user name speci-
fied in the Machine Data Source we have created in Step 5 above, as shown in
Figure 17-13.

FIGURE 17-13

Connecting to an Oracle database using an ODBC driver

573

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 573

An ODBC driver allows connecting to specific database objects in a database. Chapter
16 discussed links. Using a link, the data is stored in the Oracle database. Using an

import such as this, data is copied into the Access database, and changes are not replicated between
either database.

The result of the import looks like what you see in Figure 17-14.

FIGURE 17-14

An import from an ODBC database makes a snapshot copy of data

Importing non-Access, PC-based database tables
When importing data from PC-based databases, you can import two basic categories of database
file types:

n dBASE

n Paradox

Each type of database can be imported directly into an Access table. The native data types are con-
verted to Access data types during the conversion.

You can import any Paradox (3.0 through 8), dBASE III, dBASE IV, or dBASE 5 database table into
Access. To import one of these, simply select the correct database type in the Files of Type box dur-
ing the import process.

CROSS-REFCROSS-REF

574

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 574

After selecting the type of PC-based database, select which file you want to import; Access imports
the file for you automatically.

If you try to import a Paradox table that is encrypted, Access prompts you for the password after
you select the table in the Select File dialog box. Enter the password and click OK to import an
encrypted Paradox table.

When Access imports dBASE fields, it converts them from their current data type into an Access
data type. Table 7-1 lists how the data types are converted.

TABLE 7-1

Conversion of Data Types from dBASE to Access

xBASE Data Type Access Data Type

Character Text

Numeric Number (property of Double)

Float Number (property of Double)

Logical Yes/No

Date Date/Time

Memo Memo

When importing any dBASE database file in a multiuser environment, you must have exclusive use
of the file. If other people are using it, you will not be able to import it.

As with dBASE tables, when Access imports Paradox fields, the Paradox fields are converted from
their current data type into an Access data type. Table 7-2 lists how the data types are converted.

TABLE 7-2

Conversion of Data Types from Paradox to Access

Paradox Data Type Access Data Type

Alphanumeric Text

Number Number (property of Double)

Short Number Number (property of Integer)

Currency Number (property of Double)

Date Date/Time

Memo Memo

Blob (Binary) OLE

575

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 575

Modifying imported table elements
After you import a file, you can refine the table in Design View. The following list itemizes and dis-
cusses some of the primary changes you may want to make to improve your table:

n Add field names or descriptions. You may want to change the names of the fields you
specified when you imported the file. For example, xBASE databases enable no more than
10 characters in their names and no spaces.

n Change data types. Access may have guessed the wrong data type when it imported sev-
eral of the fields. You can change these fields to reflect a more descriptive data type (such
as Currency rather than Number, or Text rather than Number).

n Set field properties. You can set field properties to enhance the way your tables work.
For example, you may want to specify a format or default value for the table.

n Set the field size to something more realistic than the 255 bytes (characters) Access
allocates for each imported text field. Make the names descriptive enough without the
need to make them too long — for example, “Last Name” versus “Last Name of the Car
Buyer or Seller.” “Last Name” is sufficient to clarify what the contents of the field are.

n Define a primary key. Access works best with tables that have a primary key. You may
want to set a primary key for the imported table.

Troubleshooting import errors
When you import an external file, Access may not be able to import one or more records, in which
case it reports an error when it tries to import them. When Access encounters errors, it creates an
Access table named Import Errors (with the user’s name linked to the table name). The Import
Errors table contains one record for each record that causes an error.

After errors have occurred and Access has created the Import Errors table, you can open the table
to view the error descriptions.

Import errors for new tables
Access may not be able to import records into a new table for the following reasons:

n A row in a text file or spreadsheet may contain more fields than are present in the first
row.

n Data in the field cannot be stored in the data type Access chose for the field. (This could
be text in a numeric field — best case will import as zeros — or numeric trying to store in
a date field.)

n On the basis of the first row’s contents, Access automatically chose the incorrect data type
for a field. The first row is correct, but the remaining rows are blank.

n The date order may be incorrect. The dates are in YMD order, but the specification calls
for MDY order. (When Access tries to import 991201 [YYMMDD], it will report an error
because it should be in the format of 120199 [MMDDYY].)

576

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 576

Import errors for existing tables
Access may not be able to append records into an existing table for the following reasons:

n The data is not consistent between the text file and the existing Access table.

n Numeric data being entered is too large for the field size of the Access table.

n A row in a text file or spreadsheet may contain more fields than the Access table.

n The records being imported have duplicate primary key values.

The Import Errors table
When errors occur, Access creates an Import Errors table you can use to determine which data
caused the errors.

Open the Import Errors table and try to determine why Access couldn’t import all the records. If
the problem is with the external data, edit it. If you’re appending records to an existing table, the
problem may be with the existing table; it may need modifications (such as changing the data types
and rearranging the field locations). After you solve the problem, erase the Import Errors file and
import the data again.

Access attempts to import all records that do not cause an error. If you re-import the
data, you may need to clean up the external table or the Access table before re-import-

ing. If you don’t, you may have duplicate data in your table.

If importing a text file seems to take an unexpectedly long time, it may be because of too many
errors. You can cancel importing by pressing Ctrl+Break.

Exporting to External Formats
An export copies data from an Access table to some other software tool or data source, such as an
XML document. The exported result uses the format of the other data source and not the format of
an Access database. You can copy data from an Access table or query into a new external file. This
process of copying Access tables to an external file is called exporting. You can export tables to sev-
eral different sources.

In general, anything imported can also be exported, unless otherwise stated in this
chapter.

Exporting objects to other Access databases
You can export objects from the current database to another Access database. The objects you
export can be tables, queries, forms, reports, macros, or modules. To export an object to another
Access database, follow these generic steps:

1. Open the source database that has the objects you want to export.

2. Select the More drop-down button under the Export section of the External Data tab.

NOTENOTE

NOTENOTE

577

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 577

3. The next option is a destination option Access database. You have to browse to, or
type in, an existing target unopened Access database.

The target database cannot be open; otherwise, there will be a locking conflict.

4. You will then be prompted to export objects from the source database.

Tables can be exported as data only or data and metadata.

5. If an object already exists in the target database, you will be prompted with an
option to replace the object in the target database. Otherwise, choose to create a
new object in the target database.

What we did in this situation was to export data and metadata for one of the tables in the
database for this chapter.

6. The last step enables you to save the export configuration for future use. This
option can be quite handy if you frequently perform the same export process.

If you attempt to export an object to another Access database that has an object of the
same type and name, Access warns you before copying. You then have the option to

cancel or overwrite.

Exporting through ODBC drivers
Exporting using an ODBC driver connection to a relational database other than Access, is as simple
as the importing process. You connect to the external database (in our case, an Oracle database).
You then select a table to export, which is then copied back into the Oracle database from the
Access 2007 import copy of the table, as shown in Figure 17-15.

FIGURE 17-15

Exporting Access tables to an ODBC data source relational database

NOTENOTE

578

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 578

Functionality exclusive to exports
These export types are exclusively export-capable because their outputs are essentially read only as
far as Access 2007 is concerned. This functionality is over and above that of previously introduced
import functionality. You can export Access database table data into the following read-only formats:

n Microsoft Word: Word documents can be produced as direct Access 2007 database
exports. The result is shown in Figure 17-16.

FIGURE 17-16

An Access to Microsoft Word document export

You can import from Word into Access by converting the Word document into a
text file first. You could even use Word in combination with Excel to produce a delim-

ited text file.

n Microsoft Word Mail Merge: A specialized Word document export function is that of
Mail Merge using Word. In this case, you can create Word documents, for subsequent
printing, of letters, labels and envelopes. You can even do sending of e-mail messages.

n Snapshot Viewer: The Snapshot Viewer allows for a database snapshot report. In data-
base parlance, a snapshot is a consistent picture of an entire database at a specific point in
time. In other words, if any data changes during the process of taking the snapshot, the
snapshot contains data states before those changes. So, if you start a snapshot, and add a
record to a table, the snapshot will not contain the new record.

NOTENOTE

579

Importing and Exporting Data 17

23_046732 ch17.qxp 11/21/06 8:54 AM Page 579

Summary
The ability to generate files externally to a database like Access increases general functionality enor-
mously. For example, simple text files can be exported from Access and then imported into other
software tools at a later stage. XML documents and HTML pages can be executed directly in a
browser, and copying data to an ODBC data source provides data to other database engines, such
as SQL Server and Oracle Database. It follows that the ability to import from various sources,
including the aforementioned, provides the same functionality as exporting, but in the opposite
direction.

The next chapter covers working with reading from an Access database. It deals with more com-
plex queries, and in greater detail, than in earlier chapters.

580

More Advanced Access TechniquesPart III

23_046732 ch17.qxp 11/21/06 8:54 AM Page 580

In this chapter, you work with more complex queries in greater detail
than you did in earlier chapters. So far, you have worked with types of
select queries and parameters. Earlier parts of this book explained rela-

tively simple select queries, in which you select specific records from one or
more tables based on some criteria. You also learn about action queries,
which enable you to change the field values in your records automatically
and add or delete records.

This chapter uses the database named Chapter18.accdb.
If you have not already copied it onto your machine from

the CD, you need to do so now. This database is a direct ODBC import from an
Oracle database. All the field names from the Oracle database are expressed in
uppercase characters. See Chapter 17 for details about importing data into
Access applications.

Using Calculated Fields
Queries are not limited to fields from tables; you can also use calculated fields
(created by performing some calculation). A calculated field can be created
in many different ways, including the following:

n Concatenating two Text type fields using the ampersand
character (&)

n Performing a mathematical calculation on two Number type fields

n Using an Access function to create a field based on the function

ON the CD-ROMON the CD-ROM

581

IN THIS CHAPTER
Using calculated fields

Creating queries that calculate
totals

Using different types of queries
that total

Creating crosstab queries

Using query wizards

Understanding action queries

Learning how action queries
work

Creating new tables with a
make-table query

Creating update, delete and
append queries

Troubleshooting action queries

Working with SQL queries

Advanced Access Query
Techniques

24_046732 ch18.qxp 11/21/06 8:55 AM Page 581

In this first example, you create a simple calculated field, DiscountPrice, from the ListPrice and a
discount percentage value, in the BOOKS_EDITION table. Follow these steps:

1. Start up Access and open the database for this chapter, Ch18.accdb.

2. Create a simple query by opening the Query Wizard in the Other group on the
Access ribbon.

3. Select the ISBN and LIST_PRICE fields from the BOOKS_EDITION table. Click
Next.

4. Follow the options, selecting to create a detail query and click Next.

5. Modify the design of the query on exiting the Query Wizard.

6. Right click a new field and enter the expression DiscountPrice: LIST_PRICE * 0.75.

This discounts the list price of all books by 25%.

You did not have to type in the name of the table before each field name because you
are only using one table. However, it is good practice to do so. You could have entered

DiscountPrice: BOOKS_EDITION.LIST_PRICE * 0.75.

7. Click the great big Run button at the left side of the Access 2007 ribbon. (It has a huge
red exclamation mark in it.)

The result is shown in Figure 18-1.

FIGURE 18-1

Using calculated fields

NOTENOTE

582

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 582

Access has an Expression Builder that helps you create any expression, such as a complex calculated
field for a query. To create a calculated field using the Expression Builder interface, follow these
steps:

1. From the previous example, click the View button at the top left of the screen, and
then select Design View.

This gets you back to the Query Wizard editor.

2. To execute the Expression Builder right-click any field, in the empty column to the
right of the discounted price.

3. Select Build from the menu and click.

You now have an expression builder on your screen. This screen has a box at the top and
three boxes underneath it filled with all sorts of things.

4. Now click Functions in the left column below, and then click Built-In Functions.

5. Scroll down the right-most of the lower selection windows, find the IIf function,
and select it.

An IIF function is called an immediate IF function. In programming terms an IIF func-
tion can be included inline within a mathematical expression. The syntax for an IIF

expression is IIF(expression,dotruething,dofalsething). If the result is true then one
expression is executed. Otherwise the false expression is executed. The result is an expression passed
back to the calling expression.

6. To cut a long story short, use both the IIf and IsNull functions to create the
expression as shown in Figure 18-2.

FIGURE 18-2

Using the Expression Builder to create calculated fields

NOTENOTE

583

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 583

The IsNull function allows selection of two expressions based on the null content of a
field (or expression). Why is this needed in a database? A null value in an expression

produces a null result regardless of all the other contents in an expression.

7. At the top left of the screen, click the View button again, followed by the SQL View
option.

You should see a SQL Statement that looks something like this:

SELECT BOOKS_EDITION.ISBN, BOOKS_EDITION.LIST_PRICE,
[LIST_PRICE]*0.75 AS DiscountPrice,
IIf(IsNull([PAGES]),[LIST_PRICE]*0.75,[LIST_PRICE]*0.75*([PAGES
]/500)) AS Expr1
FROM BOOKS_EDITION;

In the case of the PAGES field in the preceding expression, there is no point performing a
calculation including a null value. It makes sense to add the PAGES field, from the
BOOKS_EDITION table, while you are still in Design View.

8. Click the View button again, and select the Datasheet View option.

The result should look something like the screen shown in Figure 18-3.

FIGURE 18-3

Executing a query as a Design View execution

In addition to creating calculated fields from fields in a single table, you can also create them using
fields from multiple tables. When using linked tables, you can even create calculated fields based
on values stored in other Access databases.

NOTENOTE

584

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 584

Finding the Number of Records
in a Table or Query
To quickly determine the total number of records in an existing table or query, use the Count(*)
function. This is a special parameter of the Count() function. For example, to determine the
total number of records in the BOOKS_EDITION table, follow these steps:

1. Start a new query using the BOOKS_EDITION table.

2. Click the first empty Field cell in the Query Design View.

3. Type Count(*) in the cell.

You should get 17 records, unless you have changed your database for this chapter.

The Count(*) function can also be used to determine the total number of records that match a
specific criterion. For example, you may want to know how many contacts you have in the
tblContacts table that are not sellers (buyers or both) and that live in Connecticut. Follow
these steps to ascertain the number in the table:

1. Start a new query and select the BOOKS_EDITION table.

2. Click the first empty Field: cell in the Design View pane.

3. Type Count(*) in the cell.

4. Double-click the PAGES field in the table to add it to the query.

5. Deselect the Show cell for the PAGES field.

Only the field containing the summary Count(*) function can be shown in the
datasheet because you are displaying the total, and not each individual edition of each
book. You’re adding them all together. If you try to display any additional fields, Access
reports an error.

6. Type >300 into the Criteria cell for PAGES.

7. Replace Expr1 in the first field containing the COUNT(*) function to Total over 300
Pages.

8. Click the big View again, and select Datasheet View.

You should get a result of 10.

Finding the Top (n) Records in a Query
Access not only enables you to find the number of records in an existing table or query, but it also
provides the capability of finding the query’s first (n) records (that is, a set number or percentage of
its records).

585

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 585

So, let’s find the first 10 editions of all books, out of all 17 books, as returned by a query. This time
let’s add in the title of the book. Follow these steps:

1. Create a new query using the BOOKS_EDITION and BOOKS_PUBLICATION tables.

The two are related based on the publication of each edition so they should be joined
based on the PUBLICATION_ID field, which is present in both tables.

2. Create the join by selecting the PUBLICATION_ID field in one table, holding the
left mouse button down, and rolling the mouse over to the same field in the other
table.

3. Verify the relationship created in Step 2 by right-clicking the line between the two
tables.

4. Select Join Properties on the menu that pops up.

The result should look like Figure 18-4.

FIGURE 18-4

Verifying a join between two tables

Figure 18-4 shows that the two tables are joined based on the common field PUBLICA-
TION_ID, which is correct. Find the SQL code for this query by selecting the SQL View
option from the View icon (the big button on at the left end of the Access ribbon). This is
the SQL code for the query, clearly showing the JOIN:

SELECT TOP 10 BOOKS_PUBLICATION.TITLE, BOOKS_EDITION.ISBN,
BOOKS_EDITION.PRINT_DATE, BOOKS_EDITION.FORMAT

FROM BOOKS_PUBLICATION INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID =

BOOKS_EDITION.PUBLICATION_ID
ORDER BY BOOKS_PUBLICATION.TITLE;

5. Now you can go to the field specifications and add fields to the query. Add the
TITLE, ISBN, PRINT_DATE, and FORMAT fields. Additionally, specify an ascend-
ing sort order on book titles.

586

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 586

6. At this point, you can click the View button to see that there are 17 records in the
resulting dynaset.

7. Click the View button to return to Design View.

8. Select the Design button on the top-most tab menu. Under the Query Setup section,
you should see a drop-down button labeled Return. Let the mouse hover over the
box and you should get a ToolTip on the screen. Select a value of 10 (you can manu-
ally enter a value as well). You should get 10 records returned when executing the
query.

9. If you click the selection arrow of the Top Values combo box, a series of default val-
ues will appear. These default values are 5, 25, 100, 5%, and All.

When executing this particular query I got 10 records when requesting 5. This is
because the Return selection box returns the first 5 unique records, plus any duplicates.

How Queries Save Field Selections
When you open a query design, you may notice that the design has changed since you last saved
the query. When you save a query, Access rearranges (even eliminates) fields on the basis of several
rules:

n If a field does not have the Show box checked but has criteria specified, Access moves it
to the rightmost columns in the QBE pane.

n If a field does not have the Show box checked, Access eliminates it from the QBE pane
column unless it has sorting directives or criteria.

n If you create a totaling expression with the Sum operator in a total query, Access changes
it to an expression using the Sum function.

Because of these rules, your query may look very different after you save and reopen it. In this sec-
tion, you learn how this happens (and some ways to prevent it).

Hiding (not showing) fields
Sometimes you won’t want certain fields in the Design pane to show in the actual dynaset of the
datasheet. You may remember from a query executed previously in this chapter, you specified to
return only books with more than 300 pages. The query returned a total count of all books, not
each book. It was imperative to display only the total count of books and exclude the display of the
number of pages in each book.

To hide, or exclude, a field from the dynaset, you simply click off the Show box under the field you
want to hide. Figure 18-5 shows Design View of the previous query, where the Show check box is
set to blank for the PAGES field.

CAUTION CAUTION

587

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 587

FIGURE 18-5

The easiest way to hide a field is to uncheck the Show check box for the field

If you hide any fields in Design View that are not used for sorting or filtering criteria, Access auto-
matically eliminates them from the query when you save it. If you want to use these fields and
need to show them later, you have to add them back in from Design View.

If you’re creating a query to be used by a form or report, you must show any fields it
will use, including any field to which you want to bind a control.

Renaming fields in queries
When working with queries, you can rename a field to describe the field’s contents more clearly or
accurately. This new name is the one that would be shown in the datasheet of the query. You have
already seen renaming of expression in queries. Renaming fields is very similar. You are essentially
renaming the field in the resulting query and not in the table.

So, again you can use a previous query: this time the Top (n) query example. In Design View of the
join query change the PRINT_DATE column header (field name), from PRINT_DATE to
Published. Here is the SQL query code for that altered query:

SELECT TOP 10 BOOKS_PUBLICATION.TITLE, BOOKS_EDITION.ISBN,
BOOKS_EDITION.PRINT_DATE AS Published, BOOKS_EDITION.FORMAT

FROM BOOKS_PUBLICATION INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID = BOOKS_EDITION.PUBLICATION_ID

ORDER BY BOOKS_PUBLICATION.TITLE;

NOTENOTE

588

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 588

In SQL code a field is renamed using the AS clause, as shown in the previous script. In Access
Design View, change the header for the column to name: field, as for any other expression. So, in
Design View simply change PRINT_DATE to Published: PRINT_DATE.

If you specified a caption name for the field in the table designer, this name will be used
in the query.

If you rename a field, Access uses only the new name for the heading of the query datasheet; it
does the same with the control source in any form or report that uses the query. Any new forms or
reports you create on the basis of the query use the new field name.

Access does not change the actual field name in the underlying table. However, any
subsequent process used in the query can utilize the altered field name.

When working with renamed fields, you can use an expression name (the new name you specified)
in another expression within the same query. For example, you may have a calculated field called
FullName that uses an Access function to join the first and last names fields of a person’s name.
You can refer later on in the query to the FullName expression.

When you work with referenced expression names, you cannot have any criteria speci-
fied against the field you’re referring to.

Hiding and unhiding columns in Design View
Sometimes you may want to hide specific fields returned by a query. You can do this, as already
seen, by unchecking the Show check box in Design View. You can also reduce the width a column
to nothing, by dragging the width of the column with your mouse, in the Datasheet View, until the
column is no longer visible.

Setting Query Properties
While creating a query, you can set query properties several ways: click the Properties button on
the toolbar; right-click Properties and choose it from the shortcut menu. Access displays a Query
Properties dialog box. Your options depend on the query type and on the table or field with which
you’re working.

You can use the query-level properties just as you would the properties in forms, reports, and tables.
Query-level properties depend on the type of query being created and on the table or field with
which you’re working. Table 18-1 shows the query-level properties you can set.

NOTENOTE

NOTENOTE

NOTENOTE

589

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 589

TABLE 18-1

Query-Level Properties

Property Description Query Select Crosstab Update Delete Make-Table Append

Description Text describing X X X X X X X
table or query

Default View Values Datasheet, X X X
Pivot Table, or
Pivot Chart

Output All Fields Show all fields from X X X
the underlying tables
in the query

Top Values Number of highest X X X
or lowest values
to be returned

Unique Values Return only unique X X X
field values in the
dynaset

Unique Records Return only unique X X X X X X
records for the
dynaset

Run Permissions Establish permissions X X X X X X X
for specified user

Source Database External database X X X X X X X
name for all
tables/queries in
the query

Source Connect Str Name of application X X X X X X X
used to connect to
external database

Record Locks Records locked X X X X X X X
while query runs
(usually action
queries)

Recordset Type Which records can X X X
be edited: Dynaset,
Dynaset
(inconsistent updates),
or Snapshot

ODBC Time-out Number of seconds X X X X X X X
before reporting
error for opening DB

590

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 590

Property Description Query Select Crosstab Update Delete Make-Table Append

Filter Filter name loaded X X
automatically with
query

Order By Sort loaded X X
automatically with
query

Max Records Max number of X X
records returned by
ODBC database

Orientation Set view order X X X X X X X
for fields from
left-to-right or
right-to-left

SubDatasheet Name Identify subquery X X X X X X

Link Child Fields Field name(s) in X X X X X X
subquery

Link Master Fields Field name(s) in X X X X X X
main table

Subdatasheet Height Maximum height X X X X X X
of subdatasheet

Subdatasheet Records initially in X X X X X
Expanded their expanded

state?

Column Headings Fixed-column X
headings

Use Transaction Run action query X X X X
in transaction?

Fail on Error Fail operation if X X
errors occur

Destination Table Table name of X X
destination

Destination DB Name of database X X

Dest Connect Str Database X X
connection string

As you can see, working with queries offers many options for how the fields can be displayed and
properties for each specific type of query.

591

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 591

Creating Queries That Calculate Totals
Many times, you want to find information in your tables based on data related to the total of a par-
ticular field or fields. For example, you may want to find the total number of contacts who are
both buyers and sellers or the total amount of money each buyer has spent on vehicles last year.
Access supplies the tools to accomplish these queries without the need for programming.

Access performs calculation totals by using numerous aggregate functions, which let you determine
a specific value based on the contents of a field. For example, you can determine the average price
for vehicles by type, the maximum and minimum price paid for a vehicle, or the total count of all
records in which the type of contact is a buyer or both. Performing each of these examples as a
query results in a dynaset of answer fields based on the mathematical calculations you requested.

You have already worked with counts using the Count (*) function in the previous
section. The Count(*) function is an aggregate function.

To create a total query, you can use the Summary Query editor in the Query Wizard tool. You can
also elect to create totals in Design View by clicking the Totals button with the sigma character on
it (Σ).

Query Wizard summaries
When using the Query Wizard to create a query, one of the screens presents an option to create a
detail query, or a summary query. A detail query shows every field in every record. A summary
query gives you options to aggregate. Follow these steps: Create a new query. Click the Summary
Options button and find the screen mentioned previously. You ultimately get a screen that looks as
shown in Figure 18-6.

FIGURE 18-6

Creating summary options for aggregate queries

CROSS-REFCROSS-REF

592

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 592

Aggregate queries in Design View
To create a query that performs a total calculation, create a select query and then activate the Total
by clicking the Totals button (with the ∑ character), at the top right of the Design window.

If not already present a new row appears in the query design, containing either a summary func-
tion or the words Group By. You have created an aggregate query. All that remains is to select fields
to aggregate on and to remove those fields from the summary record output if the aggregation
removes them from the query.

The result of aggregation using either the Query Wizard or Design View will be a query that looks
something like this:

SELECT DISTINCTROW [BOOKS_EDITION Query].ISBN,
Sum([BOOKS_EDITION Query].LIST_PRICE) AS SumOfLIST_PRICE

FROM [BOOKS_EDITION Query]
GROUP BY [BOOKS_EDITION Query].ISBN;

Although only eight options are shown in Table 18-2, you can choose from 12. You can view the
remaining options by using the scroll bar on the right side of the box. The 12 options can be
divided into four distinct categories: group by, aggregate, expression, and total field record limit.
Table 18-2 lists each category, its number of Total options, and its purpose.

TABLE 18-2

Four Categories of Total Options

Category Number of Options Purpose of Operator

Group By 1 Groups common records. Access performs aggregate calculations
against the groups.

Aggregate 9 Specifies a mathematical or selection operation to perform against a
field.

Expression 1 Groups several total operators and performs the group totals.

Where 1 Filters records before record limit, performing a total calculation
against a field.

593

Advanced Access Query Techniques 18

What Is an Aggregate Function?

The word aggregate implies gathering a mass (a group or series) of things, on which the function
acts as though the collection is a single entity. Therefore, an aggregate function is a function that

takes a group of records and performs some mathematical function against the entire group. The
function can be a simple count or a complex expression you specify, based on a series of mathemat-
ical functions.

24_046732 ch18.qxp 11/21/06 8:55 AM Page 593

The Group By, Expression, and Where categories have one option each. The Aggregate cate-
gory has nine options, all of which are used by the other three categories. The following sections
provide details about the options available in each category.

Group By category
This category has one option, the Group By option. You use this option to specify that a specific
field in Design View is used as a grouping field. For example, if you select the field LIST_PRICE,
the Group By option tells Access to group all books together. This option is the default for all
Total: cells.

Expression category
Like the Group By category, the Expression category has only one option: Expression. This
is the second-from-last choice in the drop-down list. You use this option to tell Access to create a
calculated field by using one or more aggregate calculations in the field box of Design View.

Where category
The Where category is the third category that has a single option: the Where option. This option
is the last choice in the drop-down list. When you select this option, you tell Access that you
want to specify limiting criteria against an aggregate type field, as opposed to a Group By or an
Expression field. The limiting criteria are performed before the aggregate options are executed.
By specifying the Where option, you are telling Access to use this field only as a limiting criteria
field, before it performs the aggregate calculation.

Aggregate category
The Aggregate category, unlike the others, has multiple options that you can choose from (a
total of nine options): Sum, Avg, Min, Max, Count, StDev, Var, First, and Last. These
options appear as the second through tenth options in the drop-down list. Each option performs
an operation on your data (check out Table 18-3 for how you can use each option) and supplies
the new data to a cell in the resulting dynaset. Aggregate options are what database designers think
of when they hear the words total query. Each of the options performs a calculation against a field
in the Design View pane of the query, returning a single answer in the dynaset.

For example, you may want to determine the maximum (Max), minimum (Min), and average
(Avg) value of each format of books. You can also use it to find a single value in the table, without
creating an aggregate grouping.

The Group By, Expression, and Where categories of options can be used against any type of
Access field. For example, Text, Memo, or Yes/No datatypes. Some of the aggregate options can be
performed against certain field types only. For example, you cannot perform a Sum option against
Text type data. And you can’t you use a Max option against an OLE object.

594

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 594

Table 18-3 lists each option, what it does, and which field types you can use with the option.

TABLE 18-3

Aggregate Options for Total: Where

Option Returns Field Type Support

Count Number of non-Null values in a field AutoNumber, Number, Currency, Date/ Time, Yes/No,
Text, Memo, OLE object

Sum Total of values in a field AutoNumber, Number, Currency, Date/ Time, Yes/No

Avg Average of values in a field AutoNumber, Number, Currency, Date/ Time, Yes/No

Max Highest value in a field AutoNumber, Number, Currency, Date/ Time, Yes/No,
Text

Min Lowest value in a field AutoNumber, Number, Currency, Date/ Time, Yes/No,
Text

StDev Standard deviation of values in a field AutoNumber, Number, Currency, Date/ Time, Yes/No

Var Population variance of values in a field AutoNumber, Number, Currency, Date/ Time, Yes/No

First Field value from the first record in a AutoNumber, Currency, Date/Time, Yes/No, Text,
number, table, or query Memo, OLE object

Last Field value from the last record in a AutoNumber, Currency, Date/Time, Yes/No, Text,
number, table, or query Memo, OLE object

So, aggregate queries can be built in various ways. What are these different types of aggregate
queries?

Grand totals in aggregates
A grand total aggregation is essentially a query summarizing multiple records into a single return
record. The totals Count(*) function previously demonstrated in this chapter is a perfect example.

Subtotals in aggregates
A subtotal is sometimes know as a control break total and is essentially the creation of subtotals
within a larger grand total for the entire query, or a total for a parent subtotal. Let’s say you have a
query joining three tables, as shown in Figure 18-7.

595

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 595

FIGURE 18-7

A multiple table join query

This query returns a total for book formats, within each author and title:

SELECT BOOKS_AUTHOR.NAME, BOOKS_PUBLICATION.TITLE,
Count(BOOKS_EDITION.FORMAT) AS CountOfFORMAT
FROM (BOOKS_AUTHOR INNER JOIN BOOKS_PUBLICATION
ON BOOKS_AUTHOR.AUTHOR_ID = BOOKS_PUBLICATION.AUTHOR_ID)
INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID =
BOOKS_EDITION.PUBLICATION_ID
GROUP BY BOOKS_AUTHOR.NAME, BOOKS_PUBLICATION.TITLE;

You can also get multiple layers of subtotals by aggregating more fields, in this case the title and the
format. The query looks like this:

SELECT BOOKS_AUTHOR.NAME,
Count(BOOKS_PUBLICATION.TITLE) AS CountOfTITLE,
Count(BOOKS_EDITION.FORMAT) AS CountOfFORMAT
FROM (BOOKS_AUTHOR INNER JOIN BOOKS_PUBLICATION
ON BOOKS_AUTHOR.AUTHOR_ID = BOOKS_PUBLICATION.AUTHOR_ID)
INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID =
BOOKS_EDITION.PUBLICATION_ID
GROUP BY BOOKS_AUTHOR.NAME;

Note in the preceding query that the group by clause is only a single field. The Design View and
query results look as shown in Figure 18-8.

596

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 596

FIGURE 18-8

Aggregating to produce subtotals on multiple layers

Filtering aggregates with criteria
In addition to grouping records for total queries, you can specify criteria to limit the records that
will be processed or displayed in a total calculation. When you’re specifying record criteria in total
queries, several options are available. A criterion against any of these three fields can be created:

n Group By

n Aggregate Total

n Non-Aggregate Total

Using any one, any two, or all three of these criteria types, you can easily limit the scope of your
total query to finite criteria. So, Design View of a query is shown in Figure 18-9.

597

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 597

FIGURE 18-9

Filtering aggregate queries

In Figure 18-9 there are filtering criteria for three fields: NAME, LIST_PRICE, and PAGES. This is
the query for Design View shown in Figure 18-9:

SELECT BOOKS_AUTHOR.NAME, BOOKS_EDITION.FORMAT,
Sum(BOOKS_EDITION.LIST_PRICE) AS SumOfLIST_PRICE,
BOOKS_EDITION.PAGES
FROM (BOOKS_AUTHOR INNER JOIN BOOKS_PUBLICATION
ON BOOKS_AUTHOR.AUTHOR_ID = BOOKS_PUBLICATION.AUTHOR_ID)
INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID =
BOOKS_EDITION.PUBLICATION_ID
GROUP BY BOOKS_AUTHOR.NAME, BOOKS_EDITION.FORMAT,
BOOKS_EDITION.PAGES
HAVING (((BOOKS_AUTHOR.NAME)>”A*”)
AND ((Sum(BOOKS_EDITION.LIST_PRICE))>10)
AND ((BOOKS_EDITION.PAGES)>200));

There is actually something very wrong with the previous query. It is not that the query will not
actually function, because it will. The issue is that all filtering is placed into a HAVING clause,
which appears after the GROUP BY clause. Filters not applicable to groups created by a GROUP BY
clause should be placed into a WHERE clause. The WHERE clause is executed before the ORDER BY
and GROUP BY clauses. Why summarize what is not returned by a query? For a query with 10
rows this is no problem. For a query reading 1 million rows, and expected to filter down to 1000
rows, before applying grouping functionality, this becomes a fairly serious performance problem.

598

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 598

Crosstab Queries
This type of query is an excellent analytical tool. It enables you to create queries and reports where
classifications of data (fields) are mixed, matched, and compared against data values (values in
fields).Crosstab queries are useful for summarizing information, a little like a spreadsheet. In its
simplest form, a crosstab enables you to compare data values with each other. Those comparisons
can even be in one table.

For example, you may want to create a query that displays summaries by comparing different fac-
tors about books. Figure 18-10 shows a crosstab report, where totals for books by all authors are
shown, broken down by the format of the book. The format can be paperback, hardcover, or even
a book on tape (audio).

FIGURE 18-10

A simple crosstab report

You cannot use simple relational database SQL commands to create analytical reports such as
crosstabs. Years ago, you would have created intermediary tables. With current technology, you can
make use of specialized SQL commands, such as CUBE, ROLLUP, and GROUPING SETS clauses.

Details of CUBE, ROLLUP, and GROUPING SETS clauses can be found as part of SQL
standards at ansi.org.

Access handles these types of queries such as crosstabs slightly differently, and also more easily
than regular ANSI standards. The following is the SQL coding behind the query shown in Figure
18-10, where Access 2007 uses something called the TRANSFORM and PIVOT commands:

TRANSFORM Count(Books.[TITLE]) AS CountOfTITLE
SELECT Books.[FORMAT], Count(Books.[TITLE]) AS [Total Of TITLE]
FROM Books
GROUP BY Books.[FORMAT]
PIVOT Books.[Author];

NOTENOTE

599

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 599

In the previous script the author name is used as a pivot, meaning it is used as a pivot or compari-
son against the aggregation in the query, or the summary result in the query. The summary result
in the query is the count of all books for each format. The TRANSFORM command sends book
counts to the PIVOT command, which creates the crosstab summary.

Another point to note is that the Books object selected from in the previous query is not a table,
but actually a query of three tables that looks like this (to get enough data and provide enough
groupings with small enough number of values):

SELECT BOOKS_AUTHOR.NAME AS Author, BOOKS_PUBLICATION.TITLE,
BOOKS_EDITION.FORMAT
FROM
(BOOKS_AUTHOR INNER JOIN BOOKS_PUBLICATION
ON BOOKS_AUTHOR.AUTHOR_ID = BOOKS_PUBLICATION.AUTHOR_ID)
INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID =
BOOKS EDITION.PUBLICATION ID;

This query is named “Books” such that it can be called by the crosstab query.

The previous crosstab query was created using the Crosstab Query Wizard, in the following
sequence of steps:

1. Use the Query Design screen to create a join query of the BOOKS_AUTHOR,
BOOKS_EDITION, and BOOKS_PUBLICATION tables.

Yes, it could all be manually coded. However, when first using Access 2007 it makes
sense to use the wizards first, if only to discover the unique flavor of SQL coding used in

Access 2007. For example, SQL Server and Oracle SQL coding are not the same as Access.

The result in the Query editor should look something like that shown in Figure 18-11.

In Figure 18-11 three tables are selected. They are appropriately joined. One field is
selected from the two parent tables (BOOKS_AUTHOR and BOOKS_EDITION), and two
fields from the child table lowest in the hierarchy (BOOKS_PUBLICATION).

3. Right-click the tab at the top-left of the Query Design editor, change the name of
this query to Books, and save the query.

4. Now execute the Query Wizard tool and select a crosstab query. When prompted
you also need to select the Books query, which was created in the preceding steps.

5. The next prompt asks for row headings. Examine Figure 18-10 and you will see that
row headers are different formats for books.

6. The next choice is for column headings, which in Figure 18-10 are shown as being
the names of authors. The title of the book is left over to perform the count func-
tion summary on.

The result of the query will be the same as Figure 18-10.

NOTENOTE

600

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 600

FIGURE 18-11

Creating a join query for a crosstab report

Crosstab queries and their underlying join queries can get a lot more complex than this. It all
depends on how many layers are used. The problem with too many layers, both vertically and hor-
izontally, is that you end up with a really huge report. For example, a spreadsheet with hundreds of
rows and columns is not much use as a summary. The same applies to crosstab reports.

Duplicate and Unmatched Queries
The Query wizard can also create two other types of queries:

n Find Duplicates Query Wizard: Shows duplicate records in a single table on the basis of
a field in the table.

n Find Unmatched Query Wizard: Shows all records that do not have a corresponding
record in another table (for example, a sale with an invalid contact). This is the same
thing as an outer join between two tables.

Find Duplicates Query Wizard
This wizard helps you create a query that reports which records in a table are duplicated using a
field, or fields, in the table as a basis. Access asks which fields you want to use for checking dupli-
cation and then prompts you to enter some other fields that you may want to see in the query.
Finally, Access asks for a title and then it creates and displays the query.

601

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 601

This type of wizard query can help you find duplicate key violations, a valuable trick when you
want to take an existing table and make a unique key field with existing data. If you try to create a
unique key field and Access reports an error, you know that you have Nulls in the field or you
have duplicate records. The query helps find the duplicates.

So, let’s say I join three tables again like this:

SELECT BOOKS_AUTHOR.NAME, BOOKS_PUBLICATION.TITLE,
BOOKS_EDITION.FORMAT, BOOKS_EDITION.LIST_PRICE
FROM (BOOKS_AUTHOR INNER JOIN
BOOKS_PUBLICATION
ON BOOKS_AUTHOR.AUTHOR_ID = BOOKS_PUBLICATION.AUTHOR_ID)
INNER JOIN BOOKS_EDITION
ON BOOKS_PUBLICATION.PUBLICATION_ID =
BOOKS_EDITION.PUBLICATION_ID;

I store it as a query and execute a query against the query, but this time retrieving only the NAME
field. And I store the new query as Duplicate Authors. The result is as shown in Figure 18-12, with
numerous duplicate author names.

FIGURE 18-12

A query that returns duplicated values

602

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 602

Now you can create a Find Duplicates query to find the duplicate values:

1. Open up the Query Wizard and select Find Duplicates query.

2. Select the Duplicate Authors query, select the Name field, and execute.

The result is shown in Figure 18-13, where each author is shown once, with the number
of duplications in the next column.

FIGURE 18-13

A find duplicates query

Find Unmatched Query Wizard
This wizard helps you create a query that reports any orphan or widow records between two
tables.

An orphan is a record in a many-side table that has no corresponding record in the one-side table. A
widow is a record in the one side of a one-to-many or one-to-one table that does not have a corre-
sponding record in the other table.

Access asks for the names of the two tables to compare; it also asks for the link field name between
the tables. Access prompts you for the fields that you want to see in the first table and for a title.
Then it creates the query.

This type of query can help find records that have no corresponding records in other tables. If you
create a relationship between tables and try to set referential integrity but Access reports that it can-
not activate the feature, some records are violating integrity. This type of query helps find them
quickly.

603

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 603

You can go ahead and execute the Query Wizard, and create a Find Unmatched query between any
two tables. The result will be something like that shown here:

SELECT BOOKS_EDITION.ISBN
FROM BOOKS_EDITION LEFT JOIN BOOKS_PUBLICATION
ON BOOKS_EDITION.[PUBLICATION_ID] =
BOOKS_PUBLICATION.[PUBLICATION_ID]
WHERE (((BOOKS_PUBLICATION.PUBLICATION_ID) Is Null));

As you can see, a Find Unmatched query is essentially just another term for an outer join. Outer
joins are covered in Chapter 4.

SQL-Specific Queries
Access has three query types that cannot be created by using the QBE pane; instead, you type the
appropriate SQL (Structured Query Language) statement directly in the SQL View window. These
SQL-specific queries are as follows:

n Union query: Combines fields from more than one table or query into one recordset

n Pass-through query: Enables you to send SQL commands directly to ODBC (Open
Database Connectivity) databases using the ODBC database’s SQL syntax

n Data definition query: Enables you to create or alter database tables or create indexes in
a database, such as Access databases, directly

To create any of these queries, right-click in Design View, select SQL Specific, and then
select from the menu that appears. You can also select these queries from the menu at

the top left of the window.

n Subqueries: In addition to these three special SQL-specific queries, you can use SQL in a
subquery (inside a standard Access query) to define a field or define criteria for a field.

Creating union queries
A union query merges the results of two other queries, so you can go into Design View and create a
query. Follow these steps:

1. Create a query design and add the BOOKS_AUTHOR table to Design View.

2. Put both the fields in the table into the query.

3. Now select a Union query by clicking the button at the top of the window or right-
clicking and selecting Union inside SQL Specific.

A text editor pops up in place of the design on the screen. This is because you have to
select two tables for a union. They could even be the same tables. Selecting the same

table twice also reverts to the editor.

NOTENOTE

NOTENOTE

604

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 604

This is what union query looks like, and this is what you can type into the editor:

SELECT * FROM BOOKS_AUTHOR
UNION
SELECT * FROM BOOKS_AUTHOR;

The result is as shown in Figure 18-14.

FIGURE 18-14

A union query retrieving rows from the same table twice

General restrictions on union queries are that the number of fields retrieved by both queries is the
same:

n Datatypes for all fields in both queries must match, field for field, and in the correct
sequence.

n Fields not in the select list in either query can be replaced with a NULL as in the follow-
ing example:

SELECT AUTHOR_ID, NAME, NULL FROM BOOKS_AUTHOR
UNION
SELECT PUBLICATION_ID, FORMAT, ISBN FROM BOOKS_EDITION;

The result is as shown in Figure 18-15.

605

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 605

FIGURE 18-15

A union query on two different tables

There’s a problem with the previous two queries, most obviously with the first one. The
BOOKS_AUTHOR table is selected from twice, and there is only one copy of the records. This hap-
pens because duplicate records have been removed.

When you use the Union command in the SQL SELECT statement, it copies only those records
that are not duplicates when it joins the tables. The contents of all the fields being selected in the
SQL Union query determine whether duplication exists. If two records have the same contents in
all the fields selected, they are considered duplicates and only one record is displayed. If there are
other fields not used in the Union query that have different values, they are not used to determine
duplicity. If you want to see all records from the Union of two tables, simply use the keyword ALL
after the UNION command: UNION ALL SELECT.

So the query can be changed as follows:

SELECT * FROM BOOKS_AUTHOR
UNION ALL
SELECT * FROM BOOKS_AUTHOR
ORDER BY AUTHOR_ID;

And the result is as shown in Figure 18-16.

606

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 606

FIGURE 18-16

A union all query returns all records, including duplicated records

Additionally, the query was enhanced with an ORDER BY sorting clause, showing very clearly in
Figure 18-16 that each author is repeated.

The ORDER BY sorting command is applied to the results of the union, not the first or
second queries alone. In other words, the sort is executed after the union has finished

executing.

Creating pass-through queries
A pass-through query sends SQL commands directly to an SQL database server (such as Microsoft
SQL Server, Oracle, and so on). Often these database servers are known as the back end of the sys-
tem, with Access being the client tool or front end. You send the command by using the syntax
required by the particular server. Be sure to consult the documentation for the appropriate SQL
database server.

You can use pass-through queries to retrieve records, or change data, or to run a server-side stored
procedure or trigger. They can even be used to create new tables at the SQL server database level
(versus local tables).

NOTENOTE

607

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 607

After you create a pass-through query, you need to specify information about the database you
want to connect to. You can type a connection string in the ODBCConnectStr property of the
query property sheet directly or click Build and enter the information about the server you want to
connect to. If you do not specify a connection string, you are prompted for the connection infor-
mation when you run the query.

Creating data definition queries
Of the three SQL-specific queries, the data definition query is the least useful against local tables.
Everything that can be done with it also can be done by using the design tools in Access. The data
definition query is, however, an efficient way to create or change database objects. With a data defi-
nition query, any of these SQL statements can be used:

n CREATE TABLE

n ALTER TABLE

n DROP TABLE

n CREATE INDEX

n DROP INDEX

For example, you could type the following code into the SQL query window (Data Definition
Query) to create a local Access table named TelephoneList:

CREATE TABLE TelephoneList
([TeleID] integer, [FullName] text,
[Address1] text, [Address2] text,
[Address3] text, [Country] text,
[Phone 1] text, [Phone 2] text,
[FaxPhn 1] text, [Notes] memo,
CONSTRAINT [Index1] PRIMARY KEY ([TeleID]));

After it is created, this query could be run to create a new table named Telephone List. You
could create a second data-definition query to create an index for the table. For instance, you could
create an index that would be in order by country and full name:

CREATE INDEX CountryName
ON TelephoneList ([Country], [FullName]);

You can have only one SQL statement in each data-definition query.

Creating SQL subqueries in an Access query
Access 2007 enables you to create an SQL SELECT statement inside another select query or action
query. You can use these SQL statements in the Field row to define a new field or in the Criteria
row to define criteria for a field. Using subqueries, you can do the following:

NOTENOTE

608

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 608

n Find values in the primary query that are equal to, greater than, or less than values
returned by the subquery using the ANY, IN, or ALL reserved words.

n Test for the existence of a result from a subquery using the EXISTS or NOT EXISTS
reserved words.

n Using the ANY, IN, or ALL reserve words in a subquery, you can compare values in the
main query to the results of the subquery (not equal, equal, greater than, or less than).

n Create nested subqueries (subqueries within subqueries).

You can place an SQL statement in the Field cell or in the Criteria cell of the design grid. You
would place it in the Field cell to create a new field for the query. In contrast, you can use an SQL
statement in the Criteria cell of a field to define the criteria used for limiting the records of the cell.

Action Queries
An action query defines a query that does something more than simply select a specific group of
records and then present it to you in a dynaset. The word “action” suggests performing some oper-
ation, influencing, or affecting something. The word is synonymous with operation, performance,
and work. An action query can be considered a select query that is given a duty to perform against
a specified group of records in the dynaset.

Types of action queries
When you create any query, Access creates it as a select query automatically. You can specify a dif-
ferent type (such as action) from within the query design tool.

Action queries can not be created using the Query Wizard tool. Open the Query Design screen and
create an action query by right-clicking on the background, and selecting Make Table, Update
Query, Append Query, or Delete Query from the menu. The four different types of action queries
perform the following functions:

n Make Table Query: Makes a selection of records from a database, saving those records
into a new table (it makes a new table). For example, you want to create history tables
and then copy all inactive records to them. You consider a record inactive if a customer
hasn’t bought anything in more than two years. You decide to remove the inactive records
from your active database tables. Use a make-table query to create the history tables and a
delete query to remove the unwanted records.

n Update Query: Updates data in a table that already exists.

n Append Query: Adds new records to a table that already exists. For example, one of your
former customers, whom you haven’t heard from for more than four years, wants to make
a purchase; you need to bring the old information back into the active file from the
backup files. Use an append query to add records from your back-up tables to your active
tables.

609

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 609

n Delete Query: Deletes data in a specified table that matches a set of criteria (a filter).

You can quickly identify action queries in the Database window by the special exclama-
tion point icons that sit beside their names (to the right side).

Unlike select queries, which display data in a specific manner, action queries perform
actions against the data stored in the underlying tables. This action may be copying the

information (data) to another table, modifying the contents of records within the current table, or
even deleting records in the current table.

Because of the destructive nature of action queries, it is a good idea to observe the fol-
lowing rules: Always back up your table before performing the action query, and always

create and view the action query (use the Datasheet button on the toolbar) before performing it.

Viewing the results of an action query
Action queries perform a specific task many times, which can be destructive. Be very careful when
using them. It’s important to view the changes that they will make (by selecting Datasheet View)
before you run the action query and to verify afterward that they made the changes that you antici-
pated. Before you learn how to create and run an action query, it’s also important to review the
process for seeing what your changes will look like before you change a table permanently.

Viewing a query before using update and delete queries
Before actually performing an action query, you select Datasheet View to see which set of data the
action query will work with. Meanwhile, when you’re updating or deleting records with an action
query, the actions take place on the underlying tables that the query is currently using. To view the
results of an update or a delete query, click the Datasheet button to see whether the records will be
updated or deleted before committing the action.

If your update query makes changes to the fields you used for selecting the records, you
may have to look at the underlying table or change to a select query to see the changes.

For example, if you delete a set of records with an action button, the resulting select dynaset of the
same record criteria will show that no records exist and that the condition specified has been per-
formed. By removing the delete criteria, you can view the remaining table and verify that all specified
records have been deleted.

Switching to the result table of a make-table or append query
Unlike the update or delete queries, make-table and append queries copy resultant records to
another table. After specifying the fields and the criteria in the Design window, the make-table and
the append queries copy the specified fields and records to another table. When you run the
queries, the results take place in another table, not in the current table.

NOTENOTE

CAUTION CAUTION

CAUTION CAUTION

TIPTIP

610

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 610

Selecting a Datasheet View shows you a dynaset of only the criteria and fields that were specified,
not the actual table that contains the new or added records. To view the results of a make-table or
append query, open the new table and view the contents to verify that the query worked correctly.
If you won’t be using the action query again, do not save it. Delete it.

Action queries cannot be reversed
Action queries copy or change data in underlying tables. After an action query is executed, it can-
not be reversed. Therefore, when you’re working with action queries, create a select query first to
make sure that the record criteria and selection are correct for the action query.

Action queries are destructive; before performing one, always make a backup of the
underlying tables. You may also consider removing the action query from your database

after the action has been performed if the query will not be used again.

Creating Action Queries
Creating an action query is similar to creating a select query. You specify the fields for the query
and any scoping criteria. In addition to specifying the fields and criteria, you must tell Access to
make this query an action-specific query of Append To, Table, Update To, or Delete.

Creating an update action query to change values
In this section, you learn to handle an event that requires changing many records. The type of
query used is called an update action query.

It’s possible to update each record in a table individually by using a form or even creating a select
query dynaset to make these changes in the datasheet; however, this process can take a very long
time if there are many records to change. The method is not only time-consuming but also ineffi-
cient. In addition, this method lends itself to typing errors as you enter new text into fields.

The best way to handle this type of event is to use an update action query to make many changes in
just one operation. You save time and eliminate many of those typos that crop up in manually
edited records.

CAUTION CAUTION

611

Advanced Access Query Techniques 18

Scoping Criteria

Action queries can use any expression composed of fields, functions, and operators to specify any
limiting condition that you need to place on the query. Scoping criteria are one form of record

criteria. Normally, the record criteria serve as a filter to tell Access which records to find and/or leave
out of the dynaset. Because action queries do not create a dynaset, you use scoping criteria to spec-
ify a set of records for Access to operate on.

24_046732 ch18.qxp 11/21/06 8:55 AM Page 611

Let’s create an update action query:

1. Create a very simple query that selects all records and fields from the
BOOKS_AUTHOR table.

2. Right-click the background, go to Query Type, and select Update Query.

This option is also on the Query Type menu at the top-left of the page. This is what you
get in the SQL View:

UPDATE BOOKS_AUTHOR SET BOOKS_AUTHOR.[NAME] = “Unknown”;

Essentially, you can now execute that this update query from elsewhere, and the names of authors
in the BOOKS_AUTHOR table will be set to Unknown.

An update action query is the SQL equivalent of an UPDATE statement, which updates
one or more records in a table.

Creating a new table using a make-table query
You can use an action query to create new tables based on scoping criteria. To make a new table,
you create a make-table query. Consider the following situation as an example that might give rise
to this particular task and for which you would create a make-table query.

Let’s create a make-table query:

1. Create a very simple query that selects all records and fields from the
BOOKS_AUTHOR table.

2. Right-click the background, go to Query Type, and select Make-Table Query.

This option is also on the Query Type menu at the top-left of the page. This is what you
get in the SQL View:

SELECT BOOKS_AUTHOR.AUTHOR_ID,
BOOKS_AUTHOR.NAME INTO [New Authors]
FROM BOOKS_AUTHOR;

All a make-table query does is select rows with a query and insert them into another
table. This is the ANSI standard SQL equivalent of an INSERT INTO ... SELECT ...

statement.

When you’re creating numerous make-table queries, you need to select Make-Table Query from
the Query Type button on the toolbar or select Query Type followed by Make-Table from the
menu; either method renames the make-table query each time. Access assumes that you want to
overwrite the existing table if you don’t reselect the make-table option. Access warns you about
overwriting before performing the new make-table query; as an alternative, you could change the
destination table name on the Property Sheet.

NOTENOTE

CAUTION CAUTION

612

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 612

Creating queries to append records
As the word append suggests, an append query attaches or adds records to a specified table. An
append query adds records from the table you’re using to another table. The table you want to add
records to must already exist. You can append records to a table in the same database or in another
Access database.

Append queries are useful for adding information to another table on the basis of some scoping
criteria. Even so, append queries are not always the fastest way of adding records to another data-
base. For example, if you need to append all fields and all records from one table to a new table,
the append query is not the best way to do it. Instead, use the Copy and Paste options on the Edit
menu when you’re working with the table in a datasheet or form.

You can add records to an open table. You don’t have to close the table before adding
records. However, Access does not automatically refresh the view of the table that has

records added to it. To refresh the table, press Shift+F9. This action requires the table so that you can
see the appended records.

When you’re working with append queries, be aware of these rules:

n If the table you’re appending records to has a primary key field, the records you add can-
not have Null values or duplicate primary key values. If they do, Access will not append
the records and you will get no warning.

n If you add records to another database table, you must know the location and name of
the database.

n If you use the asterisk (*) field in a field’s row in Design View, you cannot also use indi-
vidual fields from the same table. Access assumes that you’re trying to add field contents
twice to the same record and will not append the records.

n If you append records with an AutoNumber field (an Access-specified primary key), do
not include the AutoNumber field if the table you’re appending to also has the field and
record contents (this causes the problem specified in the first rule). Also, if you’re adding
to an empty table and you want the new table to have a new AutoNumber number (that
is, order number) based on the criteria, do not use the AutoNumber field.

By following these simple rules, your append query will perform as expected and become a very
useful tool. Let’s create a append query:

1. Create a very simple query that selects all records and fields from the
BOOKS_AUTHOR table.

2. In the Design View for the query, right-click the background, go to Query Type, and
select Append Query.

This option is also on the Query Type menu at the top-left of the page. This is what you
get in the SQL View:

INSERT INTO authors
SELECT
FROM BOOKS_AUTHOR;

NOTENOTE

613

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 613

All an append query is doing is executing an insert into one table, from a query. This is
another ANSI standard SQL equivalent of an INSERT INTO ... SELECT ... statement.

When you’re using the append query, only fields with names that match in the two
tables are copied. For example, you may have a small table with six fields and another

with nine fields. The table with nine fields has only five of the six field names that match fields in the
smaller table. If you append records from the smaller table to the larger table, only the five matching
fields are appended; the other four fields remain blank.

If you create an append query by using the asterisk (*) field and you also use a field
from the same table as the All asterisk field to specify a criterion, you must take the cri-

teria field name out of the Append To row. If you don’t, Access reports an error. Remember that the
field for the criterion is already included in the asterisk field.

Creating a query to delete records
Of all the action queries, the delete query is the most dangerous. Unlike the other types of queries
you’ve worked with, delete queries remove records from tables permanently and irreversibly.

Like other action queries, delete queries act on a group of records on the basis of scoping criteria.

A delete action query can work with multiple tables to delete records. If you intend to delete
related records from multiple tables, however, you must do the following:

n Define relationships between the tables in the Relationships Builder.

n Check the Enforce Referential Integrity option for the join between tables.

n Check the Cascade Delete Related Records option for the join between tables (for one-to-
one or one-to-many relationships).

When working with one-to-many relationships without defining relationships and turning Cascade
Delete on, Access deletes records from only one table at a time. Specifically, Access deletes the
many side of the relationship first. Then you must remove the many table from the query and
delete the records from the one side of the query.

This method is time-consuming and awkward. Therefore, when you’re deleting related records
from one-to-many relationship tables, make sure that you define relationships between the tables
and check the Cascade Delete box in the Edit Relationships dialog box. By doing this, you can
delete from all related tables by creating a single Delete query.

Because of the permanently destructive action of a delete query, always make back-up
copies of your tables before working with them.

Let’s create a delete query:

1. Create a very simple query that selects all records and fields from the
BOOKS_AUTHOR table.

CAUTION CAUTION

CAUTION CAUTION

NOTENOTE

NOTENOTE

614

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 614

2. Right-click the background, go to Query Type, and select Delete Query.

This option is also on the Query Type menu at the top-left of the page. This is what you
get in the SQL View:

DELETE BOOKS_AUTHOR.AUTHOR_ID, BOOKS_AUTHOR.NAME
FROM BOOKS_AUTHOR;

All a delete query is doing is executing a delete command on multiple records.

Remember that a delete query permanently and irreversibly removes the records from the table(s).
Therefore, it is important to back up the records to be deleted before you delete them.

Saving an action query
Saving an action query is just like saving any other query. From Design mode, you can save the
query and continue working by clicking the Save button on the toolbar (or by selecting File fol-
lowed by Save from the Query menu). If this is the first time you’re saving the query, Access
prompts you for a name in the Save As dialog box.

You can also save the query by exiting the tool.

Running an action query
After you save an action query, you can run it by double-clicking its name in the Query container
(window). Access warns you that an action query is about to be executed and asks for confirmation
before it continues with the query.

Troubleshooting action queries
When you’re working with action queries, you need to be aware of several potential problems.
While you’re running the query, any of several messages may appear, including messages that sev-
eral records were lost because of key violations or that records were locked during the execution of
the query. This section discusses some of these problems and how to avoid them.

Data-type errors in appending and updating
If you attempt to enter a value that is not appropriate for the specified field, Access doesn’t enter
the value; it simply ignores the incorrect values and converts the fields to Null values. When you’re
working with append queries, Access appends the records, but the fields may be blank!

Key violations in action queries
When you attempt to append records to another database that has a primary key, Access will not
append records that contain the same primary key value.

NOTENOTE

615

Advanced Access Query Techniques 18

24_046732 ch18.qxp 11/21/06 8:55 AM Page 615

Access does not enable you to update a record and change a primary key value to an existing value.
You can change a primary key value to another value under these conditions:

n The new primary key value does not already exist.

n The field value you’re attempting to change is not related to fields in other tables.

Access does not enable you to delete a field on the one side of a one-to-many relationship without
first deleting the records from the many side.

Access does not enable you to append or update a field value that duplicates a value in a unique
index field. A unique index field is a field that has the Index property set to Yes (No Duplicates).

Record-locked fields in multiuser environments
Access will not perform an action query on records locked by another user. When you’re perform-
ing an update or append query, you can choose to continue and change all other values. But
remember this: If you enable Access to continue with an action query, you won’t be able to deter-
mine which records were left unchanged!

Text fields
When appending or updating to a text field that is smaller than the current field, Access truncates
any text data that doesn’t fit in the new field. Access does not warn you that it has truncated the
information.

Summary
Queries are the heart of every database applications. Queries are responsible for converting diffuse
data contained in tables into information that users can actually use. Without queries, you’d have
to write VBA code for every data extraction and transformation, rather than relying on a powerful
database object that performs these tasks for you.

It is unlikely you will ever use all of the techniques described in this chapter. The Access imple-
mentation of the SQL language is quite extensive and supports many highly advanced query and
SQL language constructs. Combining these capabilities with your other hard-earned Access devel-
opment skills adds considerably to the sophistication of your Access applications.

616

More Advanced Access TechniquesPart III

24_046732 ch18.qxp 11/21/06 8:55 AM Page 616

User interface is a term you hear frequently in discussions about per-
sonal computer software. In virtually all applications built with
Microsoft Access, the user interface consists of a series of Access

forms. If you intend to develop successful Access applications, you need to
understand Access forms inside out.

This chapter helps you improve your understanding of forms. You first take a
look at how to programmatically manipulate the many controls that consti-
tute the building blocks out of which forms are constructed. You examine,
also, some powerful ways to take advantage of subforms. A section of the
chapter is then devoted to presenting a grab-bag of forms-related program-
ming techniques that will help you create forms that wring the best perform-
ance from Access and your computer. Then, we discuss the Query By Form
feature that enables you to build an intuitive form-based interface between
users and Access queries.

Setting Control Properties
The building blocks of Access forms are known as controls. The form design
toolbox contains 16 types of controls from which you can build forms:
labels, text boxes, option groups, toggle buttons, option buttons, check
boxes, combo boxes, list boxes, command buttons, images, unbound (OLE)
object frames, bound (OLE) object frames, page breaks, subforms, lines, and
rectangles.

617

IN THIS CHAPTER
Setting Access form properties

Working with Access subforms

Reviewing common Access
forms techniques

Adding animation to Access
forms

Using combo boxes

Understanding advanced Access
form techniques

Using the Access tab control

Using dialog boxes in Access
applications

Advanced Access Form
Techniques

25_046732 ch19.qxp 11/21/06 8:55 AM Page 617

Each control on an Access form has a set of properties that determines how it looks and acts. In
Design View, you can determine property settings for any object by selecting the object and dis-
playing its property sheet. To display the property sheet, right-click the object and click Properties
in the pop-up menu or select the object and click the Properties button on the ribbon. Once the
property sheet is open, just click any other control in the form to display the control’s property set-
tings. Figure 19-1 shows the property sheet for the Next command button on the Contacts form in
the Chapter19.accdb application. As you are designing a form, you set control properties by
changing the values stored in each control’s property sheet.

FIGURE 19-1

The property sheet for the New command button

The form itself also has its own set of properties. If you display the property sheet in Design View
before selecting a specific control, Access lists the form’s properties in the property sheet, as indi-
cated by the caption “Form” in the property sheet’s title bar (see Figure 19-2). To display the form’s
properties in the property sheet after first displaying a control’s properties, click a completely blank
area in the form design window (outside the form’s defined border).

618

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 618

FIGURE 19-2

The property sheet for the Contacts form

Customizing default properties
Whenever you use a tool in the form Design View toolbox to create a control, the control is created
with a default set of property values. While this may seem obvious, what you may not know is that
you can set these default values yourself. For example, if you want all list boxes in your form to be
flat rather than sunken, it is more time-efficient to change the default SpecialEffect property
to Flat before you design the form, rather than changing the SpecialEffect property of every
list box individually.

In addition to saving you time while designing a form, customizing default properties can speed
the saving and loading of forms. When you save the form design, Access saves the default control
properties as well as those property values that differ from the default property settings for that
type of control. If most controls on the form use the default property settings, the saved form takes
less space, saves faster, and subsequently loads faster when your application uses it (but doesn’t
save memory).

To set control defaults, select a tool in the toolbox and then set properties in the property sheet.
Notice that the title in the property sheet is Selection type: Default <ControlType>. As
you set the control’s properties, you are actually setting the default properties for this type of con-
trol. Rather than adding the control to the form, select another control (such as the Select control
in the upper-right corner of the Controls group) to “lock down” the default settings. Then, when
you reselect the control, the control’s default properties have been set the way you want.

619

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 619

Manipulating controls at runtime
The form design capabilities of Access are so robust that you can sometimes get so engrossed in
designing beautiful forms that you lose site of the fact that all Access form controls are program-
matically accessible at runtime. It can sometimes turn out to be very convenient to change the
design of a form on the fly, based on input from the user. For example, a list box that contains
information that is relevant only some of the time doesn’t have to be displayed all the time. A well-
designed form hides irrelevant choices whenever possible. You can achieve this and similar func-
tionality by assigning values to control and form properties at runtime.

Following are a few properties that are often good candidates for dynamic assignment at runtime:

n Enabled property: If you want a control to be visible but grayed-out, set the Enabled
property to False. Clicking the grayed-out control has no effect. This technique enables
you to maintain a consistent form design, and helps the user get familiar with the location
of the various controls on the form but prevents the user from selecting a control that is
irrelevant to the current operation.

n Visible property: You can easily toggle the display of any control by assigning Yes or
No to the control’s Visible property. While the control is invisible, it is also inactive
and cannot receive the focus. An invisible control cannot respond to events as well.
Making a control invisible is sometimes more appropriate than simply disabling the con-
trol, especially in the case of irrelevant text, combo, or list boxes.

n Caption property: By dynamically assigning values to a control’s Caption property,
you can get the control to serve double- or triple-duty. This technique is especially useful
when two command buttons serve mutually exclusive functions and don’t need to appear
on the form at the same time. For example, you might place a command button with the
caption &New Patient Data on your application’s main switchboard form. This button
opens a form for adding a new record to your Patient database. After the new patient data
has been entered, but before the full transaction has been committed to the database, you
could change the command button’s caption to &Edit Patient Data using the but-
ton’s Caption property.

You can also use the active form’s Caption property creatively to display information
about the current record. Each time the current event occurs, assign a new value to the
Caption property that contains pertinent information from the current record.

n RowSource property: Use the RowSource property of a combo or list box control to
synchronize the list contents with values in other controls in the active form. For exam-
ple, if the txtDepartment control contains the value Sales you can use the
cboPhoneList combo box’s RowSource property to cause only members of the sales
department to be listed in the combo box.

n BackColor and ForeColor properties: Judicious use of color can be very effective in
accenting important information. Access enables you to dynamically change the color of
controls as they receive/lose the focus or to reflect a characteristic of the data by assigning
values to the ForeColor and/or BackColor properties.

620

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 620

n Left, Top, Width, and Height properties: Using these properties, you can control the
position and dimensions of a control on the form.

n MenuBar, ShortcutMenu, ShortcutMenuBar: If you have defined custom menu
bars, shortcut menus, and/or shortcut menu bars, you can use these form properties to
change the menu bar, shortcut menu, and/or shortcut menu bar that the form displays.

n Custom Ribbon ID: If the current application includes custom ribbons, the ribbon IDs
appear in this property’s drop-down list. Access shows and hides the assigned ribbon as
the form is opened and closed.

The SetProperty function included in the following procedure can be used to set the value of
any property of any open form or any property of any control in an open form:

Function SetProperty(_
ByVal strFormName As String, _
ByVal strCtrlName As String, _
ByVal strPropName As String, _
ByVal strNewValue As Variant) As Boolean

Dim frmName As Form
Dim strMsg As String
Dim strFunction As String
Dim strObjName As String

On Error GoTo HandleError

SetProperty = False
strFunction = “SetProperty”

‘If no control name is passed, must be a form:
If strCtrlName = “” Then
GoTo SetFormProperty

End IF

SetControlProperty:
‘Assign new control property value:
strObjName = strCtrlName
Set frmName = Forms(strFormName)
frmName(strCtrlName).Properties(_
strPropName) = strNewValue

SetProperty = True
GoTo ExitHere

SetFormProperty:
‘Assign new form property value:
strObjName = strFormName
Set frmName = Forms(strFormName)
frmName.Properties(strPropName) = strNewValue

621

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 621

SetProperty = True
GoTo ExitHere

ExitHere:

Exit Function

HandleError:
Select Case Err

Case 2450
strMsg = “‘“ & strFormName & “‘ is not an open form”

Case conNotControl
strMsg = “‘“ & strCtrlName _
& “‘ is not a control on ‘“ & strFormName & “‘“

Case 2465
strMsg = “‘“ & strPropName _
& “‘ is not a property of ‘“ & strObjName & “‘“

Case Else
strMsg = “Error#” & Err & “: “ & Err.Description

End Select

MsgBox strMsg, vbExclamation + vbOKOnly, _
“Error in Procedure “ & strFunction

SetProperty = False
Resume ExitHere

End Function

This function takes four arguments, the name of the form, the name of the control (if any), the
name of the property, and the new value of the property. It returns a value of True if the operation
is successful and False if it is not. For example, to disable the GoToNew button in the Employees
form, you could use the following statement:

intRetVal = SetProperty(“Employees”, “GoToNew”, “Enabled”, 0)

To set the value of a form property, pass a blank string (“”) as the control name. For example, to
set the frmEmployees form’s caption (in the Chapter19.accdb database) to Sales
Department, you can use the following statement:

intRetVal = SetProperty(“frmEmployees”, “”, _
“Caption”, “Sales Department”)

622

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 622

Hiding and shown controls is easily done by adjusting the control’s Visible property. You may
want to hide certain controls (such as command buttons or text boxes) when they are irrelevant to
the user’s current task. You may also want to hide controls if the user is not permitted to perform
the operation (such as deleting an existing record). Rather than simply disabling the control (by
setting its Enabled property to False), hiding the control makes it invisible on the form’s sur-
face. Invisible controls are less likely to confuse users than controls that are visible, but cannot be
accessed or used. The following statement hides a command button named cmdDeleteRecord
on the employees form:

intRetVal = SetProperty(“frmEmployees”, “cmdDeleteRecord”, _
“Visible”, “False”)

Reading control properties
If your application manipulates the control properties, at various times you will need to read the
value of a control’s property. The following GetProperty function returns the value of any prop-
erty of any open form or any property of any control in an open form. If the function encounters
an error, it returns the value ERROR.

Function GetProperty(_
ByVal strFormName As String, _
ByVal strCtrlName As String, _
ByVal strPropName As String) As Variant

Dim frmName As Form
Dim strMsg As String
Dim strFunction As String
Dim strObjName As String

On Error GoTo HandleError

GetProperty = “ERROR”
strFunction = “SetProperty”

‘If no control name is passed, must be a form:
If strCtrlName = “” Then
GoTo GetFormProperty

End If

GetControlProperty:
‘Get control property value:
strObjName = strCtrlName
Set frmName = Forms(strFormName)
GetProperty = _

frmName(strCtrlName).Properties(strPropName)
GoTo ExitHere

GetFormProperty:

623

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 623

‘Get form property value:
strObjName = strFormName
Set frmName = Forms(strFormName)
GetProperty = frmName.Properties(strPropName)
GoTo ExitHere

ExitHere:

Exit Function

HandleError:
Select Case Err

Case 2450
strMsg = “‘“ & strFormName & “‘ is not an open form”

Case 2465
strMsg = “‘“ & strCtrlName _

& “‘ is not a control on ‘“ & strFormName & “‘“

Case 2455
strMsg = “‘“ & strPropName _
& “‘ is not a property of ‘“ & strObjName & “‘“

Case Else
strMsg = “Error# “ & Err & “: “ & Err.Description

End Select

MsgBox strMsg, vbExclamation + vbOKOnly, _
“Error in Procedure “ & strFunction

Resume ExitHere

End Function

Notice that the GetProperty function returns a variant data type value. A variant is returned
because the function may return a property object, or — in the event of a problem accessing
the property — a string containing the word “ERROR”. If a runtime error is triggered by the
GetProperty function, a string containing the error number and message is returned.

Working with Subforms
Subforms are an indispensable tool for displaying information from two different tables or queries
on the screen together. Typically, subforms are used where the main form’s record source has a one-
to-many relationship with the subform’s record source. Many records in the subform are associated
with one record in the main form.

624

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 624

Access uses the LinkMasterFields and LinkChildFields properties of the subform control
to choose the records in the subform that are related to each record in the main form. Whenever a
value in the main form’s link field changes, Access automatically re-queries the subform.

When creating a subform, you may want to display subform aggregate information in the master
form. For example, you may want to display the count of the records in the subform somewhere
on your main form. For an example of this technique, see the txtItemCount control in
frmCustomerSales in Chapter19.accdb. In this case the ControlSource expression in
the txtItemCount control is:

=”(“ & [subfPurchases].[Form]![txtItemCount] & “ items)”

The result of this expression is shown in Figure 19-3.

FIGURE 19-3

Aggregate data from a subform can be displayed on the main form.

Before you can put aggregate data in the master form, its value must be found in the subform.
Place a text box wherever you want in the subform, and set its Visible property to No (False) so
that it is hidden. Put an aggregate expression, such as = Count([ProductID]), into its
ControlSource property.

In the main form, insert a new text box with ControlSource set to the following value:

=[Subform1].Form![Aggregate Control]

where Subform1 is the name of the control on the main form that contains the embedded sub-
form and Aggregate Control is the name of the control on the subform that contains the
aggregate data.

625

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 625

The control on the main form updates every time you change its value in the subform.

Access treats a subform control in the same manner as other controls on the main form. You can
set a subform control’s properties, and refer to it with a GoToControl command, and use code to
set and read the values of controls on the subform. Use the following syntax versions to refer to
subform properties, subform controls, and subform control properties, respectively:

Forms![FormName]![SubformName].Form.SubFormProperty
Forms![FormName]![SubformName].Form![ControlName]
Forms![FormName]![SubformName].Form![ControlName] _

.ControlProperty

where SubformName refers to the name you’ve given the subform control, which is not necessar-
ily the same as the name of the form as it appears in the Navigation pane.

When using subforms within subforms, use the following syntax:

Forms![FormName]![SubformName].Form![SubSubformName] _
.Form.SubSubFormProperty

Forms![FormName]![SubformName].Form![SubSubformName] _
.Form.[ControlName]

Forms![FormName]![SubformName].Form![SubSubformName] _
.Form.[ControlName].ControlProperty

Form Design Techniques
Following is a grab bag of form design tips that you may find handy; they have been gathered from
numerous sources. Hopefully they will inspire you to come up with many more on your own.

Using the Tab Stop property
From time to time you may place a control on a form that is intended to trigger a fairly drastic
result, such as deleting a record, or printing a long report. If you want to reduce the risk that the
user might activate this control by accident, you may want to make use of the Tab Stop property.

For example, suppose you have placed a command button named cmdDelete on a form that
deletes the current record. You don’t want the user to click this button by mistake. Modify the Tab
Stop property of the cmdDelete button to No to remove the button from the form’s tab order
(the default is Yes). A user will have to explicitly click on the button to activate it and will not be
able to accidentally choose it while entering data.

Tallying check boxes
If you ever need to count the number of True values in a check box field, consider using the fol-
lowing expression:

Sum(Abs([CheckBoxField]))

626

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 626

Abs converts all the -1’s to 1’s and the Sum function adds them up. To count False values, use the
following expression:

Sum([CheckBoxField] + 1)

True values (-1’s) are converted to 0 and False values (0’s) are converted to 1 before being
summed.

Adding animation
Using the Timer event, it is pretty simple to add animation to Access forms. You can move a con-
trol on the form at quick intervals or rapidly change the appearance of the control. To create the
appearance of animation:

1. Embed a picture on the form.

2. Set the TimerInterval property of the form to around 100 (milliseconds).

3. Assign the following event procedure to the Timer event:

Private Sub Form_Timer()
‘Move the image down and to the right.
ctlImage.Left = ctlImage.Left + 200
ctlImage.Top = ctlImage.Top + 100

End Sub

Screen positions in VBA are given in twips — 1/1440 of an inch. This event procedure moves the
image in the ctlImage control down and to the right on the form every 1/10th of a second.

The frmAnimation form in Chapter19.accdb uses the technique described here to move an
airplane bitmap across the form. A couple of other techniques are used to create a bit of animation.
The following event procedure, associated with the Timer event, causes a bitmap of a pencil eraser
to move back and forth by manipulating the Image control’s PictureAlignment property. The
procedure also causes a globe to spin by using the Visible property of three different bitmaps
that are positioned one on top of the other:

Private Sub Form_Timer()

On Error GoTo HandleError

‘Wiggle the eraser:
If Eraser.PictureAlignment = 2 Then
Eraser.PictureAlignment = 3

ElseIf Eraser.PictureAlignment = 3 Then
Eraser.PictureAlignment = 4

ElseIf Eraser.PictureAlignment = 4 Then
Eraser.PictureAlignment = 3

End If

‘“Spin” the globe:
If World1.Visible = -1 Then

627

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 627

World1.Visible = 0
World2.Visible = -1

ElseIf World2.Visible = -1 Then
World2.Visible = 0
World3.Visible = -1

ElseIf World3.Visible = -1 Then
World3.Visible = 0
World1.Visible = -1

End If

‘Now, move the plane:
Plane.Left = Plane.Left + 200
Plane.Top = Plane.Top + 100

ExitHere:

Exit Sub

HandleError:
Plane.Left = 0
Plane.Top = 800
Resume ExitHere

End Sub

The TimerInterval property is set to 200. Set it to a longer interval to slow down the animation.

Notice that the Error event is used to start the plane over again. Otherwise the plane “crashes” off
the edge of the form.

Using SQL for a faster refresh
You can generate faster combo box refreshes on a form by making the control’s row source a SQL
statement instead of a query name. Complete the following steps:

1. Generate the query using the standard procedure.

2. Make the query the control’s RowSource property and make sure the combo box is
correctly populated.

3. When everything works correctly, display the query in Design View and select SQL
from the View menu.

4. Cut and paste the SQL statement into the combo box’s RowSource property.

Selecting data for overtyping
When users edit existing data in a form, they usually prefer to type over existing data without hav-
ing to first select the existing data. The following function when triggered by each control’s
GoFocus event has this effect:

628

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 628

Function SelectAll()
SendKeys “{Home}” ‘Moves the cursor to first position
SendKeys “+{End}” ‘Selects all positions up to the last

‘and as a reversed image easy to see
‘and overtype.

End Function

Toggling properties with Not
A handy way to toggle properties that take Boolean values, such as the Visible property, is to use
the Not operator. For example, the following VB statement toggles the object’s Visible property,
regardless of the actual value of the property:

Object.Visible = Not Object.Visible

For example, if Visible is True, its value is set to False, hiding the object. By using the Not
operator, you don’t have to test for the current value of the property.

Chapter19.accdb contains a simple form demonstrating this capability. frmFlashingLabel
contains two label controls (lblRed and lblBlue) placed on top of one another. lblRed’s
Visible property is initially set to No, making it invisible. Then the following code runs every
time the form’s Timer event fires:

Private Sub Form_Timer()
lblRed.Visible = Not lblRed.Visible
lblBlue.Visible = Not lblBlue.Visible

End Sub

This code simply alternates the Visible property of each of the label controls. Since lblRed was
initially invisible, it is made visible in the first pass, and so on. Although there are many other ways
to implement this form trick, this example adequately demonstrates the value of the Not operator
when dealing with property values.

Creating an auto-closing form
If you want a form to close automatically as soon as the user moves to another form, do the following:

1. Create an event procedure for the Deactivate event that includes the following
statement:

Me.TimerInterval = 1

2. Create an event procedure for the Timer event that includes the following statement:

DoCmd.Close

Your form automatically closes as soon as you go to any other form.

629

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 629

Combo box techniques
Combo boxes and list boxes are powerful tools in your form-building toolbox, but they can be
complicated to set up. When you build combo boxes and list boxes it is important to keep in mind
the distinction between ControlSource, which is the table or query field to and from which the
control saves and loads data, and RowSource, which is the source of the data displayed in the list.
Because combo and list boxes support multiple columns, they allow you to easily related data from
another table without basing your form on a query that joins the tables. This technique, which
involves a bound combo or list box control that stores an ID number but displays names in a list, is
used in the Organization combo box in the Contacts_Northwind form in Chapter19.accdb as
well as in several of the forms found in the Northwind sample database.

For example, suppose you’re creating a form to display information about your clients and cus-
tomers (your “contacts”), and you want to identify the organization with which these contacts are
associated. In a well-designed database, you store only an organization ID number with each con-
tact record, while you store the organization’s name and other information in a separate table. You
want your form to include a combo box that displays organization names and addresses in the list
but stores organization ID numbers in the field. (For an example of this technique, see
frmContacts_Northwind in Chapter19.accdb.)

To accomplish your design goal, create a multiple-column combo box. Set the ControlSource
to the OrgID field (the field in the Contacts table that contains the organization ID number for
each contact person). Set the RowSourceType property of the combo box to Table/Query.
You could base the list on a table, but you want the list of names to be sorted; instead, set the
RowSource property to a query that includes OrgID numbers in the first field, and organization
names sorted ascending in the second field. The best way to do this is using the Query Builder for
the RowSource property to create a SQL statement; alternatively, you can create and save a query
to provide the list. In frmContacts_Northwind example (the Organization combo box), the
RowSource query is as follows:

SELECT Organizations.OrgID, Organizations.Name,
Organizations.AddressLine1, Organizations.AddressLine2,
Organizations.City, Organizations.State,
Organizations.ZipCode, Organizations.Country
FROM Organizations ORDER BY Organizations.Name

Because you are interested in seeing all this data listed in the combo box, set the ColumnCount
property to 8. You hide the OrgID column in a minute, but you need it in the combo box
RowSource because it contains the data that is saved by the control when a row is selected by the
user. This column is identified by the combo box’s BoundColumn property (set to 1 by default).
The bound column containing ID numbers doesn’t have to be visible to the user. The
ColumnWidths property contains a semicolon-separated list of visible column widths for the
columns in the drop-down menu. Access uses default algorithms to determine the widths of any
columns for which you do not explicitly choose a width. If you choose a width of 0 for any col-
umn, that column is effectively hidden from the user on the screen, but it is not hidden from the
rest of your forms, VBA code, or macros. In this case you set the property to the following:

0”;1.4”;1.2”;0.7”;0.7”;0.3;0.5”;0.3”

630

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 630

This indicates to Access that you want the first column to be invisible and sets explicit column
widths for the other columns.

The second column, in this case the organization name, is the one the user’s text input is matched
against. The first visible column in the combo box is always used for this purpose. Figure 19-4
shows the resulting drop-down list. Although this is a rather extreme example of loading a combo
box with data, it effectively illustrates the power of the Access combo box control.

FIGURE 19-4

The drop-down list for the Organizations combo box

When working with combo boxes, if you set the Limit to List property to Yes, the user is
required to choose only from the entries in the drop-down list. You can then construct an event
procedure for the control’s NotOnList event to handle what should happen if a user enters a
value not in the list. You may want to open a form into which the user can enter new information;
or perhaps you want to display a message box that instructs the user what procedure to follow to
add data.

Determining whether a form is open
The following code shows a function that reports whether the form passed in as strFName is cur-
rently open. It simply enumerates all members of the Forms collection, looking to see if
strFName matches the name of any open form.

Function IsFormOpen(strFName As String) As Integer

‘This function returns true if a form is open:

Dim i As Integer

‘Assume False:

631

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 631

IsFormOpen = False

For i = 0 To Forms.Count - 1
If Forms(i).Name = strFName Then
IsFormOpen = True
Exit Function

End If
Next

End Function

Advanced Forms Techniques
Access 2007 contains many powerful and exciting features in its forms design and user interface
capabilities. As you well know, the forms in your applications are the main component of the user
interface. To a large extent a user’s perception of an application’s ease of use and strength is deter-
mined by the attractiveness and effectiveness of its user interface. You’ll be pleased to know that
Microsoft has provided Access 2007 forms with significant capabilities to control the user interface.
Many of these features have been in Access for a very long time, but haven’t been discovered by
many developers.

Page Number and Date/Time controls
Most Access reports and many forms contain more than one page, and very often forms and
reports include the current date and time. Many developers add this information to a form or
report with an unbound text box, and use the Page property or Date() function to return this
information to the unbound text box. Access simplifies this process with the Page Numbers and
Date and Time commands on the Insert menu (see Figure 19-5).

FIGURE 19-5

These commands simplify adding the page number or date to forms and reports.

632

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 632

When these commands are selected Access first asks you how you want the data displayed (see
Figure 19-6). Then it inserts an unbound text box onto the form or report.

FIGURE 19-6

Tell Access how you want the page numbers or date to appear.

If you’ve asked for the page number to appear in the header or footer area, Access automatically
adds these objects to your form and pops the unbound page number text box where you’ve indi-
cated (see Figure 19-7). You are free to reposition the unbound text boxes anywhere you wish, of
course. Adding page numbers and dates to forms and reports takes only a few seconds and is com-
pletely foolproof in Access 2007.

FIGURE 19-7

Access intelligently places the unbound controls on the form for you.

Image control
A subtle and often overlooked performance issue in Access applications occurs when static images
are added to forms. Images are often added to Access forms as OLE objects, which means that a
certain amount of memory and disk space is required to maintain the image’s connection to its par-
ent application. This overhead is used even when the image is a company logo or other graphic
that will not be changed or edited at runtime.

633

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 633

Access 2007 simplifies this process and provides a great deal more flexibility with the Image con-
trol. The Image control places an image frame onto a form or report, but does not burden the
image object with the overhead associated with OLE objects. The Image control accepts virtually
any type of image data type recognized by Windows (.bmp, .pcx, .ico, .dib, .gif, .wmf, and
so on), and enables you to specify the path to the image file at runtime in its Picture property.
The Image control also accepts image data stored in an Access table, although it does not provide
the flexibility of in-place editing.

Control “morphing”
Surely one of the most frustrating problems when building Access forms is the need to specify the
control type as a control is added to a form. For instance, consider the issues involved when you
add a list box to an Access form, specify the ControlSource, RowSourceType, RowSource,
and other properties and then discover there’s not enough room on the form for the list box. In this
case, it seems the only solution is to remove the list box, add a combo box and reset all of the
properties, even though the properties for the combo box are identical for the list box you just
removed.

In Access 2007 you are able to change a control to any other compatible type (a process sometimes
called morphing the control). For instance, a text box can be changed to a label, list box, or combo
box. Simply right-click the control and select the Change To command from the shortcut menu to
see the options. Figure 19-8 shows the options for changing a text box control.

FIGURE 19-8

Access 2007 lets you change the type of a control without losing the properties you’ve already set.

The choices you see in the shortcut menu make sense for the type of control you’re changing. For
instance, an option button can be changed to a check box or toggle button, but not to a text box.

634

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 634

Format Painter
Access 2007 includes a format painter that functions much like the same feature in Word. When
creating a form, you set the appearance of a control (its border, font, special effects like sunken or
raised) then click the Format Painter button from the Font group on the ribbon’s Design tab to
copy the properties to a special internal buffer. When you click another control of the same type,
the appearance characteristics of the selected control are transferred to the second control. In
Figure 19-9 the format properties of the First Name text box are about to be “painted” onto the
Last Name text box (notice the little paintbrush adjacent to the mouse pointer to tell you you’re in
“paint” mode).

FIGURE 19-9

The Format Painter makes it easy to “paint” the appearance of a control onto other controls on a form.

The Format Painter can be locked by double-clicking its button on the Access ribbon. It is impor-
tant to note that not all properties are painted onto the second control. The size, position, and data
properties of the control are not affected by the Format Painter. Only the most basic text properties
are influenced by the Format Painter.

Offering more end-user help
Beginning with Office 4.x all Microsoft products have featured ToolTip help — those little yellow
“post-it notes” that appear when you hold the mouse cursor over a control or button. (Microsoft
calls these prompts “control tip help.”)

635

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 635

You add ToolTips to Access 2007 forms by adding the help text to the control’s ControlTip
Text property (see Figure 19-10). By default the text in a ToolTip does not wrap, but you can add
a new line character by pressing Ctrl+Enter in the ControlTip text wherever you want the break to
appear.

FIGURE 19-10

ToolTip help makes your applications easier to use.

In general, you should consistently use ToolTips throughout an application. After your users
become accustomed to ToolTips they expect them on all but the most obvious controls.

Adding background pictures
Attractive forms are always a valuable addition to Access applications. It’s difficult to add color or
graphics to forms without obscuring the data contained on the form. Access 2007 makes it easy to
add a graphic to the background of a form much as a “watermark” may appear on expensive bond
paper. The picture can contain a company logo, text, or any other graphic element. The picture is
specified by the form’s Picture property and can be embedded in the form or linked to an exter-
nal file. If the picture is linked, the graphic displayed on the form changes any time the external
file is edited.

The picture can also be positioned at any of the form’s four corners or centered in the middle of the
form. Although the picture can be clipped, stretched, or zoomed to fit the dimensions of the form,
you cannot modify the picture to make it smaller (other than editing the image file, of course).
Figure 19-11 shows a small background picture positioned in the upper-right corner of
frmContacts.

636

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 636

FIGURE 19-11

A small .bmp file has been added to frmContacts as the Picture property.

You can even make controls on a form transparent so that the form’s background picture shows
through the controls (see Figure 19-12). In this case (frmEmployees_Background), the back-
ground of each label control is set to Transparent, letting the form’s background picture show
through.

FIGURE 19-12

Transparent controls allow the background picture to show through.

Obviously, it’s easy to overdo the background picture added to Access forms, but, when carefully
used, background pictures can make forms easier for users to understand.

Be forewarned, however, that background pictures added to a form noticeably slow down the
form’s appearance on the screen. Generally speaking, you should use a background picture when
the benefit provided by the picture outweighs the unavoidable performance degradation caused by
the picture’s presence.

637

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 637

Form events
The Access 2007 form events allow you to fine-tune your form’s behavior when filters are applied
or removed from the form’s underlying data source.

ApplyFilter
The ApplyFilter event fires whenever the user applies a filter by clicking one of the filter but-
tons (Ascending, Filter, Selection, and so on) in the Sort & Filter ribbon group. You can use the
ApplyFilter event to test the user’s filtering criteria to make sure the filter makes sense. Use the
form’s Filter property to determine whether the filter being applied contains valid criteria, or to
modify the Filter property in code.

You can also use the ApplyFilter event to hide certain fields that should not be viewed by all
users, or to pop up a dialog requesting additional identification information such as an “extra”
password or username.

Finally, because ApplyFilter is triggered when you click Remove Filter button in the Sort &
Filter group, you can use this event to reveal hidden fields, reset the Filter property to its former
value, and so on.

Filter event
The Filter event is similar to the ApplyFilter in that it is triggered whenever the user
invokes one of the built-in forms filtering options. The Filter event triggers before the
ApplyFilter event and is useful for displaying your own filtering form, removing controls that
should not be used in a filter by form session, and so on. Together the Filter and
ApplyFilter events give you a great deal of control over user access to the built-in filtering
capabilities in Access 2007.

Using the Tab Control
A tab control, of course, provides a several pages, each accessed through a tab at the top, bottom,
or side of the dialog. Figure 19-13 shows frmContacts, a perfect example of a tabbed Access
form. frmContacts contains three tabs, allowing the form to contain many more controls than
possible without the tab control. Each of the tabs along the top of the form reveals a different page
of the form’s data. Each page contains many controls. Figure 19-13 shows buttons, labels, and text
boxes. Each control on the page behaves independently of all other controls on the form and can
be accessed through Access VBA code as an independent unit.

As you might guess, the tab control is fairly complex. The tab control includes its own properties,
events, methods, and object collections. You have to know and understand these items before
effectively using the tab control in your applications.

638

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 638

FIGURE 19-13

The tab control allows a form to host a large amount of data.

A tab control consists of a number of Page objects, each a member of the control’s Pages collec-
tion. Developers often use the expression tab when referring to the pages of a tabbed dialog box. In
this chapter the expressions Page and tab are used interchangeably. Each page includes a
Controls collection consisting of the controls that have been added to that page. A page is added
to the Pages collection with the Add method of the Pages object; whereas a page is removed
from the dialog with the Pages object’s Remove method. From the user interface, the quickest
and easiest way to add or delete a page is to right-click the control and select the appropriate com-
mand from the shortcut menu (see Figure 19-14).

FIGURE 19-14

The tab control’s shortcut menu contains relevant commands.

639

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 639

Using the Add and Remove methods to add new pages or delete existing pages from a tab control
is not very practical for a number of reasons. First of all, both methods require the form to be in
Design View before they are able to modify the tab control. The Add method does not return a
handle to the new tab. Therefore, it is difficult if not impossible to manipulate the properties of the
new tab. Furthermore, the Delete method acts on the tab with the highest index and does not
accept an index or page name as an argument. Therefore, you have to be very careful to make sure
you are actually removing the tab you think you are.

In addition to these methods, the tab control contains the relevant properties shown in Table 19-1.
Use these properties to tailor the tab controls in your applications to suit the needs of your users.

TABLE 19-1

Important Tab Control Properties

Property Description

Caption Applies to each page in the tab control. Provides the text that appears on the tab.

MultiRow Applies to the tab control. Determines whether the tabs appear as a single row or as
multiple rows. You cannot specify how many tabs appear in each row. Instead,
Access adds as many rows as necessary to display all tabs, given their respective
widths.

Style By default tabs appear as tabs. The alternative (Buttons) forces the tabs to appear as
command buttons.

TabFixedHeight This value determines the height (in inches or centimeters, depending on the units of
measurement settings in the Windows Control Panel) of the tabs on the control.
When the TabFixedHeight set to 0, the tab height is determined by the size of the
font specified for the tab control.

TabFixedWidth This value determines the width (in inches or centimeters) of the tabs on the control.
Text that is too wide to fit on the tab when the TabFixedWidth value is set is
truncated. When the TabFixedWidth is set to 0, the width of the tab is determined
by the font size selected for the tab control and the text specified in the tab’s
Caption property.

Picture Applies to each page on the tab control. The Picture property specifies an image
(.bmp, .ico, or built-in picture) to display on the tab.

The tab control itself has a Value property that tells you which tab is selected. Value changes
each time a tab is selected. Figure 19-15 shows frmTabControl2, a form included in
Chapter19.accdb on this book’s companion CD-ROM. This form demonstrates some of the
properties of the tab control and its pages.

640

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 640

FIGURE 19-15

frmTabControl2 in the Chapter19.accdb example database demonstrates important tab control properties.

The Value property of a tab control indicates which page is currently selected. It returns an inte-
ger that indicates the position of the selected page in the Pages collection. For example, if the first
page in a tab control is selected, the Value property returns 0, the index number of the first page
in the Pages collection. If the second page is selected, the Value property returns 1, and so on.
The page’s position within the collection corresponds to the value of the PageIndex property for
that page.

A tab control can contain virtually any type of control, including text boxes, combo and list boxes,
option buttons and check boxes, and OLE objects. A tab control can even include other tab con-
trols! Although a form can contain multiple tab controls, it is probably not a good idea to overload
the user by putting more than one tab control on a form. After all, the reason you use tab controls
in an application is to simplify the form by fitting multiple pages of controls within a single con-
trol. In most cases, there is no point in challenging the user with more than one tab control on a
form.

Using Dialog Boxes to Collect Information
The dialog box is one of the most valuable user interface components in Windows applications.
When properly implemented, dialog boxes provide a way to extend the available screen space on
the computer. Rather than having to place every text box, option button, and other user input con-
trol on the main form, dialog boxes provide a handy way to move some of these controls to a con-
venient pop-up device that is on the screen only when needed.

Dialog boxes usually collect a certain type of information, such as font attributes or hard-copy
parameters. Dialog boxes are a valuable way to prefilter or qualify user input without cluttering the
main form. Or use a dialog box to allow the user to enter query criteria before running a query that
populates a form or report, or to gather information that is added to a report’s header or footer area.

641

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 641

Although they are forms, dialog boxes should not look like or behave as other forms in the applica-
tion do. Dialog boxes often pop up over the user’s work. When properly implemented, dialog
boxes also provide a means to simply cancel the query without breaking anything on the user’s
workspace.

A typical query form implemented as a dialog box is shown in Figure 19-16. This simple form
gathers information that is used to query the database for order information.

FIGURE 19-16

A dialog box used to collect data for an ad-hoc query.

The relevant properties of this dialog box include those listed in Table 19-2.

TABLE 19-2

Property Settings for Dialog Forms

Property Setting Purpose

ScrollBars Neither Scroll bars aren’t needed on a dialog.

NavigationButtons No Navigation buttons aren’t needed.

PopUp Yes Keeps form on top.

Modal Yes Prevents the user from working with another part of the
application until the dialog box is removed.

RecordSelectors No Not needed.

BorderStyle Dialog Specifies wide borders that can’t be resized. Also removes
Minimize and Maximize buttons.

ShortcutMenu No Not needed.

642

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 642

After these changes have been made, you have a form that is always on top of the user’s work and
won’t leave the screen until the user clicks the Run Query or Cancel button.

There are a couple of rules you should follow when constructing dialog boxes. These rules ensure
that your dialog boxes conform to the generally accepted behavior for Windows dialog boxes.

Composing the SQL statement
A temporary querydef object is created when the user clicks the Run Query button. Although
you are simply opening the query on the screen, the temporary query could just as easily serve as
the RecordSource of a form or report.

Private Sub cmdRunQuery_Click()
Dim db As DAO.Database
Dim QD As DAO.QueryDef
Dim where As Variant

Set db = CurrentDb

‘Delete existing dynamic query, trap error if it does not
exist.
On Error Resume Next
db.QueryDefs.Delete (“MyQuery”)
On Error GoTo 0

‘Note Single quotes surrounding text fields [Ship Country]
‘and [Customer ID]
‘Note NO Single quotes surrounding Numeric field [Employee ID]
where = Null

If Not IsNull(txtContactID.Value) Then
where = where _
& (“ [ContactID]= “ & Me![txtContactID] & “ “)

End If

If Not IsNull(txtLastName.Value) Then
If Len(where) > 0 Then

where = where _
& (“ AND [LastName]= ‘“ & Me![txtLastName] & “‘ “)

Else
where = where _
& (“ [LastName]= ‘“ & Me![txtLastName] & “‘ “)

End If
End If

If Not IsNull(txtCity.Value) Then
If Len(where) > 0 Then

where = where _

643

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 643

& (“ AND [City]= ‘“ & Me![txtCity] & “‘ “)
Else

where = where _
& (“ [City]= ‘“ & Me![txtCity] & “‘ “)

End If
End If

If Not IsNull(txtZipCode.Value) Then
If Len(where) > 0 Then

where = where _
& (“ AND [ZipCode]= ‘“ & Me![txtZipCode] & “‘ “)

Else
where = where _
& (“ [ZipCode]= ‘“ & Me![txtZipCode] & “‘ “)

End If
End If

Set QD = db.CreateQueryDef(“MyQuery”, _
“SELECT * FROM Contacts WHERE “ & where & “;”)

DoCmd.OpenQuery “MyQuery”

‘Me.Visible = False
DoCmd.Close acForm, Me.Name

End Sub

Notice that the SQL statement is built up with the contents of the text boxes on the form. Each text
box’s value is added only when the text box is not null. Also, the length of the query string is eval-
uated before adding to the SELECT clause. The AND is added only when the SELECT clause
already contains a value so that the resulting SQL string looks something like this:

SELECT * FROM Contacts
WHERE ContactID = 17 AND City = ‘New York’;

Adding a default button
There should be a button on the form that is automatically selected if the user presses the Enter
key while the dialog is open. The default button does not have to be selected by the user to be trig-
gered; Access does this automatically as the user presses the Enter key.

For instance, the user enters 17 in the Customer ID text box and presses the Enter key. Unless a
default button is specified, the input cursor simply drops down to the Ship City text box. If you’ve
designated the Run Query button as the dialog’s default, Access interprets the Enter key press as a
Click event for the Run Query button.

644

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 644

Set the Run Query’s Default property to Yes to make it the default for this dialog. Only one but-
ton on a form can have its Default property set to Yes— if you move to the Cancel button and
set its Default property to Yes, Access silently changes the Run Query’s Default property to No.

Normally, the designated default button is on the left of the form. If you’ve arranged the command
buttons vertically on a form, the top button should be the default.

You should select a button that won’t cause trouble if accidentally triggered as the default for a
form. For instance, to avoid the risk of losing data, it’s probably not a good idea to set a button that
performs a delete action query as the default. In this case, you may decide to make the Cancel but-
ton the default.

Setting a Cancel button
The Cancel button on a form is automatically selected if the user presses the Esc key while the
form is open. In most cases, you simply want the dialog box to disappear if the user hits the Esc
key while the dialog is open.

Set a button’s Cancel property to designate it as the form’s Cancel button. In our example,
cmdCancel has been designated the dialog’s Cancel button. As with the default button, only one
button on a form can be the Cancel button. Access triggers the Cancel button’s On Click event
whenever the user presses the Esc key.

Removing the control menu
After you’ve designated default and Cancel buttons, you have no need for the control menu button
in the upper-left corner of the form. Set the form’s Control Box property to No to hide the con-
trol menu button. Once the control menu box is removed, the user will have to use the Cancel or
Run Query buttons to remove the form from the screen.

Closing the form
The dialog form remains on the screen on top of the query results. The following line was added to
the Click event of the Run Query button to remove the form from the Access desktop:

DoCmd Close acForm, Me.Name

In some cases, however, you’ll want to continue to reference information in the dialog box after the
user is “done” with it. In these cases you should hide the dialog form, rather than close it. Use the
following statement at the bottom of the Click event to hide the dialog form as the query opens:

Me.Visible = False

As with any user interface component, always completely test any dialog box. Because it “takes
over” the user’s desktop, you want to make sure the dialog behaves as expected and does not
impede or annoy the user in any way.

645

Advanced Access Form Techniques 19

25_046732 ch19.qxp 11/21/06 8:55 AM Page 645

Summary
This chapter has assisted you in understanding Access 2007 forms. You now have a better grasp on
the workings of the Access event model, and you know how to programmatically manipulate the
many controls that constitute the building blocks out of which forms are constructed. You also
have a larger bag of tricks from which to draw when you are building Access forms.

The advanced forms features in Access 2007 boggle the mind. It is unlikely you will use all of the
new forms design tricks in your first Access 2007 application, but it’s nice to know what you can
do with this truly remarkable development platform.

646

More Advanced Access TechniquesPart III

25_046732 ch19.qxp 11/21/06 8:55 AM Page 646

Back in the bad old days, most computer-generated reports were
printed on pulpy, greenbar paper in strict row-and-column (called
tabular) format. The user was expected to further process the data to

suit his particular needs — often, a time-consuming process that involved
manually summarizing or graphing the data.

Things have changed. Visually oriented business people want useful, inform-
ative reports produced directly from their databases. No one wants to spend
time graphing data printed in simple tabular format nowadays. Users want
the software to do much of the work for them. This means that reporting
tools such as Microsoft Access must be able to produce the high-quality,
highly readable reports users demand.

Because Access is a Windows application, you have all the super-duper
Windows facilities at your disposal: TrueType fonts, graphics, and a graphical
interface for report design and preview. In addition, Access reports feature
properties and an event model (although with fewer events than you saw on
forms) for customizing report behavior. You use the Visual Basic language to
add refinement and automation to the reports you build in Access.

In this chapter, we provide some general principles and design techniques to
keep in mind as you build Access reports. These principles will help make
your reports more readable and informative.

All of the examples presented in this chapter can be found in
the sample database named Chapter20.accdb on this

book’s CD-ROM. Please note that many of the figures in this chapter appear
with the report Design view grid turned off to make the report design details
easier to see.

ON the CD-ROMON the CD-ROM

647

IN THIS CHAPTER
Learning techniques to add to
your Access reports

Adding alphabetically and
numerically sorted lists to
reports

Using report events and VBA
code to enhance reports

Hiding headers and other report
sections at runtime

Adding extra white space
between detail sections

Applying special formatting to
even and odd pages

Advanced Access Report
Techniques

26_046732 ch20.qxp 11/21/06 8:56 AM Page 647

Hide Repeating Information
An easy improvement to tabular reports is to reduce the amount of repeated information on the
report. Figure 20-1 shows a typical tabular report produced by Access (rptTabularBad), based
on a simple query of the Northwind Traders data.

FIGURE 20-1

Simple tabular reports can be confusing and boring.

The report in Figure 20-1 was produced with the Access Report Wizard, selecting the tabular
report format and all defaults. The query underlying this report selects data from the Customers,
Orders, and Employees tables in Northwind.accdb and is shown in Figure 20-2. Notice that
the data returned by this query is restricted to the month of January 2008. Also, the first and last
names of employees are concatenated as the Name field.

FIGURE 20-2

The simple query underlying rptTabularBad

648

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 648

You can significantly improve the report in Figure 20-1 simply by hiding repeated information in
the Detail section. As soon as Andrew Fuller’s name is given, there’s no need to repeat it for every
sale that Andrew made in January 2008. The way the data is arranged on rptTabularBad, you
have to search for where one employee’s sales data ends and another employee’s data begins.

Making the change to hide the repeated values is very easy:

1. Open the report in Design view.

2. In the Detail section, select the Name field containing the employee’s first name and
last name.

3. Open the Property Sheet for the Name field (see Figure 20-3).

FIGURE 20-3

The default property values sometimes lead to unsatisfactory results.

4. Change the Hide Duplicates property to Yes.

The default is No, which directs Access to display every instance of every field.

5. Put the report back to Print Preview mode and enjoy the new report layout (shown
in Figure 20-4).

The report shown in Figure 20-4 is rptTabularGood.

649

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 649

FIGURE 20-4

Much better! Hide that repeating information.

Distinguishing the sales figures for individual employees in Figure 20-4 is much easier than when
the repeating information is printed on the report. Notice that no fancy programming or report
design was required. A simple property-value change resulted in a much more readable and useful
report. (Mainframe report designers working with high-speed line printers, and traditional report
writers would kill for a report as good looking as the one shown in Figure 20-4!)

The Hide Duplicates property only applies to records that appear sequentially on the report.
As soon as Access has placed a particular Name value on the report, the name won’t be repeated in
records immediately following the current record. In Figure 20-4, the records are sorted by the
EmployeeName field, so all records for an employee appear sequentially as a group. If the report
were sorted by another field (for instance, OrderID or OrderDate) the HideDuplicates
property set on the Name field would apply only to those instances where the employee’s name
coincidentally appeared sequentially in multiple records on the report.

Alphabetically Group Data
Data is often displayed with too much granularity to be useful. As you saw in Figure 20-1, a report
displaying every sale made by every employee arranged in a tabular format can be difficult to read.
And, as you saw in the revised example, anything you do to reduce the overload of tabular reports
can make the data more meaningful.

Sometimes even grouping data doesn’t help much. Have you ever seen a book index where every
major topic appeared in bold with minor topics within the major topic indented below the bold

650

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 650

heading? Some book indexes use boldface for virtually everything (including topics with no subor-
dinate subtopics below them), creating a confusing, hard-to-read page. A much better arrangement
is to group data into alphabetically sorted groups. Dictionaries and encyclopedias use alphabetical
groupings for their data. Imagine how difficult it would be to find a person’s phone number if the
data weren’t carefully grouped by the letters of the alphabet and then arranged into alphabetical
order within the group!

The Sorting and Grouping dialog box (which you can get to by choosing the Group and Sort but-
ton in the Grouping & Totals group in the Design tab) controls how data is grouped on Access
reports. Sorting alphabetically simply arranges the records in alphabetical order based on the first
character of the company name, while grouping by company name will create a separate group for
each company.

Typically, data is grouped on the entire contents of a field or combination of fields. Simple group-
ing on the CompanyName field means that all records for Bottom Dollar Markets appear together
as a group. You can, however, override the default and group based on prefix characters by chang-
ing the Group On property in the Sorting and Grouping dialog box (see Figure 20-5).

FIGURE 20-5

Alphabetical grouping is easy!

When you select Prefix Characters, the GroupInterval property tells Access how many charac-
ters to consider when grouping on prefix characters. In our case, Group Interval is set to 1, mean-
ing, “Consider only the first character when grouping.” Notice also that the CompanyName field is
set to Ascending Sort, which causes alphabetic grouping starting at names beginning with A and
progressing to names beginning with Z. With this combination of properties, all companies starting
with A will be grouped together, those beginning with B will be in another group, and so on.

For this example, a slightly different report is used to illustrate prefix character grouping. This
report (rptSalesJan08Alpha1, shown in Figure 20-6) shows purchases during the month of
January 2008, sorted by customer name. The order date, order ID, and the employee filling the
order are shown across the page. The result of the sorting and grouping specification in Figure
20-5 is shown in Figure 20-6. (Hide Duplicates has been set to Yes for the CompanyName field so
that each customer appears only once in the list.)

It’s important to note that the data shown in Figure 20-6 is identical to the data in Figure 20-4. In
fact, the same record source (qrySalesJan08, shown in Figure 20-2) is used for both of these
reports. Often, a data rearrangement yields useful information. For instance, you can easily see that
Around the Horn placed two orders in January with the same sales agent, Janet Leverling.

651

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 651

FIGURE 20-6

A rearrangement of the data shown in Figure 20-4, earlier in this chapter

Let’s assume we want to refine the rptSalesJan08Alpha1 report by labeling the groups with
the letters of the alphabet. That is, all customers beginning with B (B’s Beverages, Berglunds snab-
bköp, Blondel père et fils, and so on) are in one group, all the C customers (Comércio Mineiro,
Consolidated Holdings, and so on) in another group, and so on. Within each group the company
names are sorted in alphabetical order. The sales to each customer are further sorted by order ID.

To emphasize the alphabetical grouping, a text box containing the first character for each group has
been added to the report (see rptSalesJan08Alpha2 in Figure 20-7). Although our data set in this
example is rather small, in large reports such headings can be useful.

FIGURE 20-7

An alphabetic heading for each customer group makes the rptSalesJan08Alpha2 report easier to read.

652

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 652

Adding the text box containing the alphabetic character is easy:

1. Choose View ➪ Design.

2. Choose View ➪ Sorting and Grouping.

The Sorting and Grouping dialog box appears.

3. Set the Group Header property for CompanyName to Yes.

This will add a band for a group based on the CompanyName information.

4. Open the CompanyName group header and add an unbound text box to the
CompanyName group header.

5. Set the text box’s Control Source property to the following expression:

=Left$([CompanyName],1)

6. Set the other text box properties (Font, Font Size, and so on) appropriately.

When you’re done, the report in Design view should appear as shown in Figure 20-8.

FIGURE 20-8

rptSalesJan08Alpha2 in Design view

Notice the CompanyName group header that was added by the Group Header setting in the
Sorting and Grouping dialog box. The Property Sheet for the unbound text box is shown so you
can see the expression used to fill the text box.

This little trick works because all of the rows within a CompanyName group have the first charac-
ter in common. Using the Left$() function to peel off the first character and use it as the text in
the text box in the group header provides an attractive, useful heading for the CompanyName
groups.

653

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 653

Group on Date Intervals
Many reports require grouping on dates or date intervals (day, week, or month). For instance,
Northwind Traders may want a report of January 2008 sales grouped on a weekly basis so that
week-to-week patterns emerge.

Fortunately, the Access report engine includes just such a feature. An option in the Sorting and
Grouping dialog box enables you to quickly and easily group report data based on dates or date
intervals. Just as we grouped data based on prefix characters in an earlier example, we can group
on dates using the group’s GroupOn property. Figure 20-9 shows the January 2008 sales report
grouped by each week during the month. This report is named rptSalesJan08ByWeek.

FIGURE 20-9

The January 2008 sales data grouped by each week during the month

This report is easy to set up. Open the Sorting and Grouping dialog again and establish a group for
the OrderDate field. Set the OrderDate GroupHeader option to Yes and drop-down the
Group On list (see Figure 20-10). Notice that Access is smart enough to present Group On options
(Year, Qtr, Month, Week, and so on) that make sense for date/time fields like OrderDate.
Selecting Week from this list instructs Access to sort the data on the OrderDate, grouped on a
week-by-week basis.

FIGURE 20-10

OrderDate is a date/time field, so the grouping options are relevant for date and time data.

654

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 654

The label at the top of the group identifying the week (the first one reads Week beginning
1/1/08:) is the product of the following expression in an unbound text box in the OrderDate
group header:

=”Week beginning “ & [OrderDate] & “:”

See the Design view of rptSalesJan08ByWeek in Figure 20-11. Notice the unbound text box in
the OrderDate group header. This text box contains the value of the order date that Access used
to group the data in the OrderDate grouping.

FIGURE 20-11

The Design view of rptSalesJan08ByWeek. Notice the expression in the OrderDate group header.

Create Numbered Lists
By default, the items contained on an Access report are not numbered. They simply appear in the
order determined by the query or table underlying the report, or the order dictated by the settings
in the Sorting and Grouping dialog box.

Sometimes it would be useful to have a number assigned to each entry on a report or within a
group on a report. You might need a number to count the items in a list or uniquely identify items
in the list. For instance, an order details report might contain an item number for each item
ordered, plus a field for items ordered, showing how many things were ordered.

The Access Running Sum feature provides a way to assign a number to each item in a list on an
Access report. For instance, the Northwind Traders sales management has asked for a report show-
ing the sum of all purchases by each customer during the month of January, sorted in descending
order so that the top purchaser appears at the top. Oh, yes — and they want a number assigned to
each line in the report to provide a ranking for the Northwind customers.

What an assignment! The query to implement this request is shown in Figure 20-12
(qrySalesJan08). This query sums the purchases by each customer for the month beginning

655

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 655

1/1/08 and ending 1/31/08. Because the Purchases column is sorted in descending order, the cus-
tomers buying the most product will appear at the top of the query results set. The OrderDate
field is not included in the query results and is used only as the query’s selection criterion (notice
the Where in the Total row).

FIGURE 20-12

An interesting query that sums data and sorts the query results in descending order

Although you could do much of this work at runtime using VBA to programmatically sum the val-
ues returned by the query or a SQL statement in the report’s RecordSource property, you should
always let the Access query engine perform aggregate functions. All Access queries are optimized
when you save the query. You’re guaranteed that the query will run as fast as possible — much
faster than a filter based on a SQL statement in a report’s RecordSource property.

Also, the Access query builder’s aggregate functions perform flawlessly. Furthermore, Jet will per-
form the aggregate function exactly the same way every time the query is run. There is no reason
you should be tempted to manually sum data when the query will do it for you.

The basic report (rptUnNumberedList) prepared from the data provided by qrySalesJan08
is shown in Figure 20-13. All sorting options have been removed from the Sorting and Grouping
dialog box to permit the records to arrange themselves as determined by the query.

Adding a Ranking column to the simple report you see in Figure 20-13 is not difficult. Although
the information that’s shown in Figure 20-13 is useful, it’s not what the user asked for.

To add a Ranking column to the report, use the RunningSum property of an unbound text box to
sum its own value over each item in the report. When the RunningSum property is set to Over
Group, Access adds 1 to the value in this text box for each record displayed in the Detail section
of the report (RunningSum can also be used within a group header or footer). The alternate set-
ting (Over All) instructs Access to add 1 each time the text box appears in the entire report (see
Figure 20-14). Add an unbound text box to the left of the CompanyName text box on the report,
with an appropriate header in the Page Header area. Set the RecordSource property for the text
box to =1 and the RunningSum property to Over All.

656

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 656

FIGURE 20-13

A straightforward report (rptListUnNumbered) produced with data from qrySalesJan08

FIGURE 20-14

The value in the unbound text box named txtRank will be incremented by 1 for each record in the
report.

When this report (rptNumberedList) is run, the Rank column is filled with the running sum
calculated by Access (see Figure 20-15). Once again, the data in this report is the same as in other
report examples. The main difference is the amount of manipulation done by the query before the
data arrives at the report and the additional information provided by the running sum.

657

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 657

FIGURE 20-15

The Running Sum column provides a ranking for each customer in order of purchases during January.

Reports can contain multiple running sum fields. You could, for instance, keep a running sum to
show the number of items packed in each box of a multiple-box order while another running sum
counts the number of boxes. The running sum starts at 0 (zero), hence the need to initialize it to 1
in the Control Source property on the Property Sheet.

You can also assign a running sum within each group by setting the RunningSum property of the
unbound text box to Over Group instead of Over All. In this case, the running sum will start at
zero for each group. Therefore, be sure to set the ControlSource property of a group’s running
sum to 1.

Add Bullet Characters
You can add bullet characters to a list instead of numbers, if desired. Rather than use a separate
field for containing the bullet, however, it’s easier to simply concatenate the bullet character to the
control’s RecordSource property. Access will “glue” the bullet character to the data as it is dis-
played on the report, eliminating alignment problems that might occur with a separate unbound
text box.

The design of rptBullets is shown in Figure 20-16. Notice the bullet character in the
txtCompanyName text box as well as in the Property Sheet for this text box.

658

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 658

FIGURE 20-16

The bullet character is added to the ControlSource property of the txtCompanyName text box.

The bullet is added by exploiting a Windows feature. Position the text insertion character in the
RecordSource property for the CompanyName field and type in 0149 while holding down the
Alt key. Windows inserts the standard Windows bullet character, which you see in the Property
Sheet. Looking at Figure 20-16, you can see that the bullet character is inserted correctly into the
text box on the report. The expression you use in the ControlSource property is the following:

= “∞ “ & [CompanyName]

where the bullet is inserted by the Alt+0149 trick.

You can produce the same effect by using the following expression in the text box:

= Chr(149) & “ “ & [CompanyName]

This expression concatenates the bullet character (returned by Chr(149)) with the data in the
CompanyName field.

The report now appears as shown in Figure 20-17. You may want to add a few extra spaces after
the bullet to pad the white space between the bullet and the text. Because the bullet character and
CompanyName field have been concatenated together in the text box, they will be displayed in the
same typeface. Also, adding the bullet character to the text box containing the company name
guarantees the spacing between the bullet and first character of the company name will be consis-
tent in every record. When using proportionally spaced fonts such as Arial, it can sometimes be
difficult to get precise alignment between report elements. Concatenating data in a text box elimi-
nates spacing problems introduced by proportionally spaced characters.

659

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 659

FIGURE 20-17

Use a Windows feature to insert the bullet in front of the CompanyName field.

You may want to add other special characters to the control. For a complete display of the charac-
ters available in the font you’ve chosen for the text box control, run Charmap.exe, the Windows
Character Map application. Be sure to select the font you’ve chosen for the text box control. The
only constraint on the characters you use on an Access report is that the font used in the text boxes
on the report must contain the specified characters. Not all Windows TrueType character sets
include all of the special characters, like bullets.

Add Emphasis at Runtime
You might add a number of hidden controls to your reports to reduce the amount of clutter and
unnecessary information. You can hide and show controls based on the value of another control.
You hide a control, of course, by setting its Visible property to False (or No) at design time.
Only when the information contained in the control is needed do you reset the Visible property
to True.

An example might be a message to the Northwind Traders customers that a certain item has been
discontinued and inventory is shrinking. It’s silly to show this message for every item in the
Northwind catalog; and including the number of units in stock, in conjunction with a message that
a particular item has been discounted, might encourage buyers to stock up on the item.

Figure 20-18 shows rptPriceList in Print Preview mode. Notice that the Guarana Fantastica
beverage product appears in italics, the price is bold italics, and the Only 20 in stock! message
appears to the right of the product information.

660

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 660

FIGURE 20-18

Can you tell Guarana Fantastica is on sale?

Figure 20-19 reveals part of the secret behind this technique. The text box under the unit price is
actually unbound. The text box bound to the UnitPrice field appears to the far right of the
Detail section but is hidden from the user’s view by setting its Visible property to No. Just to the
left of the hidden UnitPrice field is a hidden check box representing the Discontinued field.
txtMessage, which contains the Only x units in stock! message is also hidden.

FIGURE 20-19

rptPriceList in Design view reveals how this effect is implemented.

Use the Detail section’s Format event to switch the Visible property of txtMessage to True
whenever txtDiscontinued contains a True value. The code is quite simple:

Private Sub Detail1_Format(Cancel As Integer,
FormatCount As Integer)

661

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 661

If Me![Discontinued] Then
txtProductName.FontItalic = True
txtPrice.FontItalic = True
txtPrice.FontBold = True
txtPrice = Me![UnitPrice] * 0.5
txtMessage.Visible = True

Else
txtProductName.FontItalic = False
txtPrice.FontItalic = False
txtPrice.FontBold = False
txtPrice = Me![UnitPrice]
txtMessage.Visible = False

End If
End Sub

In this code fragment, “Me” is a shortcut reference to the report. You must explicitly turn the
italics, bold typeface, and other font characteristics off when the product is not discontinued.
Otherwise, once a discontinued product has been printed, all products following the discontinued
product will print with the special font characteristics. The font characteristics you set in a control’s
Property Sheet are just the initial settings for the control; if you change any of those properties at
runtime, they stay changed until modified again. Similarly, txtMessage must be hidden once it’s
been displayed by setting its Visible property to False.

Hide a Page Header
Sometimes you need to display a page header or footer on just the first page of a report. An exam-
ple is a terms and conditions clause in the header of the first page of an invoice. You want the
terms and conditions to appear on the first page of the invoice but not on subsequent pages.

Add an unbound text box control to the report with its ControlSource property set to the
expression =HideHeader(). Delete the text box’s label and set the text box’s text color to White
and its border to Transparent to make it invisible on the report. You can’t actually set the control’s
Visible property to No; if you did, the control wouldn’t be able to respond to events.

The HideHeader() function is as follows:

Function HideHeader()
Reports![rptInvoice].Section(3).Visible = False
‘Section(3) is a reference to the
‘report page header reference
HideHeader = True

End Function

The invisible text box can be placed virtually anywhere on the first page but is most logically
located in the page footer. The assumption is that, because the page header is the first item printed
on the page, you’ll always get the first page header. Once the page footer containing the invisible

662

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 662

text box has been processed, the page header’s Visible property will be set to False, and the page
header will not be seen on any other pages in the report.

Avoid Empty Reports
If Access fails to find valid records to insert into the Detail section of a report, all you’ll see is
#Error in the Detail section when the report is printed. To avoid this error, attach code to the
report’s Open event that checks for valid records and sets a flag to cancel the print event if no
records are found.

The NoData event is triggered when Access tries to build a report and finds no data in the report’s
underlying recordset. Using NoData is easy:

Private Sub Report_NoData(Cancel As Integer)
MsgBox “The report has no data. Printing is canceled”
Cancel = True

End Sub

The Cancel = True statement instructs Access to stop trying to open the report. The user will see
the dialog box shown in Figure 20-20 and will avoid getting a report that can’t be printed. (Open
rptEmpty in Chapter20.accdb for this example.)

FIGURE 20-20

Better than #Error in all the text boxes in the report!

Because the NoData event is tied to the report itself, don’t look for it in any of the report’s sections.
Simply add this code as the report’s NoData event procedure and your users will never encounter
a report full of #Error messages.

An older technique applicable to older versions of Access is to use the Dcount() function to
check the number of records in the report’s RecordSource. If DCount returns 0, set the flag and
continue.

If DCount(“*”, Me.RecordSource) = 0 Then
Cancel = True
MsgBox “There are no records for this report.”

EndIf

663

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 663

Start a New Page Number for Each Group
Sometimes a report will contain a number of pages for each group of data. You may want to reset
page numbering to 1 as each group prints, so that each group’s printout will have its own page-
numbering sequence. For example, assume you’re preparing a report with sales data grouped by
region. Each region’s sales may require many pages to print, and you’re using the ForceNewPage
property to ensure that grouped data doesn’t overlap on any page. But how do you get the page
numbering within each group to start at 1?

The report’s Page property, which you use to print the page number on each page of a report, is a
settable property. This means that you can reset Page at any time as the report prints. Use the
group’s Format event to reset the report’s Page property to 1. Every time a group is formatted,
Page will be reset to 1 by the following code:

Sub GroupHeader2_Format ()
Page = 1

End Sub

Use the Page property to display the current page number in the page header or footer as usual.
For instance, include the following expression in an unbound text box in the page footer:

= “Page “ & [Page]

There does not appear to be a way to count the pages within a group so that you could put a “Page
x of y” in the page footer, where y is the number of pages within the group.

Avoid Null Values in a Tabular Report
Null values in reports can cause errors, particularly when the field containing the null value is part
of an expression in another control on the report. Instead of simply ignoring the null value and the
resulting errors, you may decide that forcing a zero into the field is preferable.

The following expression in a numeric field’s ControlSource property will solve this problem.
In this expression, the field is contained in a text box named txtField:

=IIf([Field] Is Null,0,[Field]).

This immediate If statement sets the value of txtField to 0 if the value of Field (the data) is
null; otherwise, txtField is set to the value of Field.

Alternatively, you could create the following function, which performs the same actions:

Function NullToZero(ByVal varValue as Variant)
NullToZero = IIf(IsNull(varValue), 0, varValue)

End Function

664

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 664

This function accepts a value (like Field) as the varValue parameter and tests it with the IIf;
then the function assumes the value of varValue or zero, depending on the result of the IIf.

Add More Information to Report
You probably know that the following expression in an unbound text box will print the current
page and number of pages contained in the report:

=”Page “ & [Page] & “ of “ & [Pages]

Both Page and Pages are report properties that are available at runtime and can be included on
the report.

But consider the value of adding other report properties on the report. Most of the report proper-
ties can be added to unbound text boxes as long as the property is enclosed in square brackets. For
the most part, these properties are only of value to you as the developer, but they may also be use-
ful to your users.

For instance, the report’s Name, RecordSource, and other properties are easily added the same
way. Figure 20-21 demonstrates how unbound text boxes can deliver this information to a report
footer or some other place on the report.

FIGURE 20-21

rptMoreInfo demonstrates how to add more information to your reports.

The inset in the lower-right part of Figure 20-21 shows the information provided by adding the
four text boxes to this report. Very often, the user is not even aware of the name of a report — the
only text the user sees associated with the reports he prints are whatever appears in the title bar (in
other words, the report’s Caption property). If a user is having problems with a report, it might
be helpful to display the information you see in Figure 20-21 in the report footer.

665

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 665

Add the User’s Name to a Bound Report
An unbound text box with its ControlSource set to an unresolved reference will cause Access
to pop up a dialog box requesting the information necessary to complete the text box. For
instance, an unbound text box with its RecordSource set to the following pops up the dialog
box you see in the middle of Figure 20-22 when the report is run:

=[What is your name?]

The text entered into the text box is then displayed on the report. (rptUserName in
Chapter20.accdb on this book’s companion CD demonstrates this technique.)

FIGURE 20-22

Use an unbound text box to capture useful information.

The unbound text box on the report can be referenced by other controls on the report. The
Parameter dialog appears before the report is prepared for printing, which means that the data you
enter into the dialog box can be used in expressions, calculations, or the Access Basic code behind
the report.

Add Vertical Lines between Columns
You can easily add a vertical line to a report section whose height is fixed (like a group header or
footer). Adding a vertical line to a section that can grow in height (like a Detail section on a
grouped report) is more difficult. It’s really difficult to get a vertical line between columns of a
report (see rptVerticalLines in Figure 20-23). If you simply add a vertical line to the right

666

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 666

side of a section of a snaking columns report, the line will appear to the right of the rightmost col-
umn on the page. You have to be able to specify where vertical lines will appear on the printed
page.

FIGURE 20-23

Vertical lines in rptVerticalLines help segregate data.

Although you add most controls at design time, sometimes it’s necessary to explicitly draw a control
as the report is prepared for printing. The easiest approach in this case is to use the report’s Line
method to add the vertical line at runtime. The following subroutine, triggered by the Detail sec-
tion’s Format event, draws a vertical line 3.5 inches from the left printable margin of the report:

Sub Detail1_Format ()
Dim X1 as Single
X1 = 3.5 * 1440
Me.Line (X1, 0)-(X1, 10000)

End Sub

The syntax of the Line method is as follows:

object.Line (X1, Y1) - (X2, Y2)

The Line method requires four arguments. These arguments (X1, X2, Y1, and Y2) specify the top
and bottom (or left and right, depending on your perspective) coordinates of the line. Notice that
all calculated measurements on a report must be specified in twips (there are 1,440 twips per
inch). In our case, X1 and X2 are the same value and we’re forcing the line to start at the very top
of the Detail section (0) and to extend downward for 10,000 twips.

You might wonder why I’m using 10,000 as the Y2 coordinate for the end of the line. Access will
automatically “clip” the line to the height of the Detail section. Because the line control does not

667

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 667

contain data, Access will not expand the Detail section to accommodate the line you’ve drawn in
code. Instead, Access draws as much of the 10,000-twip line as needed to fill the detail section,
then it stops. The maximum value for Y2 is 32,767.

The same procedure could be used to draw vertical lines for each section on the report. In the
report example (rptVerticalLines) in the database accompanying this chapter
(Chapter20.accdb), we’ve chosen to add line controls to the report instead. Using the Line con-
trol when the height of the report section is fixed (for instance, in the group header and footer) is
simply faster than drawing the line for each of these sections.

The double horizontal lines you see in Figure 20-23 were created by putting two line
controls across the page and setting their Top properties 0.0174 inches different. For

instance, in the group footer section the “top” line’s Top property is set at 0.0799 inches, while the
“bottom” line’s Top property is set to 0.0625 inches. The exact spacing is relatively unimportant — in
fact, Access will force the space increments between the lines to conform to the spacing allowed by
the computer’s default printer. In this particular case, the minimum space acceptable by the com-
puter’s printer was 0.0174 inches. Your computer’s printer may accept a different spacing, so you
should experiment to see what works best for you.

Add a Blank Line Every n Records
Detail sections chock-full of dozens or hundreds of records can be difficult to read. It’s just too
easy to lose your place when reading across columns of figures and when the rows are crowded
together on the page. Wouldn’t it be nice to insert a blank row every fourth or fifth record in a
Detail section? It’s much easier to read a single row of data in a report (rptGapsEvery5th in
Chapter20.accdb) where the records have been separated by white space every fifth record (see
Figure 20-24).

FIGURE 20-24

Using white space to break up tabular data can make it easier to read.

TIPTIP

668

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 668

Access provides no way to insert a blank row in the middle of a Detail section. You can, however,
trick Access into inserting white space in the Detail section now and then with a little bit of pro-
gramming and a couple of hidden controls.

Figure 20-25 reveals the trick behind the arrangement you see in Figure 20-24. An empty,
unbound text box named txtSpacer is placed below the fields containing data in the Detail sec-
tion. To the left of txtSpacer is another unbound text box named txtCounter.

FIGURE 20-25

This report trick uses hidden unbound text boxes in the Detail section.

Set the following properties for txtSpacer, txtCounter, and the Detail section.

TABLE 20-1

Properties for the “Blank Line” Example

Control Property Value

txtSpacer Visible Yes

CanShrink Yes

txtCounter Visible No

RunningSum OverAll

ControlSource =1

CanShrink Yes

Detail1 CanShrink Yes

These properties effectively hide the unbound txtSpacer and txtCounter controls and permit
these controls and the Detail section to shrink as necessary when the txtSpacer text box control

669

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 669

is empty. Even though txtSpacer is visible to the user, Access shrinks it to 0 height if it contains
no data. The txtCounter control never needs any space because its Visible property is set to
No, hiding it from the user.

The last step is to enter the following code as the Detail section’s procedure for the Format event:

Sub Detail1_Format ()
If (txtCounter Mod 4) = 0 Then
txtSpacer = “ “

Else
txtSpacer = Null

End If
End Sub

The Format event occurs as Access begins to format the controls within the Detail section. The
value in txtCounter is incremented each time a record is added to the Detail section. The Mod
operator returns whatever number is left over when the value in txtCounter is divided by 4.
When txtCounter is evenly divisible by 4, the result of the txtCounter Mod 4 expression is
zero, which causes a space character to be assigned to txtSpacer. In this situation, because
txtSpacer is no longer empty, Access increases the height of the Detail section to accommodate
txtSpacer, causing the “empty” space in every fourth record printed in the Detail section. You
never actually see txtSpacer because all it contains is an empty space character.

txtCounter can be placed anywhere within the Detail section of the report. Make txtSpacer
as tall as you want the blank space to be when it is revealed on the printout.

Even-Odd Page Printing
If you’ve ever prepared a report for two-sided printing, you may have encountered the need for
knowing whether the data is being printed on the even side of the page or the odd side of the page.
Most users prefer the page number to be located near the outermost edge of the paper. On the
odd-numbered page, the page number should appear on the right edge of the page, while on the
even-numbered side, the page number must appear on the left side of the page. How, then, do you
move the page number from side to side?

The easiest way to determine whether the current page is even or odd is with the Mod operator.
The Mod operator performs modulus division on two numbers and returns the remainder of the
division expressed as a whole integer. For instance, 5 Mod 2 is 1 (5 divided by 2 leaves a remain-
der of 1). Any even number is evenly divided by 2, leaving no remainder. Therefore, 2 Mod 2 is 0
(zero), 4 Mod 2 is 0, and so on. We can easily exploit the Mod function to tell us when the current
page is even or odd with the following small function:

Function IsEven(iTest As Integer) As Integer
If iTest Mod 2 = 0 Then
IsEven = True

Else
IsEven = False

670

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 670

End If
End Function

Assuming the page number appears in the Page Footer section of the report, we can use the page
footer’s Format event to determine whether the current page is even or odd, and move the text
box containing the page number to the left or right side of the page accordingly.

The basic design of rptEvenOdd is shown in Figure 20-26. Notice that the txtPageNumber is
right-aligned to ensure that the page number appears as close to the right margin as possible.

FIGURE 20-26

txtPageNumber moves from the right to the left edge of the paper.

The Page Footer Format event procedure is a bit more involved than the IsEven function
shown earlier. Because the Page Number text box is rather wide (we don’t know how many pages
are in the report, so the extra width ensures that there’s adequate space in the box to accommodate
almost any number), simply moving the text box to the left margin leaves the text in the text box too
far to the right. We have to adjust the TextAlign property of txtPageNumber to shift the page
number all the way to the left side of the text box. ALIGN_LEFT and ALIGN_RIGHT are integer
constants set at 1 and 3, respectively, in the Declarations section of the report’s code module.

Sub PageFooter1_Format ()
If (Me.Page Mod 2) = 0 Then
txtPageNumber.Left = 0
txtPageNumber.TextAlign = ALIGN_LEFT

Else
txtPageNumber.Left = 3.5 * 1440
txtPageNumber.TextAlign = ALIGN_RIGHT

End If
End Sub

In this event procedure, any time the expression Me.Page Mod 2 is zero (meaning, the page num-
ber is even) the Left property of txtPageNumber is set to 0 and its TextAlign property is set
to ALIGN_LEFT (1). On odd-numbered pages, TextAlign is set to ALIGN_RIGHT (3).

671

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 671

Notice how the Left property of txtPageNumber is set on odd-numbered pages. The expres-
sion 3.5 * 1440 is used to determine the Left property’s setting. You may recall that, by default,
all positioning information in Access Basic is done using twips as the unit of measure. There are
1,440 twips in an inch, so this expression moves txtPageNumber to a position 3.5 inches from
the left print margin on the page.

Like magic, this event procedure causes the Page Number text box to move from the right side on
odd-numbered pages to the left side on even-numbered pages (see Figure 20-27).

FIGURE 20-27

txtPageNumber jumps from right to left.

Display All Reports in a Combo Box
The names of all the top-level database objects are stored in the MSysObjects system table. You can
run queries against MSysObjects just as you can run queries against any other table in the data-
base. It’s easy to fill a combo box or list box with a list of the report objects in an Access database.

Choose Table/Query as the RowSource Type for the list box and put this SQL statement in the
RowSource of your list box to fill the box with a list of all reports in the database:

SELECT DISTINCTROW [Name] FROM MSysObjects
WHERE [Type] = -32764
ORDER BY [Name];

The -32764 identifies report objects in MSysObjects, one of the system tables used by
Microsoft Access. The results are shown in Figure 20-28. Notice that reports do not have to be
open for this technique to work. MSysObjects knows all of the objects in the database, so no
reports will escape detection using this technique.

672

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 672

FIGURE 20-28

frmReports displays the reports in Chapter20.accdb.

If you’re using a naming convention for your database objects, use a prefix to show only the
reports you want. The following code returns only those reports that begin with tmp:

SELECT DISTINCTROW [Name] FROM MSysObjects
WHERE [Type] = -32764 AND Left([Name], 3) = “tmp”
ORDER BY [Name];

Because MSysObjects stores the names of all database objects, you can return the names of the
other top-level database objects as well. Just substitute the -32764 as the type value in the preced-
ing SQL statement with the Table 20-2 values to return different database object types.

To view the MSysObjects table, set the Show System Objects setting to Yes in the System Objects
dialog box (which you can get to by right-clicking on the Navigation Pane’s title bar, and selecting
Navigation Options from the shortcut menu). MSysObjects does not have to be visible for
this trick to work.

TABLE 20-2

Microsoft Access Object Types and Values

Object Type Value

Tables 6

System tables 1

Forms -32768

Modules -32761

Macros -32766

Queries 5

673

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 673

Use Different Formats in the Same Text Box
On some reports, you may want the format of certain fields in a record to change according to the
values in other fields on the report. A good example is a journal voucher report in a multicurrency
financial system in which the voucher detail debit or credit amount format varies according to the
number of decimal places used to display the currency value.

Unfortunately, a control in a Detail section of a report can have but a single format specified in its
Property Sheet. Use the following trick to flexibly set the format property at runtime. The
FlexFormat() function uses the built in Format() function to provide dynamic formatting to
controls on a form or report:

Function FlexFormat (iFmt As Integer) As String
Select Case iFmt

Case 1 : FlexFormat = “##0.0;(##0.0)”
Case 2 : FlexFormat = “##0.00;(##0.00)”
Case 3 : FlexFormat = “##0.000;(##0.000)”
Case 4 : FlexFormat = “##0.0000;(##0.0000)”

End Select
End Function

FlexFormat() returns a string containing the new format of the field. The returned string
depends on the iFmt parameter passed to FlexFormat().

Assume that the field to be dynamically formatted has its ControlSource set to [Amount]. The
format of the Amount text box should vary depending on the value of the CurrDecPlaces field
in the same record. CurrDecPlaces is an Integer data type. To use FlexFormat, change the
ControlSource property of the Amount text box to the following:

=Format([Amount],FlexFormat([CurrDecPlaces]))

The Amount text box will be dynamically formatted according to the value contained in the
CurrDecPlaces text box. This trick may be generalized to format fields other than currency
fields. By increasing the number of parameters of the user-defined formatting function, the format-
ting can be dependent on more than one field, if necessary.

Fast Printing from Queried Data
A report that is based on a query can take a long time to print. Because reports and forms cannot
share the same recordset, once a user has found the correct record on a form it’s a shame to have to
run the query over again to print the record on a query. A way to “cache” the information on the
form is to create a table (we’ll call it tblCache) containing all of the fields that will eventually be
printed on the report. Then, when the user has found the correct record on the form, copy the data
from the form to tblCache, and open the report. The report, of course, is based on tblCache.

674

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 674

The query is run only once to populate the form. Copying the data from the form to tblCache is
a very fast operation, and multiple records can be added to tblCache as needed. Because the
report is now based on a table, it opens quickly and is ready to print as soon as the report opens.

Hide Forms during Print Preview
Very often, a report opened in Print Preview will be obscured by forms that are open on the screen.
The easiest way to prevent forms from getting in the way during Print Preview is to simply hide
them as the report opens, and then reveal them when the report is closed.

The RunReport() function opens a report for previewing and hides all open forms during print
preview. To restore the forms after previewing the report, set the report’s OnClose property to
=MakeFormsVisible(-1).

Function RunReport(RepName as string)
Dim intErrorCode as Integer

DoCmd.OpenReport RepName, acPreview
intErrorCode = MakeFormsVisible(0)

End Function

Function MakeFormsVisible (YesNo)
Dim intCounter As Integer

On Error GoTo MakeFormsVisible_Error

For intCounter = 0 To Forms.Count - 1
‘If you want to make sure a hidden form is not
‘displayed use the forms(intCounter).formname
‘statement to get the form name.
Forms(intCounter).Visible = YesNo

Next

MakeFormsVisible_Exit:
Exit Function

MakeFormsVisible_Error:
Msgbox “Error “ & Err.Number & “: “ & Err.Description
‘Make sure all forms are restored if an error occurs.
For intCounter = 0 To forms.count - 1

forms(intCounter).visible = -1
Next
Resume MakeFormsVisible_Exit

End Function

675

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 675

A Few Quick Report Tips
In addition to the more verbose report tips discussed earlier in this chapter, you might be inter-
ested in the following very short report tips.

Center the title
Centering a report title directly in the middle of the page is often difficult. The easiest way to guar-
antee that the title is centered is to stretch the title from left margin to right margin, and then click
the Center Align button.

Easily align control labels
Keeping text boxes and their labels properly aligned on reports is sometimes difficult. Because a
text box and its label can be independently moved on the report, all too often the label’s position
must be adjusted to bring it into alignment with the text box.

You can eliminate text-box labels completely by including the label text as part of the text box’s
record source. Use the concatenation character to add the label text to the text box’s control source:

= “Product: “ & [ProductName]

Now, whenever you move the text box, both the label and the bound record source move as a unit.
The only drawback to this technique is that you must use the same format for the text box and its
label.

Micro-adjust controls
The easiest way to adjust the size of text boxes on a form in tiny increments is to hold down the
Shift key and press the arrow key corresponding to Table 20-3.

TABLE 20-3

Micro-Adjustment Keystroke Combinations

Shift Combination Adjustment

Shift+Left Arrow Reduce width

Shift+Right Arrow Increase width

Shift+Up Arrow Reduce height

Shift+Down Arrow Increase height

676

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 676

Another resizing technique is to position the cursor over any of the sizing handles on a selected
control and double-click with the left mouse button. The control will automatically “size to fit” the
text contained within the control. This quick method can also be used to align not only labels but
also text boxes to the grid.

To micro-adjust a control’s position, hold down the Ctrl key as you press the arrows keys. The
selected control will move in tiny increments in the direction indicated by the arrow keys you press.

Always assign unique names to controls
If you use the Report Wizard or drag fields from the Field List when designing your reports,
Access assigns the new text boxes the same names as the fields in the recordset underlying the
report. For instance, if you drag a field named Discount from the field list, both the Name and
ControlSource properties of the text box are set to Discount.

If another control on the report references the text box, or if you change the ControlSource of
the text box to a calculated field, such as

=IIf([Discount]=0,”N/A”,[Discount])

you’ll see #Error when you view the report. This happens because Access can’t distinguish
between the control named Discount and the field in the underlying recordset named
Discount.

You must change the Name property of the control to something like txtDiscount so that
Access can tell the difference between the control’s name and the underlying field.

Use Snaking Columns in a Report
When the data displayed on a report doesn’t require the full width of the page, you may be able to
conserve the number of pages by printing the data as snaking columns, as in a dictionary or phone
book. Less space is wasted and fewer pages need to be printed, speeding the overall response of the
report. More information is available at a glance and many people find snaking columns more aes-
thetically pleasing than simple blocks of data.

For the examples in this section, we need a query that returns more data than we’ve been using up
to this point. Figure 20-29 shows the query we’ll be using to prepare the sample reports in this
section.

677

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 677

FIGURE 20-29

This query returns more detailed information than we’ve been using.

This query returns the following information: company name, order date, order ID, product name,
unit price, and quantity for the period from January 1, 2008, to March 31, 2008.

The initial report design to contain this data is shown in Design view in Figure 20-30. This rather
complex report includes a group based on the order ID for each order placed by the company, as
well as a group based on the company itself. This design enables us to summarize data for each
order during the quarter, as well as for the company for the entire quarter.

FIGURE 20-30

Notice how narrow the records in this report are.

678

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 678

The same report in Print Preview is shown in Figure 20-31. Notice that the report really doesn’t
make good use of the page width available to it. In fact, each record of this report is only 3.25
inches wide.

FIGURE 20-31

The report makes poor use of the available page width.

Setting a report to print as snaking columns is actually part of the print setup for the report, not an
attribute of the report itself. Choose File ➪ Page Setup to open the Page Setup dialog box, and
then select the Arrange tab. Change the Number of Columns value to 2. As you change Number of
Columns from 1 to 2, the Column Layout area near the bottom of the Arrange tab becomes active,
showing you that Access has selected the Across, Then Down option to print items across the page
first, and then down the page. Although this printing direction is appropriate for mailing labels, it’s
not what we want for our report. Select the Down, Then Across option to direct Access to print the
report as snaking columns (Figure 20-32).

When working with snaking columns, make sure the proper Column Layout option is selected. If
you neglect to set the Column Layout to Down, Then Across, the snaking columns will be laid out
horizontally across the page. This common error can cause a lot of confusion because the report
won’t look as expected (see Figure 20-33). The reports shown in Figures 20-32 and 20-33 are the
same with the exception of the Column Layout setting.

679

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/27/06 5:05 PM Page 679

FIGURE 20-32

Only a few changes are needed to produce snaking columns.

FIGURE 20-33

The wrong Column Layout setting can be very confusing!.

As long as the Same as Detail check box is not checked, Access intelligently adjusts the Column
Spacing and other options to accommodate the number of items across that you’ve specified for the
report. With Same as Detail checked, Access will force the columns to whatever width is specified
for the columns in Design view, which might mean that the number of columns specified in the
Number of Columns parameter won’t fit on the page.

Figure 20-34 clearly demonstrates the effect of changing the report to a snaking two-column lay-
out. Before the change, this report required 11 pages to print all the data. After this change, only
seven pages are required.

680

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 680

FIGURE 20-34

Snaking multiple columns conserve page space and provide more information at a glance.

You may be wondering about the other print options in the Page Setup dialog box (refer to Figure
20-32). Here is a short description of each of the relevant settings in the Arrange tab of the Page
Setup dialog box:

n Number of Columns: Specifies the number of columns in the report. You should be
aware that Number of Columns affects only the Detail section, Group Header section, and
Group Footer section of the report. The Page Header section and Page Footer section are
not duplicated for each column.

n Row Spacing: Additional vertical space allowed for each detail item. Use this setting if
you need to force more space between detail items than the report’s design allows.

n Column Spacing: Additional horizontal space allowed per column. Use this setting if
you need to force more space between columns in the report than the design allows.

n Item Size - Same as Detail: The column width and detail height will be the same as on the
report in Design view. This property is useful when you need to fine-tune the column place-
ment on a report (for instance, when printing the data onto preprinted forms). Making
adjustments to the report’s design will directly influence how the columns print on paper.

n Column Size - Width and Height: The width and height of a column. These options are
handy when printing onto preprinted forms to ensure that the data falls where you want
it to.

n Column Layout: How the items are to be printed: either Across, Then Down or Down,
Then Across.

681

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/27/06 5:05 PM Page 681

Keep in mind that the measurement units you see in the Page Setup dialog box are determined by
the Windows internationalization settings. For instance, in Germany or Japan where the metric
system is used, the units of measure will be centimeters instead of inches. Also, you must allow for
the margin widths set in the Margins tab of the Page Setup dialog box (see Figure 20-35).

FIGURE 20-35

All report page settings must consider the margin widths.

For instance, if you specify a Column Size Width of 3.5" and the left margin is set to 1", this means
the right edge of the column will actually fall 4.5 inches from the left physical edge of the paper, or
more than halfway across an 8.5-x-11-inch sheet of paper. These settings will not allow two
columns, each 3.5 inches wide, to print on a standard letter-size sheet of paper. In this case, you
might consider reducing the left and right margins until the 3.5-inch columns fit properly. (Don’t
worry about setting the margins too small to work with your printer. Unless you’re working with a
nonstandard printer, Windows is pretty smart about knowing the printable area available with
your printer and won’t allow you to set margins too small.)

Exploiting Two-Pass Report Processing
In Chapter 19, we mention that Access uses a two-pass approach when formatting and printing
reports. We’ll now explore what this capability means to you and how you can exploit both passes
in your applications.

The main advantage of two-pass reporting is that your reports can include expressions that rely on
information available anywhere in the report. For example, placing a control with the Sum() func-
tion in a header or footer means that Access will use the first pass to accumulate the data required by
the function, and then use the second pass to process the values in that section before printing them.

Another obvious example is putting an unbound text box in the footer of a report containing the
following expression:

=”Page “ & [Page] & “ of “ & [Pages]

682

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 682

The built-in Pages variable (which contains the total number of pages in the report) isn’t deter-
mined until Access has completed the first pass through the report. On the second pass, Access has
a valid number to use in place of the Pages variable.

The biggest advantage of two-pass reporting is that you’re free to use aggregate functions that
depend on the report’s underlying record source. Group headers and footers can include informa-
tion that can’t be known until the entire record source is processed.

There are many situations where aggregate information provides valuable insight into data analysis.
Consider a report that must contain each salesperson’s performance over the last year measured
against the total sales for the sales organization, or a region’s sales figures against sales for the entire
sales area. A bookstore might want to know what portion of its inventory is devoted to each book
category.

Figure 20-36 shows such a report. The Number of Customers, Total Sales, and Average Purchase
information at the top of this report (rptSummary) are all part of the report header. In a one-pass
report writer, the data needed to perform these calculations would not be available until the bot-
tom of the page, after all of the records have been processed and laid out.

FIGURE 20-36

The summary information is part of the report’s header.

A glance at rptSummary in Design view (Figure 20-37) reveals the text boxes in the report header
containing the summary information. The expressions used in the unbound text boxes are as follows:

Number of Customers: =Count([CompanyName])
Total Sales: =Format(Sum([Purchases]),”Currency”)
Average Purchase: =Format(Sum([Purchases])/ _

Count([CompanyName]), “Currency”)

683

Advanced Access Report Techniques 20

26_046732 ch20.qxp 11/21/06 8:56 AM Page 683

The Count() and Sum() functions both require information that isn’t available until the entire
report has been processed. As long as Access can find the arguments provided to these functions
(CompanyName and Purchases) in the underlying recordset, the calculations proceed without
any action by the user.

FIGURE 20-37

rptSummary in Design view

Summary
This chapter examines a number of advanced report design concepts and techniques. Most of the
“tricks” described in this chapter simply exploit the built-in properties and features of Access
reports to yield more information or to make the reports easier to read. Anything you can do to
help your users understand the data contained in their Access databases will be greatly appreci-
ated, we’re sure!

The next several chapters explorer some of the more interesting and challenging aspects of working
with Microsoft Access. Chapter 21 takes on the issue of creating applications that will be simulta-
neously used by more than one person. Although multiuser applications may seem easy to pro-
duce, there’s much more than meets the eye.

Chapters 22 explorers automation, the process of controlling one application (such as Microsoft
Word) from another application (Microsoft Access, of course!). There you’ll see how easy (or diffi-
cult!) it can be to share data between Windows applications and control printing and other opera-
tions with automation.

684

More Advanced Access TechniquesPart III

26_046732 ch20.qxp 11/21/06 8:56 AM Page 684

You’ve created a really nifty application. After you finished your mas-
terpiece, you tested, poked, and prodded it every which way imagina-
ble. Finally, you gave it to your users, who tried it out and thought it

was pretty nifty, too. Everything worked the way it was supposed to: The
application’s form navigation was smooth and quick, queries ran fast, and
there were no errors during data entry.

So who is this guy on the other end of the phone line complaining about
record locks? You didn’t have any record-locking problems during testing. But
then again, you didn’t test your application in a multiuser environment. After
all, Access is supposed to handle all those issues for you, right? Almost, but
not quite. There’s still a lot you need to know about using Access applications
in multiuser environments before you can be confident that users will not
encounter unwarranted record locks, frustration, and possible data loss.

This chapter shows you how to avoid some of the pitfalls of failing to plan
for multiuser issues when developing applications in Microsoft Access. The
key phrase here is failing to plan. In order to create a successful multiuser
application, you must anticipate the environment in which the application
will be run (single-user, multiuser, desktop, network, and so on), and you
must take into consideration what kind of database application you are
developing (data entry, client-server, and so on). This chapter covers some of
the planning issues you should keep in mind and ways to handle problems
you might encounter.

Much of what we discuss in this chapter is related to the security issues we
discuss in Chapter 29. The Access record-locking mechanism is designed to
prevent accidental data loss or corruption by controlling which of several
users is able to make updates to records in a database. Access security, on the

685

IN THIS CHAPTER
Understanding the issues in
multiuser applications

Splitting Access databases

Configuring Access for multiuser
access

Considering your locking options

Looking at record-locking errors

Handling locking errors

Using unbound forms in
multiuser environments

Building Multiuser
Applications

27_046732 ch21.qxp 11/21/06 10:22 AM Page 685

other hand, prevents unauthorized users from viewing or changing not only the data but the data-
base objects such as forms and reports. Hand in hand, record locking and security combine to
ensure the integrity of the application and its data.

Some of the examples in this chapter are given using both ADO and DAO syntax.
Although ADO is far superior to DAO for most purposes, many Access developers spend

time maintaining applications written with DAO code. Because proper handling of multiuser issues is
so important in many environments, we felt it was necessary to show both the proper ADO and DAO
code involved with record locking and handling lock contention.

Network Issues
In order to have a multiuser application, you have to have a network of some kind. Generally, the
type of network you use doesn’t matter. The multiuser issues are basically the same regardless of
the underlying networking technology. The speed of your network, the type of data source that
you’re accessing, and the location of your application’s files are all important considerations when
planning your network installation. Although we’ve listed these as three separate items, they’re all
related to the primary issue of database performance. No matter how well it’s written, if your
application performs poorly due to network bottlenecks, the application will get the blame, not
the network.

Network performance
When you develop applications in Access, a good rule of thumb is to always plan for the lowest
common denominator — that is, write your database applications as if they were going to be used
on the most minimally equipped computer possible. Preparing databases that will be used in net-
worked environments is no different. There are a lot of different network topologies and speeds out
there — everything from remote-access dialup lines running on slow modems to megabit networks
and dedicated T1 lines.

Plan ahead: If you’re writing an application that will be used in a high-speed, low-traffic
network environment; then you can afford to be a little extravagant and less stringent in

your control of record-locking issues. If, however, your application will be used by salesmen on the
road dialing in to retrieve customer and order information using modems of 56 K baud, then your
focus should be very conservative, and you should design to accommodate the frequent updates likely
in this scenario.

File location
File location can change the performance of your application more than you may think. Where
you locate your files depends on the environment. For instance, if your network contains diskless
workstations, then you have no choice but to run the entire application from the server (an unfor-
tunate, but unavoidable, choice). However, if each workstation has a hard drive with plenty of free
space available, you may want to locate some files on the server and some on each workstation.
You may want to put all of the files on each workstation except the data files that will be shared by
all users.

TIPTIP

NOTENOTE

686

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 686

The following scenarios assume that you’re splitting your database into a back-end Access data file
(.accdb or .mdb, containing data tables only) and a front-end database (an Access data file con-
taining code modules and form, report, and query objects). (We discuss splitting Access databases
in detail later in this chapter.)

This method of maintaining your applications has advantages in any environment, but it offers you
even more advantages in a networked multiuser environment. Here are some of the advantages and
disadvantages of different file-location scenarios:

n All files on server: The primary advantage of locating all your application files on a
server is that updating your application is easy because everything is in a single location.
You can easily post a new .accdb or .mdb file on a file server or shared folder in a
Windows network. The disadvantages, however, far outweigh the advantage.
Performance is poor due to the fact that every read, write, or execute request must first
pass around the network to the server, and then a response must be sent back around the
network to the client. This approach greatly increases network traffic, especially in an
environment with many users. Try to avoid this scenario, if possible.

n Distributed installation: A distributed installation is a good choice for most environ-
ments. In this design, you install a copy of Access and the front-end database on the
user’s local machine, leaving the back-end database application and linked data files on
the server. Less network traffic is generated and less time is spent waiting for requests to
be sent back and forth around the network. This installation allows for moderately simple
upgrades because the majority of the most volatile files are in one central location. One
problem you may experience is decreased performance from several users accessing your
application databases at the same time.

n All files on client: In this scenario, you would have all executables — .exe files, .dll
files, and application files — located on each client, and only data files on the server. Your
data files would be attached to your application database. You would gain performance
because network traffic and requests would be kept to a minimum and because you
wouldn’t have several users hitting your application at the same time — only the data.
This scenario is not conducive to easy upgrades, however. Most of the time, your applica-
tion’s front end will be the one that changes the most. If the application is located on a
client workstation, you’ll have to go to each workstation and upgrade it individually
(unless you’re using some kind of distribution software, like Microsoft System Center
Configuration Server).

Microsoft’s System Center Configuration Server (SCCS) is an add-on for network sys-
tems running Windows 2003 Server as the file server and either Windows 2000,

Windows XP, or Windows Vista on the user’s desktop. SMS enables the system administrator to install
and manage software from a central location, making it much easier to upgrade operating system and
application software on large networks.

NOTENOTE

687

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 687

Data sources
Access is a versatile development environment because of its ability to read many kinds of external
data sources. This ability, however, can cause problems for your applications. Even if you’re just
reading a plain ol’ Access .accdb or .mdb located on your sever, there are still issues you need to
consider. Access is a client-centric application. In many instances, when you execute a query
against a table located in an Access database located on your network, Access goes out to the
server, brings back all the records needed to perform the query, and then processes the request on
the client. The next time you get a chance, run a really big query on your workstation while watch-
ing the number of packets being sent to that address. It’s fun to see your network utilization go
from 35 percent to 90 percent just because of one query. All this traffic and the huge amount of
data you can potentially transfer over a network can kill performance.

This client-centric nature can be seen especially when using ODBC data sources. Access still acts
the same way, but because ODBC is another layer that Jet has to go through, performance can be
even worse, especially when querying large recordsets. But ODBC and client-server applications
are in high demand right now, so you have to find an acceptable solution to these performance
problems. You can do a couple of things to speed performance when using data sources other than
native Access tables:

n Use SQL pass-through. SQL pass-through allows you to send a SQL statement (or stored
procedure name) to a host database to let it execute the request, returning only the result
set (instead of the entire recordset) for local processing. This ability takes advantage of the
host platform’s capabilities, and it keeps network traffic down. The disadvantage to SQL
pass-through is that you must use the host database’s SQL syntax instead of letting Access
generate the SQL request for you. This makes your application less portable to other
database platforms and doesn’t let you take advantage of Access’s QBE facility.

n Use transactions. Transactions (the BeginTrans and CommitTrans methods of an
ADO Connection object or DAO Workspace object) allow you to cache reads, edits,
and updates in local memory instead of reading from or writing to disk or your external
data source. If you know that you’ll be doing several updates or reads within a VBA pro-
cedure, enclose the updates in transaction statements. Better performance is achieved
because you don’t have to wait on your request to be sent back around the network to
your data source, and because all writes are done at one time (when the CommitTrans
method is executed) instead of each time the Update method is executed. Listing 21-1
shows the use of transactions within a VBA procedure. (Be sure that the Microsoft DAO
Object Library library is selected in the Tools ➪ References dialog in the Code Editor
window.)

LISTING 21-1

Demonstrating DAO Transactions

Function UpdateRecords()
Dim db As DAO.Database
Dim ws As DAO.Workspace

688

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 688

Dim rs As DAO.Recordset
Set db = CurrentDb
Set ws = DBEngine.OpenDatabase(“C:\Data\MyDB.accdb”)
Set rs = db.OpenRecordset(“Employees”, dbOpenTable)

‘Begin transaction:
ws.BeginTrans

rs.MoveFirst
Do While Not rs.EOF

rs.Edit
rs.Fields(“CompanyName”) _

= UCase(rs.Fields(“CompanyName”))
rs.Update
rs.MoveNext

Loop

‘Commit transaction:
ws.CommitTrans

ExitHere:
rs.Close
Set rs = Nothing
Exit Function

HandleError:
‘Rollback transaction:
ws.Rollback
GoTo ExitHere

End Function

Special network situations
Before ending this section, some mention of remote users needs to be made. With portable com-
puting power increasing and becoming less expensive, more of your applications will have to be
developed with remote or home users in mind. Although broadband Internet access is widely
available, many users may still be using dialup to access your company’s network. In these situa-
tions, you can do a few things to make performance more acceptable:

n Place files on the client. Put as much of your application on the remote computer as
possible. Executables across a dialup line are unacceptable. The more you can put on the
client, the fewer complaints you’ll receive.

n Use database replication. One of the best features of Microsoft Access is the ability to
replicate databases. This facility has more potential and probably solves more problems
than any new feature. In the past, you had to create some kind of scheme whereby you
kept up with changes to a host and remote database independently and, upon dialing in,

689

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 689

passed those changes to the server and remote using a MAPI message or a VBA proce-
dure. The potential for error was extremely high and the process was difficult to plan.
Now you can place local copies of your database on each remote client and, upon dialing
in, replicate all changes, deletions, and additions to the server database, then pass a copy
of the master’s updates back to the client. Not only does this solve many remote prob-
lems, but it can also work in wide area network (WAN) settings where line speed is still
an issue and data doesn’t have to be real-time. For specifics on Access replication, see
Chapter 31.

Database Open Options
By default, each time a user opens an Access database, other users are able to open and make
changes to the same database. The “shared” mode of opening Access databases is great for most
users because everyone is able to work with the data as if no one else was using the same tables
and records. However, Shared mode also leads to update conflicts when more than one user wants
to simultaneously change the same record.

It’s easy to change the open mode of an Access database. The Open dialog box (see Figure 21-1)
contains an option that directs Access to open the database exclusively (for single-user access).
When you don’t select the Exclusive option, the database is opened for shared access, permitting
simultaneous multiuser access to the data.

FIGURE 21-1

By default, Access 2007 databases are opened in Shared mode.

690

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 690

The essential step to multiuser databases, therefore, is to make sure that the database in question
has been opened for shared access. You can easily change the default Exclusive open mode for
Access databases, as shown later in this chapter.

Listing 21-2 shows the ADO and DAO code necessary to open an Access database exclusively. The
options passed to the Connection object as it is opened are not particularly well documented.

LISTING 21-2

Using ADO to Open a Database Exclusively

Public Sub OpenDatabaseTestADO()

Dim cnn As ADODB.Connection
Dim str As String

str = “Provider=Microsoft.Jet.OLEDB.4.0;” _
& “Data Source=C:\Data\MyDB.accdb”

Set cnn = New ADODB.Connection
cnn.Mode = adModeShareExclusive
cnn.ConnectionString = str
cnn.Open

‘... Your code goes here ...

cnn.Close
Set cnn = Nothing

End Sub

Public Sub OpenDatabaseTestDAO()
Dim db As Database
Set db = DBEngine.OpenDatabase(“C:\Data\MyDB.accdb”)

‘... Your code goes here ...

db.Close
Set db = Nothing

End Sub

When opening a database with DAO code, you pass a parameter to the OpenDatabase method
of the Workspace object to instruct Jet which open mode to use. Notice the False value passed as
the second argument to the OpenDatabase method in Listing 21-2.

691

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 691

The syntax of the DAO OpenDatabase method is:

Set Database = Workspace.OpenDatabase (dbName _
[, Exclusive] [, Read-only] [, Connect])

where:

n dbName is the name of the database to open

n Exclusive is the flag instructing whether to open dbName in Exclusive or Shared
mode. True means open the database exclusively; False means open in Shared mode.

n Read-only is a flag telling Jet to open the database in read-only mode.

n Connect is the connect string required by the ODBC database.

By default, a database opened with the OpenDatabase method is opened in Shared mode
(Exclusive is False). You should, of course, specify either True or False as the Exclusive
value. Better yet is to use constants such as OPEN_EXCLUSIVE or OPEN_SHARED (which you
have set to True and False, respectively) to make your code more self-documenting.

Splitting Databases for Network Access
One common technique employed by most experienced Access developers working in multiuser
environments is splitting the database into front-end and back-end components. This relatively
simple operation can yield big benefits in terms of networked application performance and future
maintenance on the application.

There is at least one extremely good reason why we should explore splitting Access databases.
Although you can place a single copy of an .accdb or .mdb file onto a shared computer on the
network, the performance degradation from such a design is considerable. Although Jet is able to
service many, many simultaneous data requests, the overhead associated with moving large vol-
umes of data into and out of an Access database is considerable.

Using an Access database stored on a remote computer involves much more than simply moving
data from the remote computer to the local machine. All of the form, menu, and ribbon definitions
must be transported to the local computer so that Windows can “construct” the user interface on
the local computer’s monitor. The Windows installation on the local computer must intercept and
transmit any keyboard and mouse events to the remote computer so that the proper code will run
in response to these events. Finally, the single copy of Jet on the remote computer must fulfill all
data requests, no matter how trivial or demanding. The impact of all of these actions is com-
pounded by increasing the number of users working with the same remotely installed copy of the
database.

Fortunately, most of these issues disappear when the database application is split into front-end
and back-end components. The local Windows installation handles the user interface from infor-
mation stored in the front-end database. All code is run on the user’s desktop computer, rather

692

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 692

than on the remote machine. Also, the locally installed copy of Jet is able to handle all local data
requirements, while only those requests for remote data are passed on to the back-end database.

Before getting into the details of splitting a database, let’s consider some of the problems associated
with single-file databases. To begin with, unlike some other development systems, all of the objects
in an Access database application are stored in a single file, the familiar .accdb or .mdb you work
with every day. Other database systems like FoxPro for Windows maintain a number of different
files for each application, usually one file per object (form, table, and so on). Although having to
deal with multiple files complicates database development and maintenance somewhat, updating a
single form or query involves nothing more than replacing the related file with the updated form
or query file.

Updating an Access database object is somewhat more complicated. As you’ve probably discov-
ered, replacing a form or query in an Access database used by a large number of users can be quite
a problem. Replacing a form or other database object often requires hours of work importing the
object into each user’s copy of the database.

A second consideration is the network traffic inherent in single-file Access databases. Figure 21-2
shows an example of the problem. This figure illustrates a common method of sharing an Access
database. The computer in the upper-left corner of the figure is the file server and holds the Access
database file. Assume for a moment that the entire database is contained within a single .accdb
on the file server, and the database has been enabled for shared data access. Each workstation in
Figure 21-2 has a full copy of Access (or the Access runtime) installed.

FIGURE 21-2

A database kept on a file server can generate a large amount of traffic on the network.

Workstation A

Entire
Access

Database

File Server

Network Cable

Workstation CWorkstation B

693

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 693

Now, what happens when the user on Workstation C opens the database? The Access installation
on that machine must locate the .accdb on the file server, open that file, and start up the applica-
tion. This means that any splash forms, queries, and other startup activities must take place across
the network before the user is able to work with the database. Any time a form is opened or a
query is run, the information necessary to fulfill the query must travel across the network, slowing
the operation. In Figure 21-2 the network load is indicated by a thick, dashed line.

The situation shown in Figure 21-2 is made even worse when more than one user is using the
same database. In this case, the network traffic is increased by the queries, forms opening, and
other operations performed by each additional user’s copy of Access. Imagine the dashed line get-
ting thicker with each operation across the network.

The split database model is illustrated in Figure 21-3. Notice that the back-end database resides on
the server while individual copies of the front-end database are placed on each workstation. Each
front-end database contains links to the tables stored in the back-end .accdb file. For perform-
ance reasons, the front-end databases may also contain certain tables that are more efficiently used
from the local machine than when they are stored on the file server. The front-end databases also
contain the forms, reports, queries, and other user interface components of the application.

FIGURE 21-3

A database kept on a file server can generate a large amount of traffic on the network.

The network traffic is reduced in Figure 21-3 because only linking information and data returned
by queries is moved across the network. A user working with the database application uses the
forms, queries, reports, macros, and code stored in the local front-end .accdb file. Because the
front end is accessed by a single user, response time is much improved because the local copy of

Workstation A

Back-End
Access

Database

File Server

Network Cable

Workstation CWorkstation B

Front-End
Access

Database

Front-End
Access

Database

Front-End
Access

Database

694

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 694

Access is able to instantly open the database and begin the startup operations. Only when actually
running queries does the network traffic increase.

The second major benefit of the design in Figure 21-3 is that updating the forms, reports, and
other application components requires nothing more than replacing the front-end database on
each user’s computer and reestablishing the links to the table in the back-end database. In fact, the
design in Figure 21-3 supports the notion of customized front ends, depending on the require-
ments of the user sitting at each workstation. For instance, a manager sitting at Workstation A
might need access to personnel information that is not available to the people sitting at worksta-
tions B and C. In this case the front-end database on Workstation A includes the forms, queries,
and other database objects necessary to view the personnel information.

Figure 21-4 illustrates an elegant solution to the need to keep the front-end databases up to date.
Instead of manually copying an updated front-end database to each user’s workstation, the users in
Figure 21-4 replicate their locally installed database with the front-end replica master located on
the file server. As you’ll see in Chapter 31, Access replicates database objects like forms and
reports, as well as the data contained in tables.

FIGURE 21-4

Access replication can ease the task of updating local copies of database objects.

Workstation A

Back-End
Access

Database

File Server

Network Cable

Workstation CWorkstation B

Front-End
Replica
Master

Front-End
Access

Database

Front-End
Access

Database

Front-End
Access

Database

695

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 695

Where to put which objects
Not all tables need to be put into the back-end database. Generally speaking, any object that rarely
changes should be kept in the front-end database, while those objects that change frequently are
kept in the back-end .accdb file. Keeping tables in the local .accdb reduces network traffic —
there’s no reason to move static data such as state abbreviations, city names, and zip codes across
the network. The local tables require updating only when the data changes.

The local .accdb also contains all of the user interface objects, including forms, reports, queries,
macros, and modules. Keeping the user interface components on the local machine dramatically
improves performance. There is no need to move forms, queries, or reports across the network.
These objects are much more easily manipulated on the local machine than when accessed across
the network.

All shared tables and tables that are changed at regular intervals really should be placed in the
back-end database kept on the server. The server database is opened in shared mode, making all of
its objects accessible to multiple users. The tables in the server database are linked to the front-end
.accdb on each user’s desktop. (There is no problem with simultaneously linking the same table
to multiple databases.)

Obviously, with more than one person using the data within a table, the possibility exists that the
same record will be edited by multiple users. Jet handles this problem by locking a record as it is
edited by a user. A lock contention occurs when more than one user tries to update the same
record. Only one user will have “live” access to the record — all other users will either be locked or
have their changes held up until the record holder is done making changes.

We explain the Jet locking mechanism in detail later in this chapter.

Using the Database Splitter add-in
The Database Splitter helps you split an application into front-end and back-end databases. This
wizard enables you to build and test your database to your heart’s content, and then lightens the
burden of preparing the application for multiuser access.

As an experiment, let’s take a look at splitting the Northwind Traders database into front-end and
back-end .accdb files. You start the Database Splitter by choosing the Tools tab of the Add-ins
ribbon, then clicking on the Database Splitterin the Database Utilities group. The opening wizard
screen (see Figure 21-5) explains the actions of the Database Splitter and suggests that you make a
backup of the database before proceeding.

696

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 696

FIGURE 21-5

The Database Splitter is a very simple wizard.

The only other information that the Database Splitter requires is where you want to put the back-
end database. Figure 21-6 shows the familiar Explorer-style file dialog box that lets you specify the
location of the back-end .accdb file. By default, the back-end database has the same name as the
original database with a _be suffix added to the name (for example, MyDB_be.accdb). You
should plan to put the back end exactly where it will reside in the production environment.
Because the front-end database will contain links to the back-end database, and because links are
path-specific, the links would have to be refreshed if the back end were moved after being built by
the Database Splitter.

FIGURE 21-6

Specify the permanent location of the back-end database in the Create Back-end Database dialog box.

697

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 697

When you click on the Split button shown in Figure 21-6, the Database Splitter database creates
the back-end database, exports all tables to it, deletes the tables in the local database, and creates
links to the back-end tables. In other words, the Database Splitter performs precisely the same
steps you’d have to perform manually if the Database Splitter weren’t available.

You should be prepared for this process to take a little while, especially on large databases. Because
Access has to create the new database, transfer tables to it, and create the links back to the original
database, the splitting process can easily require more than a few minutes. Don’t worry if the
process appears to be taking longer than you expect — you’ll be well rewarded for your efforts!

Figure 21-7 shows the Access Database Explorer after splitting the Northwind Traders database.
The back-end database only contains the tables exported from Northwind.accdb. Notice that
all of the tables in Northwind.accdb have been moved to the back-end database. You’ll have to
import any local tables from the back-end database before distributing the front end to the users.

FIGURE 21-7

The Database Splitter creates links for all tables in the database.

Keep in mind that in spite of the Database Splitter’s simple interface, there is a lot going on behind
the scenes. Splitting a large database can take several to many minutes to complete. The Database
Splitter is rather naive about system considerations such as available disk space. Make sure ade-
quate disk space exists on the target machine to accommodate the back-end database.

Locking Issues
In multiuser situations, one of the most nagging problems involves a situation where two or more
users try to access the same record at the same time. Although Access lets you alter the way it locks
records using built-in options, the best cure for record-locking problems is a combination of
Access’s record-lock settings, careful planning, and VBA error-handling procedures.

698

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 698

Access has long been criticized for its handling of record locks. Some of the older ISAM databases,
and even some high-end server products, give you the ability to lock an individual row within a
table or recordset. The advantage of this individual record-lock ability is its certainty: You know
that only one person can access one record at a time. You can easily code procedures to handle
single-record locks. In systems using record-locking schemes, it’s easy to know which individual
record is locked and handle lock contentions against that one record.

Access uses either row-level (record) locks or page locks. A page is a 2K-sized section of your table
that Access pulls into memory when you want to change a record within a table. When using page
locking (which is a good option if performance is an issue), Access locks the entire 2K page con-
taining the record. If the record is greater than 2K, Access locks as many 2K pages as necessary to
lock all of the record’s data.

Page locking makes more efficient use of system resources by caching data locally, allowing you to
have more responsive applications. The page-locking scheme in Access also corresponds to the
locking behavior of high-end client-server database engines like SQL Server. After you’ve mastered
the page locking mechanisms in Access, you have a much better understanding of how locking
works in client-server environments.

When using record-level locking, Access locks only the record currently being edited. Record-level
locking is a good option when many users are simultaneously editing and updating records. The
only lock contention that occurs in such a situation happens when two users happen to change the
same record at the same time.

Record-level locking is the default in Access 2007. If you choose to use page-level locking, open
the Access Options dialog box (File ➪ Access Options ➪ Advanced) and deselect the Open
Databases by Using Record-Level Locking check box. In most environments, however, you’ll find
that record-level locking works just fine.

When you design your applications, the type of database application that you’re creating should
drive the locking strategy that you apply to your applications. Decision support or EIS-type appli-
cations usually do not need any locks (No Locks or Read-Only access), because most users only
view data and do not change or add new records to the underlying tables. However, if the records
in your application are constantly changing as people add new records or edit existing data, then
your locking strategy will be much more complex.

Access’s built-in record-locking features
Access has several settings available at runtime and design time that you can change to control the
locking behavior of your applications. The Access Options dialog box contains an Advanced page
that contains record-lock settings for your databases (see Figure 21-8). Once set, these become the
default behavior for your database and its objects. You can, however, change these defaults in code
and in each individual form you create.

699

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 699

FIGURE 21-8

The Advanced tab in the Access Options dialog box

Default record locking controls whether or how Access handles locking when your users add, edit,
or change records within a recordset. Once set, these settings apply globally to the objects you cre-
ate within your database. The same settings exist within the Design view of forms, which will over-
ride the default settings of the Advanced tab.

n No Locks: Also called optimistic locking, this setting allows you or your users to add or
edit a record without locking the page in which it exists. The only locking occurs during
the split second when the update is actually written to the Access table. Thus, when No
Locks is set, someone may be able to start an edit but may not be able to finish it. The No
Locks setting is most appropriate in environments where users will be adding many
records simultaneously. This will allow all adds to be started and almost all updates to be
committed (unless two people save the record at the same time). Your error-handling rou-
tines must anticipate the errors that occur when the record is committed. The No Locks
setting is called optimistic locking because you have every expectation that the record com-
mit will proceed without error.

n All Records: The All Records setting locks an entire recordset as long as the user has the
table, form, or query open for viewing. This setting really has no practical use in a
dynamic multiuser environment. The only time it should be used is when you’re doing
some kind of administrative updates to a table and don’t want anyone else editing records
during the time you are updating.

n Edited Record: Also called pessimistic locking, this setting locks a record when a user tries
to obtain a record for editing. Access locks the record (or page) at the moment a user
begins editing a record, as opposed to No Locks, which locks the page only at the instant

700

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 700

the record is updated. Pessimistic locking is appropriate in applications where data will
be changed frequently but not added. Pessimistic locking is a good choice in situations
where data changes frequently. In these environments, you don’t want two users trying to
edit the same record at the same time. If they do, one user has the potential to overwrite
the changes of the other. With Edited Record locking on, your application can capture an
error when the second user tries to obtain the lock for editing. The application then noti-
fies the user to wait until the other user is finished.

Default Open Mode
The Default Open Mode setting in the Advanced tab of the Access Options dialog box should
always be set to Shared in multiuser applications (Shared is the default in Access 2007). After all, if
everyone tried to open the application in Exclusive mode, no two users could use the database at
the same time. You may use the Exclusive mode as the administrator to update files and tables, add
forms, and so on.

Number of Update Retries
When two users try to update the same record at the same time, Access captures the error and tries
to recover using the Number of Update Retries setting. The Number of Update Retries option tells
Access how many times to attempt to update the record (where x is the number you have set)
before it raises an error condition. In situations where you anticipate a high number of locking
conflicts, set this option to a high number (10 is the maximum number of retries you can set, 2 is
the default).

Update Retry Interval
This option controls the period of time Access waits to retry a lock. The maximum number is
1,000 (one second); the default is 250 (one-quarter second). Adjust this setting to accommodate
the latency imposed by the network, slow computers, and other hardware constraints. An unneces-
sarily long Retry Interval and a high Number of Update Retries can result in an uncomfortably long
interval before the user sees a locking error message. In most cases, using the No Locks option
(optimistic locking) in conjunction with a brief Update Retry Interval, and a minimum number of
update retries is adequate.

Refresh Interval
In multiuser environments, data is extremely volatile because it can be changed by many different
people during the course of a day or even an hour. You want users to see the most current data dis-
played on forms and datasheets, so that they don’t make decisions based on information that is no
longer valid. Refresh Interval tells Access how long to wait before refreshing the data displayed in a
form or datasheet with current data. This does not requery the data; it only refreshes it. Requerying
reissues the query behind the recordset displayed. To illustrate the difference, imagine that two
users are editing data and one deletes a record from a table that the other is viewing. When Access

701

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 701

refreshes the underlying table for User 2, the record viewed will display #Deleted in all the
columns of the record. If the form or datasheet is queried once again, the new recordset does not
display the record at all because it no longer resides in the underlying table.

In situations where data will be added or edited frequently, set this number fairly low, say, 3 sec-
onds. The default is 30, the minimum 0, and the maximum 32,766.

ODBC Refresh Interval
This setting is much like the previous one, except that special considerations must be made when
using external data sources. ODBC links can be slow, and queries executed against these back-end
databases can consume a lot of time and increase network traffic. When using ODBC data sources,
the ODBC Refresh Interval should be set higher than you would set the Refresh Interval of an
Access database. You’ll notice that the default is 1,500 seconds (25 minutes!), much higher than
the previous Refresh Interval. Its maximum number is also much smaller: 3,600. Before setting this
option, experiment with the speed of your queries and tables, and monitor network resources
when you issue reads from your back end. Setting the ODBC Refresh Interval too low will really
bog down the system as Access hits the ODBC data source looking for data changes.

Record-Lock Error Handling
Even though you plan ahead and set Access’s default settings to a number you think will handle
record-locking problems in your application, you’re bound to encounter conflicts sometime. The
more users you have hitting your application, the better the chance that you’ll encounter a locking
conflict. You can capture the errors that Access throws up, however, and use VBA to communicate
conflict solutions to your users.

In an effort to correct some performance problems and locking conflicts in earlier versions of
Access, Microsoft has developed Access 2007 so that it caches more data in memory and writes
data to disk only after the cache has been filled (unless specified in the engine’s Registry keys).
Although these enhancements do increase performance, they can make it harder to trap lock errors
on specific records.

Here’s an example: Mike is changing data on Machine A. Elizabeth is editing data on Machine B.
Mike and Elizabeth both change the same record, but the record changed is cached in memory on
Machine A along with several other records. Finally, Machine A runs out of cache space and flushes
the cache to disk. Because a locking violation has occurred (even though time and records have
long since passed the violation), Access flags an error. But because the record is being written along
with several others, figuring out exactly which record lock caused the error is difficult.

702

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 702

Another problem with Access’s caching behavior is latency. Because data is being stored in cache on
each machine, changes that may have occurred to data on each machine will not be reflected to
other users until the cache is flushed to disk. In order to solve both of these problems, you must
use explicit transactions in your procedures. Explicit transactions enclose each transaction with
workspace.BeginTrans and workspace.CommitTrans (ADO transactions are managed by
the Connection object). Be aware, however, that you can encounter locking problems within your
transactions, so be sure to provide adequate error handling.

By this time, you’ve gotten a taste of what can happen in your multiuser applications: Performance
can suffer, and users can change each other’s data and encounter errors when a locking conflict
occurs. The good news is that you can plan for the errors, specifically by trapping for errors 3260,
3186, 3188, and 3197. The next sections explain what each of these errors means, and give you
some routines to help you use them (instead of becoming their victim). In the following sections,
we cover Error 3188 along with Error 3186.

A function to handle lock errors
Many of the routines in the following code listings call an error-handling function named
ErrorRoutine(). Instead of each procedure having to trap and interpret every possible error,
many developers condense error handling as a single public function (such as ErrorRoutine),
and have the function interpret and handle errors as they occur. Each procedure in the application
is responsible for trapping errors, but the errors are passed to ErrorRoutine for handling.
ErrorRoutine may notify the user, log the error, or simply ignore the error, depending on the
details of the error incident.

The ErrorRoutine function (shown in Listing 21-3) uses the Err object’s Number property to
determine which locking error has occurred, and takes action based on the error number and the
Flag parameter to appropriately handle Jet locking problems. Most likely, you’ll want to modify
each error number to suit your users and their environment.

As you’ll see in Chapter 25, there is but a single Err object in any VBA project, such as a Microsoft
Access application. The Error object contains all of the details of an error incident, and because
there is only one Err object in the entire project, any routine (such as ErrorRoutine) can use
the information provided by the Err object.

ErrorRoutine accepts a single argument (Flag) that instructs ErrorRoutine to take specific
actions depending on the value of Flag. You’ll see this parameter passed to ErrorRoutine
in the following sections. At this point, don’t be too concerned with the details of how
ErrorRoutine operates. You’ll see the explanation for each of the branches in the
Select Case statement in the following sections.

703

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 703

LISTING 21-3

A Function to Handle Locking Errors

Public Function ErrorRoutine(Flag As Integer) As Integer
Dim lngCounter As Long
Dim lngReturn As Long
Dim strMessage As String

Select Case Err.Number

Case 3021
‘Let the error pass

Case 3186
‘3186 — Couldn’t Save; currently
‘locked by user x on machine y.
If Flag < 10 Then
For lngCounter = 0 To 15000

‘Empty loop for short delay...
Next lngCounter
ErrorRoutine = 3

Else
ParseError Err, Error
ErrorRoutine = 4

End If

Case 3188
‘Record is locked by another
‘session on the same machine:
MsgBox “The Record Could Not Be Locked “ _

& “Because It Is Locked On Your Machine”

Case 3197
‘3197 — Data has changed; Operation stopped.
‘Offer the user a chance to cancel
‘the edit or save the changes
strMessage = “The record you are trying “ _

& “to save has been changed “ _
& “since your edit began.” _
& vbCrLf & vbCrLf _
& “Do you want to save it anyway?”

lngReturn = MsgBox(strMessage, vbYesNo)
Select Case lngReturn

Case vbYes
‘Return 3:
ErrorRoutine = 3

Case vbNo
‘Return 4:

704

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 704

ErrorRoutine = 4
End Select

Case 3260
‘3260 — Couldn’t Update; currently
‘locked by user x on machine y.
‘Record is locked on another machine:
If Flag < 10 Then

For lngCounter = 0 To 15000
‘Empty loop for short delay...

Next lngCounter
ErrorRoutine = 3

Else
ParseError Err, Error
ErrorRoutine = 4

End If

Case 3421
strMessage = _

“The Add was cancelled due to a “ _
& “type conversion error”

lngReturn = MsgBox(strMessage, vbOKOnly)

Case Else
strMessage = _

“The Error Number Was “ & Err & “ “ & Error
lngReturn = MsgBox(strMessage, vbInformation)

End Select

End Function

Notice that ErrorRoutine() contains the error-handling segments for each of the errors dis-
cussed in the following sections. ErrorRoutine() could be extended, of course, to include the
ParseError() subroutine, error logging and more extensive messaging, among other features.

Error 3260: Couldn’t update; currently locked by
user . . .
Remember pessimistic locking (see the “Access’s built-in record-locking features” section, earlier in
this chapter)? Error 3260 most often occurs when pessimistic locking is enabled in an application.
It occurs when a user tries to lock a record for editing but another user already has the record
locked (because that person is editing it). You can choose to try again within your code, but one of
the problems inherent in pessimistic locking is that a user can hold a record for editing for an
indefinite period of time. This means that you have to provide a failure mechanism within your
code just in case you can’t obtain the lock after trying several times.

705

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 705

Before you waste time on edit procedures, make sure you can obtain a lock on the record you want
to edit. You can check to see if the record is locked by forcing the error (if there is one). All you
have to do is enable pessimistic locking and try to edit the desired record. In an ADO application,
pessimistic locking is implemented by setting the LockType parameter of the Recordset
object’s Open method:

rst.Open “Customers”, _
ActiveConnection:=conn, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockReadOnly, _
Options:=adCmdTableDirect

The enumerated values for LockType are shown in Table 21-1.

TABLE 21-1

Enumerated Values for LockType

Enumerated Constant Numeric Value Description

adLockBatchOptimistic 4 Specifies optimistic batch updates. This value is
required for Batch Update mode.

adLockOptimistic 3 Optimistic locking on a record-by-record basis. The
lock is applied only when the Update method is
called.

adLockPessimistic 2 Pessimistic locking on a record-by-record basis. The
lock is applied right after the user begins editing the
record.

adLockReadOnly 1 The data is read-only.

adLockUnspecified –1 No lock type specified.

In a DAO environment, use the LockEdits property (a Boolean) of a Recordset object to spec-
ify the default record-locking behavior of a recordset. Set LockEdits to True to specify pes-
simistic locking:

Recordset.LockEdits = True

Set LockEdits to False for optimistic locking:

Recordset.LockEdits = False

Listing 21-4 creates a recordset based on the Employees table and an EmployeeID passed to the
function as an argument. It then sets record locking to pessimistic locking and tries to lock the
record for editing. If the edit fails, the error handler (see the “A function to handle lock errors” sec-
tion earlier in this chapter) uses an empty loop to wait a few seconds before trying the edit again.
After four tries, the edit fails and the user is notified of the failure.

706

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 706

LISTING 21-4

Testing a Record Lock Using Pessimistic Locking

Function PessimisticLockRecordADO(ID As Long)
Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim str As String
Dim lngTryCount As Long

On Error GoTo LockRecord_Error

str = “Provider=Microsoft.Jet.OLEDB.4.0;” _
& “Data Source=C:\Data\MyDB.accdb”

Set cnn = New ADODB.Connection

str = “SELECT * FROM Employees WHERE “ _
& “Employees.Fields(‘EmployeeID’) = “ & ID

‘Open the recordset:
rs.Open “Customers”, _
ActiveConnection:=cnn, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockPessimistic, _
Options:=adCmdTableDirect

‘Try to update a field:
rs.Fields(“LastName”) = UCase(rs.Fields(“LastName”))

LockRecord_Exit:
rs.Close
Set rs = Nothing
cnn.Close
Set cnn = Nothing
Exit Function

LockRecord_Error:
‘Update Retry Count:
lngTryCount = lngTryCount + 1
‘Call Error Routine, passing
‘in the number of retries:
Select Case ErrorRoutine(lngTryCount)

Case 3
‘Try again at the same statement
‘that caused the error:
Resume

Case 4
MsgBox “Edit Cancelled”
GoTo LockRecord_Exit

continued

707

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 707

LISTING 21-4 (continued)

End Select
End Function

Function PessimisticLockRecordDAO(ID As Long)
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim strSQL As String
Dim lngTryCount As Long
Dim lngCounter As Long

On Error GoTo LockRecord_Error

Set db = CurrentDb
sSQL = “SELECT * FROM Employees WHERE “ _

“Employees.Fields(“EmployeeID”) = “ & ID
Set rs = db.OpenRecordset(sSQL)
‘Set record locking to Pessimistic Locking:
rs.LockEdits = True
rs.Edit
rs.Fields(“LastName”) = UCase(rs.Fields(“LastName”))

LockRecord_Exit:
rs.Close
Exit Function

LockRecord_Error:
‘Update Retry Count:
lngTryCount = lngTryCount + 1
‘Call Error Routine, passing
‘in the number of retries:
Select Case ErrorRoutine(lngTryCount)

Case 3
‘Try again at the same statement
‘that caused the error:
Resume

Case 4
MsgBox “Edit Cancelled”
GoTo LockRecord_Exit

End Select
End Function

The portion of code from ErrorRoutine() that handles this error is shown in the following list-
ing. This code fragment contains an empty loop that provides a little bit of time for the lock to be

708

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 708

released. As long as the value of Flag is less than 10, the loop will be executed and the value of
ErrorRoutine() is set to 3. If ErrorRoutine() has been called 10 or more times,
ErrorRoutine() is set to 4, which ends the attempt to rectify the situation.

Case 3260
‘ Record is locked on another machine
If Flag < 10 Then
For lngCounter = 0 To 15000

‘Empty loop for short delay...
Next lngCounter
ErrorRoutine = 3

Else
ParseError Err, Error
ErrorRoutine = 4

End If

Error 3186: Couldn’t save; currently locked by user
x on machine y
Sound familiar? This error is much like Error 3260, except for one difference: 3260 states that the
record couldn’t be updated; 3186 states that the record couldn’t be saved. You can’t update a record
that you can’t get a lock on for editing (pessimistic locking). But if you can get a lock on a record but
not save it, it must be an optimistic record-locking error.

As an example, let’s say two users are trying to edit the same record, but one is using pessimistic
locking and the other is using optimistic locking. Both can pull the record into memory for updat-
ing because one of the two users is set to optimistic locking. If the user with optimistic locking
tries to save while the pessimist is still editing, the optimist one is likely to get Error 3186. The
same could happen if two optimistic updates were committed at the same time (a less likely
situation).

Listing 21-5 shows how to test for locking status on a record that’s been obtained using
optimistic locking. Actually, there’s not much difference except that an edit takes place
(rs.Fields(“Lastname”) = “Smith”) using optimistic locking (LockType:
=adLockOptimistic). Contrary to Listing 21-4, the error occurs as the record is updated
instead of as it is edited. Again, when the error occurs, the global error handler is called to deal
with the error.

LISTING 21-5

Testing a Record Lock Using Optimistic Locking

Function OptimisticLockRecordADO(ID As Long)
Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset

continued

709

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 709

LISTING 21-5 (continued)

Dim str As String
Dim lngTryCount As Long

On Error GoTo LockRecord_Error

str = “Provider=Microsoft.Jet.OLEDB.4.0;” _
& “Data Source=C:\Data\MyDB.accdb”

Set cnn = New ADODB.Connection

str = “SELECT * FROM Employees WHERE “ _
& “Employees.Fields(‘EmployeeID’) = “ & ID

‘Open the recordset:
rs.Open “Customers”, _
ActiveConnection:=cnn, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockOptimistic, _
Options:=adCmdTableDirect

‘Try to update a field:
rs.Fields(“LastName”) = UCase(rs.Fields(“LastName”))

LockRecord_Exit:
rs.Close
Set rs = Nothing
cnn.Close
Set cnn = Nothing
Exit Function

LockRecord_Error:
‘Update Retry Count:
lngTryCount = lngTryCount + 1
‘Call Error Routine, passing
‘in the number of retries:
Select Case ErrorRoutine(lngTryCount)

Case 3
‘Try again at the same statement
‘that caused the error:
Resume

Case 4
MsgBox “Edit Cancelled”
GoTo LockRecord_Exit

End Select
End Function

Again, a Select Case construct is used to handle the value returned by ErrorRoutine(). The
function is stopped only when the value of ErrorRoutine() is 4. The portion of ErrorRoutine()
for handling Error 3186 is shown in the following listing:

710

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 710

Case 3186
‘ Record is locked on another machine
If Flag < 10 Then
For lngCounter = 0 To 15000

‘Empty loop for short delay...
Next lngCounter
ErrorRoutine = 3

Else
ParseError Err, Error
ErrorRoutine = 4

End If

The code in this listing is identical to Listing 21-4. Because of the similarities between errors 3260
and 3186, they may be handled with the same logic. In fact, you can combine the Case routines
for errors 3260 and 3186 into a single statement:

Case 3260, 3186:

What about Error 3188?
Error 3188 occurs when someone has more than one instance of a database open on the same machine
and tries to lock the same record in both sessions. Error handling is simple for this error; it is included
in the global error handler (ErrorRoutine()) in the Chapter21.accdb example database.

To keep this error from occurring altogether, try to keep users from starting more than one instance
of your application. You can do this using the FindWindow API in your startup routine. Check for
a running instance of Access at startup, and close the second instance if another is present.

The error handler called by both of these examples is really very simple. It merely reads the current
error and uses a Select statement to decide what to do. The only errors we’ve included in this
module (modErrorHandlers) relate to this chapter. You’ll notice that the ErrorRoutine func-
tion has entries for error numbers 3186 and 3260. Each of these calls another subroutine,
ParseError. ParseError (in module modParseError) accepts the error number and error
message as arguments, and parses the user name and the machine name from errors 3260 and
3186. It doesn’t matter which error has occurred because the parsing routine looks only for the
“user” and “on machine” string values within the error message, so it’s pretty generic. In fact,
this same subroutine is called from both errors. You can make the default Access error message
more descriptive, and you can also make use of the user ID and machine number within your error
log (if you keep one). The code follows:

Public Sub ParseError(lngErr As Long, strError As String)
Dim strUser As String
Dim strMachine As String
Dim lngUserStart As Long
Dim lngMachineStart As Long
Dim lngMachineEnd As Long

lngUserStart = InStr(1, strError, “user”) + 5
lngMachineStart = _

711

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 711

InStr(lngUserStart, strError, “ on machine”)
lngMachineEnd = InStr(lngMachineStart, strError, “.”)
strUser = Mid$(strError, lngUserStart, _

lngMachineStart - lngUserStart)
strMachine = Mid$(strError, lngMachineStart + 12, _

lngMachineEnd - (lngMachineStart + 12))
MsgBox “The Record Could Not Be Locked “ _

& “Because It Is Locked On “ _
& strMachine & “ By “ & strUser

End Sub

Error: 3197: Data has changed; operation stopped
Error 3197 can be one of the most confusing errors to an end user if it isn’t captured through a
VBA error handler. It usually occurs when optimistic locking is enabled in an application, but it
may also occur in an environment containing mixed record-lock settings as well. Mike starts an
edit on his machine. During the course of the edit (Mike is a slow typist), Elizabeth starts and fin-
ishes an edit on the same record. This means that the underlying data that Mike is editing is no
longer valid, so an error is flagged when he tries to issue the Update method. The resulting Access
message box is shown in Figure 21-9.

FIGURE 21-9

The Access error message for Error 3197

By default, Access gives your users three choices: Save the record with the changes they have made,
copy the changes to the clipboard, or abort the changes altogether. Options 1 and 3 make sense,
but Option 2 (Copy to Clipboard) has never seemed practical to me. Anyway, there are too many
choices for the average person to make, especially when the options aren’t self-explanatory. The
best option is to offer the user the option of saving his changes or aborting the edit, and then
deliver the message in a format that’s easy to understand. Besides a meaningful error message, you
might want to offer to show your users the changes that have been made by refreshing the current
form or opening a form based on the record that has been changed.

The actual error handling is straightforward. A record update throws up an error the first time it is
executed. It is at this point that your code captures the error. Then all you have to do is give the
user the options you think best. If the user chooses to save the record, the update does cause an
error the next time you issue it (unless another locking conflict occurs). Listing 21-6 shows an

712

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 712

example of this type of procedure. Like the previous examples, an edit is attempted; but if it fails,
control is transferred to the error handler. However, in the previous examples the edit either failed
or didn’t fail after 10 retries. SaveChanges() just gives the user a chance to overwrite or cancel.

LISTING 21-6

Handling “Data has changed” errors

Function SaveChanges(ID As Long)
Dim cnn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim str As String
Dim lngTryCount As Long

On Error GoTo LockRecord_Error

str = “Provider=Microsoft.Jet.OLEDB.4.0;” _
& “Data Source=C:\Data\MyDB.accdb”

Set cnn = New ADODB.Connection

str = “SELECT * FROM Employees WHERE “ _
& “Employees.Fields(‘EmployeeID’) = “ & ID

‘Open the recordset:
rs.Open “Customers”, _
ActiveConnection:=cnn, _
CursorType:=adOpenForwardOnly, _
LockType:=adLockOptimistic, _
Options:=adCmdTableDirect

‘Try to update a field:
rs.Fields(“LastName”) = UCase(rs.Fields(“LastName”))

LockRecord_Exit:
‘ Exit The Procedure
rs.Close
Exit Function

LockRecord_Error:
Select Case ErrorRoutine(0)

Case 3
rs.Update
MsgBox “Record Was Updated!”

Case 4
MsgBox “Edit Was Cancelled!”

End Select
GoTo LockRecord_Exit

End Function

713

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 713

The portion of ErrorRoutine() for handling this error is shown here. Notice how the user is
prompted for the action to be taken. The messaging in this routine is easier to understand than
what you see in Figure 21-9, and the user’s wishes are carried out in a more sophisticated manner
than the default Access actions. Notice also that the option to copy the data to the clipboard is not
provided because this routine assumes that the user wants either to save the record or to abandon
changes.

Case 3197
‘ Offer the user a chance to cancel
‘ the edit or save the changes
strMessage = “The record you are trying “ _

& “to save has been changed “ _
& “since your edit began” _
& vbCrLf & vbCrLf _
& “Do you want to save it anyway?”

lngReturn = MsgBox(strMessage, vbYesNo)
Select Case lngReturn

Case vbYes
ErrorRoutine = 3

Case vbNo
ErrorRoutine = 4

End Select

Using Unbound Forms in Multiuser
Environments
Everything in the previous discussion is relevant to any multiuser Access environment. However,
when you use a bound form (a form with an attached recordset), you’re more likely to encounter
some of the negative situations mentioned. Yet another way to decrease the likelihood of encoun-
tering multiuser errors is to create and use unbound forms. Unbound forms have advantages and
disadvantages, but they may be worth exploring if you want more control over your applications.

Unbound forms give you complete control over your user interface. All the updating, movement,
editing, adding, and saving is executed by code, rather than by Access’s default behavior. Record-
locking errors are less frequent because the user has direct control over edits and updates, instead
of relying on Access to do the dirty work.

Consider this scenario: Two users are sharing an application across a network. The application uses
a pessimistic locking strategy and forms directly bound to the underlying recordsets. Both users try
to edit a particular record at the same time and — bam! — a locking error occurs. Why? Because
when both users try to edit the record, only the first user gets to lock the record. The lock stays in
effect until the record is updated in the recordset by the user who got there first. Meanwhile, the
other user has to wait.

714

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 714

However, when using unbound forms, editing a record on a form probably won’t trigger record
locks. There’s nothing behind the form, so no recordset locks are established. When the user clicks
on the Save button, the application probably does a quick add or update to the recordset, only
holding the lock for a split second. You’re much less likely to hit a lock error with unbound forms.

You may, however, immediately see the disadvantages of this situation: Access does a lot for you
when you bind forms to underlying recordsets. The less you let Access do, the more code you’ll
have to write. The more code you write, the more you have to maintain and update. The more you
maintain, the less predictable your applications will become. It’s a vicious cycle but one that may
be necessary for complex applications. You also can’t take advantage of all the valuable actions that
Access performs on your behalf. Access is pretty smart and doesn’t screw up too often. Also, you
can’t use continuous forms when no recordset is attached to the form, which can be a very useful
view of your data.

We’ve put together a sample unbound form in the example database for this chapter
(Chapter28.accdb) located on the companion CD. The form, named frmEmployees,

works much like a typical form: you can go to the first record, next record, last record, and previous
record, and add, edit, and save records in the Employees table. But there is no data behind this form.
All the work takes place in a collection of routines in the modUnboundMethods module. We’ll take
you through each method and discuss how it works and how you can apply it to your own forms. The
form is shown in Figure 21-10.

FIGURE 21-10

The unbound Employees form

Creating an unbound form
Creating an unbound form doesn’t take a lot of special skill, just some planning ahead of time and
a few shortcuts. We try to make the process as easy as possible by first creating a bound form that
looks and behaves as close to the finished product as we can. The reason we do this is because all
our fields get named correctly, they keep the formatting we’ve set for them in my tables, we don’t
have to set label captions, and so forth. The naming part is important, for reusability reasons that

ON the CD-ROMON the CD-ROM

715

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 715

you’ll discover as we populate controls with data. After we’ve finished creating the look of the
form, we move to the RecordSource property of the form and delete it. Ta da! You now have an
unbound form. Of course, it doesn’t do anything, but it looks good.

Making it work
There are several events your form has to respond to, such as advancing to a record, adding, edit-
ing, updating, and so forth. To do this, I’ve created a separate routine that responds to each event.
Each procedure accepts at least the name of the calling form and the recordset it’s based on. You
tell the form what recordset you want to use by placing its name in the form’s Tag property.

The Tag property
The routines in the following section make extensive use of the Tag property of forms and con-
trols. The Tag property is unique in that it doesn’t do anything. That’s what makes it so useful. You
can use it as a place to store information for later retrieval or to keep track of where you are in a
process. Here’s a good example of what you can do with the Tag property: Suppose you want your
application to have the ability to fill in each new record with data from the previous record. Using
the Tag property, you can store the current record’s values in each control’s Tag property, and,
upon moving to the next new record, fill in the form’s controls with the values stored in the Tag.
It’s a whole lot easier than doing a lookup using a hidden field on a form and the Seek method on
a clone of the form’s recordset, which is an alternative we’ve seen some people use.

The Tag property was introduced way back in Access Version 2, but many developers don’t know
it exists or aren’t sure what it’s for. We encourage you to use this property often.

The form Open event
The first event you must respond to is the Open event of the form. When this event fires, there are
a few things that need to be done to populate the unbound form. The first is to open the recordset
that will be filled with the data displayed on the form. You don’t have to do this — you could just
open a new recordset instance in each routine behind the form — but it’s faster to just have a
recordset open and waiting as the form opens. The second thing you need to do is update the form
with some data. Again, you don’t have to, but many times a user expects to see something on a
form when it opens. The Declarations section of the form contains two public variables, db (data-
base) and rs (recordset). The form’s Open event runs a very short procedure that sets the database
and recordset variables to their proper values and calls the Unbound Display routine that loads
the first record of the recordset into the form’s fields:

Private cnn As ADODB.Connection
Private rs As ADODB.Recordset

Private Sub Form_Open(Cancel As Integer)
Dim intReturn As Integer
Dim str As String
str = “Provider=Microsoft.Jet.OLEDB.4.0;” _

& “Data Source=C:\Data\MyDB.accdb “

716

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 716

Set cnn = New ADODB.Connection
cnn.Open (str)

Set rs = New ADODB.Recordset
rs.Open “tblCustomers”, _

ActiveConnection:=cnn, _
CursorType:=adOpenForwardOnly, _
LockType:= adLockOptimistic, _
Options:=adCmdTableDirect

intReturn = UnboundDisplay(Me, rs)
End Sub

The real work begins in the UnboundDisplay procedure. Like most of the unbound methods,
this routine accepts the name of the form and the name of the open recordset. The key to making
this practical is making your routines as reusable as possible. It’s good practice anytime but espe-
cially in situations where you’ll be doing the same type of routine several times. For instance, you
shouldn’t create routines that require a recordset named Employees, because the database may
have unbound forms based on other tables that act the same way as the Employees form.
UnboundDisplay is a reusable function. Because we created the form as a bound form first,
the control names on the form should be the same as the field names in the recordset. Because
you have the recordset open, the names of the controls on your form are readily available.
UnboundDisplay cycles through the recordset, setting the value of each form control equal to
the value of its corresponding recordset field value. The following listing shows the code for
UnboundDisplay:

Function UnboundDisplay(_
frm As Form, _
frmRS As Recordset) As Integer

Dim ctlName As String
Dim lngReturn As Long
Dim x As Integer

On Error GoTo Display_Err

frmRS.MoveFirst ‘Move to the first record

‘Cycle through the recordset, setting the
‘value of each control on the form.
For x = 0 To frmRS.Fields.Count - 1

ctlName = frmRS.Fields(x).Name
frm.Controls(ctlName).Value = frmRS.Fields(x).Value

Next x

Display_End:
Exit Function

Display_Err:
‘If there’s an error, switch to

717

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 717

‘the error handling procedure:
lngReturn = ErrorRoutine(0)
GoTo Display_End

End Function

Moving through records
A user can move through records on the Employee form in either of two ways: by using one of the
navigation buttons we’ve created (you can’t use Access’s navigation buttons on an unbound form) or
by searching for a record using a combo box. The navigation buttons we’ve created are based on
four routines, each of which work similarly. The UnboundMoveFirst and UnboundMoveLast
routines accept the name of the form you’re using and the open recordset as arguments. All they
do is issue a MoveFirst or MoveLast method on the recordset variable to move to the desired
location.

Function UnboundMoveFirst(_
frm As Form, _
frmRS As Recordset) As Integer

Dim ctlName As String
Dim x As Integer
Dim lngReturn As Long

On Error GoTo MoveFirst_Err

frmRS.MoveFirst

For x = 0 To frmRS.Fields.Count - 1
ctlName = frmRS.Fields(x).Name
frm.Controls(ctlName).Value = frmRS.Fields(x).Value

Next x

MoveFirst_End:
Exit Function

MoveFirst_Err:
lngReturn = ErrorRoutine(0)
GoTo MoveFirst_End

End Function

The code for UnboundMoveLast is not given here because it is nearly identical to
UnboundMoveFirst. Simply use MoveLast instead of MoveFirst, and make a few

other minor changes, and you’ve got UnboundMoveLast.

The UnboundMoveNext and UnboundMovePrevious procedures accept the name of the form
and recordset, but they also include the employee ID of the currently displayed employee record.
When you call the MoveNext or MovePrevious procedure, the function that was called sets
the index of the recordset to the primary key and does a seek to place the cursor at the name of the

NOTENOTE

718

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/27/06 5:09 PM Page 718

employee whose record is displayed. If the record is found (If Not frmRS.NoMatch), which
should always be the case unless the record displayed is the last or first record in the recordset, you
issue a MoveNext or MovePrevious method on the recordset to move to the desired record.
The last step in the procedure is to update the controls on your form with data from the recordset.

The code for UnboundMovePrevious is not given here because it is nearly identical
to UnboundMoveFirst. Simply use MovePrevious instead of MoveNext, and make

a few other minor changes and you’ve got UnboundMoveFirst.

Function UnboundMoveNext(_
frm As Form, _
frmRS As DAO.Recordset, _
lValue As Long) As Integer

Dim ctlName As String
Dim x As Integer
Dim lngReturn As Long

On Error GoTo MoveNext_Err

‘Move to the next employee record:
frmRS.INDEX = “PrimaryKey”
frmRS.Seek “=”, lValue ‘Search for displayed employee

If Not frmRS.NoMatch Then
‘ Move to the next employee record
frmRS.MoveNext
For x = 0 To frmRS.Fields.Count - 1

ctlName = frmRS.Fields(x).Name
frm.Controls(ctlName).Value = _
frmRS.Fields(x).Value

Next x
End If

MoveNext_End:
Exit Function

MoveNext_Err:
lngReturn = ErrorRoutine(0)
GoTo MoveNext_End

End Function

The second method for changing position within the form’s recordset is by using a combo box. The
combo box cboEmployee uses the employee’s ID number which is the bound column of the
combo box. It is passed to the UnboundSearch function (shown here) as the variable lValue,
which is called when the AfterUpdate event is triggered. UnboundSearch sets the recordset’s
index property to EmployeeID then uses the Seek method to locate the employee chosen. If a
match is found after using the Seek method, the now familiar looping routine is used to extract
field values from the recordset and fill in the corresponding controls on the Employees form. The
code is shown here:

NOTENOTE

719

Building Multiuser Applications 21

27_046732 ch21.qxp 11/27/06 5:09 PM Page 719

Function UnboundSearch(_
frm As Form, _
frmRS As DAO.Recordset, _
lValue As Long) As Integer

Dim ctlName As String
Dim x As Integer
frmRS.Index = “PrimaryKey”
frmRS.Seek “=”, lValue

If Not frmRS.NoMatch Then
For x = 0 To frmRS.Fields.Count - 1

ctlName = frmRS.Fields(x).Name
frm.Controls(ctlName).Value = _

frmRS.Fields(x).Value
Next x

End If
End Function

Editing data
The last action you need to provide for in your unbound form is editing. You must be able to add,
remove, edit, and save data. The Employees form does all of these (except deletions, but that can
be accomplished using the Delete method and the examples shown here). Although it’s really not
that involved, these routines are the reason you created an unbound form in the first place.
Because they don’t take any action on the recordset until update time, your users shouldn’t have
trouble with locks.

When someone clicks on the Add button, a couple of things happen:

n The controls on the form are selectively enabled or disabled. By default, this form
is set to browse data, as evidenced by the disabled data entry fields and disabled Save
command button. When an add takes place, the data entry fields and Save button are
enabled, but everything else is disabled (to keep users from wandering until the add is
successfully completed). When the users type information into form controls, they’re
really just typing the data into placeholders. No action has occurred in the recordset.

n We need to set some value to let us know what kind of action we have in progress.
To do this, the Save button’s Tag property is set to Add. Later, this value will be retrieved
and sent to the update routine.

When the Save command button is hit, its OnClick event runs the UnboundSave procedure, pass-
ing the procedure the value of the button’s Tag property. Listing 21-7 shows the procedure. Notice
that every effort has been made to assure a successful update: Locking is set to optimistic locking
(LockEdits = False), and transactions are used on the current workspace. The procedure uses a
Select statement and the value passed from the Tag property to decide what action should be taken.
The update is essentially the reverse of the UpdateDisplay procedure, with a few exceptions. An
AddNew (or Edit) method is invoked, and again we step through each field in the recordset’s Fields
collection, this time updating values in the recordset instead of updating controls on the form.

720

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 720

Another difference is the use of the EmployeeID’s Tag property. If you open the form and check
the Tag property of the control EmployeeID, you’ll see the string value Key. This lets the proce-
dure know that this value should not be updated. Why? It’s a counter (AutoNumber), and you
can’t update a counter. If you try, the routine will flag an error. After all the fields have been set, the
update method is invoked. This is the only time a record-lock error can occur — this split second.
If it does fail, which is unlikely, the procedure can roll back the transaction.

LISTING 21-7

UnboundSave

Function UnboundSave(_
frm As Form, _
frmRS As DAO.Recordset, _
ID As Long, _
sAction As Variant) As Integer

Dim ws As Workspace
Dim ctlName As String
Dim ctl As Control
Dim x As Integer

On Error GoTo Save_Err

frmRS.LockEdits = False ‘ Pessimistic Locking
Set ws = DBEngine.Workspaces(0)

Select Case sAction
Case “Add”

ws.BeginTrans
frmRS.AddNew
For x = 0 To frmRS.Fields.Count - 1

ctlName = frmRS(x).Name
Set ctl = frm.Controls(ctlName)
If ctl.Tag = “Key” Then

‘Do nothing...
Else

frmRS.Fields(ctlName).Value = ctl.Value
End If

Next x

Case “Edit”
frmRS.Index = “PrimaryKey”
frmRS.Seek “=”, Flag
ws.BeginTrans
frmRS.Edit
For x = 0 To frmRS.Fields.Count - 1

ctlName = frmRS(x).Name

continued

721

Building Multiuser Applications 21

27_046732 ch21.qxp 11/21/06 10:22 AM Page 721

LISTING 21-7 (continued)

Set ctl = frm.Controls(ctlName)
If ctl.Tag = “Key” Then
Else

frmRS.Fields(ctlName).Value = ctl.Value
End If

Next x

Case Else
GoTo Save_End

End Select
frmRS.UPDATE
ws.CommitTrans

Save_End:
Exit Function

Save_Err:
ws.Rollback
GoTo Save_End

End Function

The process for editing a record is the same, except that the Tag property of the cmdSave com-
mand button is set to Edit, and the Seek method is used in the UnboundSave procedure to
search for the record that has been edited. Once the match is found, the Edit method is invoked
and the fields in the recordset are updated.

After the update is complete, the private form procedure EnableButtons is called (from the
cmdSave button’s OnClick event), and the appropriate fields are enabled/disabled.

Summary
Access is perfect for single-user database application development. It’s also excellent in a multiuser
environment, but there are more opportunities for things to go wrong. You have to do some careful
planning before creating multiuser applications, in order to ensure their success. You have to take
into consideration network speed, number of users, type of application (data-entry, EIS), and
update volume (high number of additions, high number of edits, high number of data selection)
when planning and implementing a multiuser Access application. Only after extensive planning
can you decide on the best approach for handling Access’s record-locking behavior. You should
decide which of the wide variety of options (retries and refresh rate, trapping errors, using bound
or unbound forms, and so on) make the most sense for your users, and carefully apply those tech-
niques to your applications.

722

More Advanced Access TechniquesPart III

27_046732 ch21.qxp 11/21/06 10:22 AM Page 722

As companies standardize their computer practices and software selec-
tions, it is becoming more and more important to develop total solu-
tions: in other words, solutions that integrate the many procedures of

an organization. Usually, various procedures are accomplished by using dif-
ferent software packages, such as Word for letter writing, Exchange and
Outlook for mailing and faxing, PowerPoint for presentations, and Excel for
financial functions. If the organization for which you are developing has
standardized on the Microsoft Office suite, you can leverage your knowledge
of Visual Basic for Applications to program for all of these products.

Automation, formerly called OLE Automation, is a means by
which an application can expose objects, each with its own

methods and properties that other applications can create instances of and
control through code. Not all commercial applications support Automation,
but more and more applications are adopting Automation to replace the out-
dated DDE interface. Consult with a specific application’s vendor to find out
whether it supports or plans to support Automation in the program.

This chapter uses a database named Chapter22.accdb. A
Word template file, named Thanks.dotx, is also included

for use in this chapter. If you have not already copied these files onto your
computer from the CD, you need to do so now. Because this chapter relies on
the use of VBA code, it and the forms that are driven by it have already been
created for you.

ON the CD-ROMON the CD-ROM

NOTENOTE

723

IN THIS CHAPTER
Using Automation to integrate
with other applications

Adding Automation references

Creating an instance of an
Automation object

Getting an existing object
instance

Closing an instance of an
Automation object

Using Microsoft Word to create
an Automation example

Using Word’s Macro Recorder

Collecting data with Outlook
2007

Integrating Access with
Other Applications

28_046732 ch22.qxp 11/21/06 8:57 AM Page 723

Using Automation to Integrate with Office
The Microsoft Office applications mentioned in the previous section all support Automation. Using
Automation, you can create objects in your code that represent other applications. By manipulating
these objects (setting properties and calling methods), you can control the referenced applications
as though you were programming directly in them, thus allowing you to create seamless integrated
applications by using Automation.

Creating Automation references
Applications supporting Automation provide information about their objects in an object library.
The object library contains information about an application’s properties, methods, and classes. An
application’s class is its internal structure for objects; each class creates a specific type of object — a
form, a report, and so on. To reference an application’s objects, VBA must determine which specific
type of object is being referenced by an object’s variable in your code. The process of determining
the type of an object variable is called binding. You can use two methods for binding an object —
early binding and late binding.

Early binding an object
Using the References dialog box in the Access VBA editor window, you can explicitly reference an
object library. When you explicitly reference an object library, you are performing early binding.
Automation code executes more quickly when you use early binding than when you use late binding.

To access the References dialog box of VBA, you need to activate the VBA editor win-
dow by either creating a new module or displaying the design of an existing module.

To create a reference, first create a new module or open an existing module in the VBA editor win-
dow. After you open a module in the VBA editor the References menu command is available in the
Tools menu. Figure 22-1 shows the References selection on the Tools menu. Select Tools ➪

References to access the References dialog box. Figure 22-2 shows the References dialog.

FIGURE 22-1

The References option is available on the Tools menu only after you have a module in Design or New view
in Access.

NOTENOTE

724

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 724

FIGURE 22-2

Early binding by setting references is the most efficient way to perform Automation.

In the References dialog box, you specify all the references that your application needs for using
Automation or for using other Access databases as library databases. To select or deselect a refer-
ence, click its check box.

For this chapter, you need to make sure that several reference libraries are active. You
may not initially have the following four references available (checked):

Microsoft DAO 3.6 Object Library
Microsoft ActiveX Data Objects Recordset 2.8 Library
Microsoft Word 12.0 Object Library
Microsoft Office 12.0 Object Library

If these libraries aren’t active (or, visible at the top of the list), find them in the selection list box by
scrolling to them, and then check them.

After you reference an Automation object library, you can explicitly declare object variables from
the referenced library. The VBA IntelliSense help feature displays the objects contained within the
library as you type, as shown in Figure 22-3. In addition, after you select an object and enter a
period (.), IntelliSense shows you the available classes within the object (see Figure 22-4).

Late binding an object
If you don’t explicitly reference an object library by using the References dialog box, you can set an
object’s reference in code by first declaring a variable as an object and then using the Set command
to create the object reference. This process is known as late binding.

To create an object to reference Microsoft Word, for example, you can use the following code:

Dim WordObj As Object
Set WordObj = New Word.Application

CAUTION CAUTION

725

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 725

The Set command is discussed in the next section.

If you create an object for an application that is not referenced, an IntelliSense drop-
down, such as the ones shown in Figures 22-3 and 22-4, won’t display.

FIGURE 22-3

When an Automation Server is referenced, its objects are immediately known by VBA.

Figure 22-3 shows the IntelliSense drop-down that appears immediately after you type the word
new in the Dim statement. At this point, you can select one of the application object name types
displayed (such as Word) or enter a new application object name type that you define.

In Figure 22-3, IntelliSense shows Word, which is a library, as indicated by the books icon. This
icon distinguishes a library object from a simpler class object in the list, such as VBProject.
Libraries contain one or more classes, whereas classes contain properties, methods, and events. The
class objects you see in Figure 22-3 (VBComponent, VBComponents, VBProject, and so on)
are included within other libraries referenced by the Chapter22.accdb application.

FIGURE 22-4

The VBA IntelliSense feature makes it easy to use Automation Servers.

TIPTIP

726

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 726

Figure 22-4 shows the IntelliSense drop-down list that appears when you type a period (.) after the
object type Word. This drop-down list helps you by displaying all known object types that can be
associated with the particular primary object name. In this case, clicking the Application object
type adds this to the Word. portion of the object, thus Word.application.

Creating an instance of an Automation object
To perform an Automation operation, the operating system needs to start the application — if it
isn’t already started — and obtain a reference, or handle, to it. This reference will be used to access
the application. Most applications that support Automation, called Automation Servers, expose an
Application object. The Application object exists at the top of the object application’s hierarchy and
often contains many objects, as well.

Using the New keyword to create a new instance
The simplest (and most efficient) method to create any Automation object is to early bind the
specific Automation Server reference library to the module by activating it, using the Tools ➪

References menu. After you bind it, you then create a new instance of the object with the New key-
word. In the examples shown in Figure 22-3 and Figure 22-4, the variable MyWordObj is set to a
new instance of Word’s Application object. If you have not bound the Microsoft Word Object
Library, you need to do so or you will receive an error.

If you don’t create a reference to the Automation Server with the References dialog box,
VBA doesn’t recognize the variable’s object type and generates an error on compile.

Early binding simply means that a reference is made to an Automation Server before the code is
run. As you’ll see in the next section, you could late bind an Automation Server by referencing the
server from within a VBA statement. Late binding means that the reference to the server is made
only after the code has started running.

Every time you create an instance of an Automation Server with the New keyword, a new instance
of the application is started. If you don’t want to start a new instance of the application, use the
GetObject function, which is discussed later in this chapter. Not all Automation Servers support
the New keyword. Consult the specific Automation server’s documentation to determine whether it
supports the New keyword. If the New keyword is not supported, you must use the CreateObject
function, which is discussed in the following section, to create an instance of the Automation
Server.

Using the CreateObject function to create a new instance
In addition to creating an instance of an object library by using the New keyword, you can
create an instance of an object library by using the CreateObject function. You use the
CreateObject function to create instances of object libraries that do not support the New
keyword. To use the CreateObject function, first declare a variable of the type equal to
the type of object that you want to create. Then use the Set statement in conjunction with the
CreateObject function to set the variable to a new instance of the object library.

CAUTION CAUTION

727

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 727

For example, Microsoft Binder doesn’t support the New keyword, but it does provide an object
library, so you can reference it by using the References dialog box. To early bind the object library
of Binder, use the CreateObject function, as shown in the following code:

Dim BinderObj As OfficeBinder.Binder
Set BinderObj = CreateObject(“Office.Binder”)

In the preceding example, the object library name for Binder is
OfficeBinder.Binder, and the class instance is “Office.Binder.” You can

view the names of object libraries and their available classes by using the Object Browser.

You create a late bound object instance with the CreateObject function. In this case the object
variable is declared as a generic Object data type. For example, the following code uses late bind-
ing to create an instance of the Office Binder object:

Dim BinderObj As Object
Set BinderObj = CreateObject(“Office.Binder”)

If you have different versions of the same Automation Server on your computer, you can specify
the version to use by adding it to the end of the class information. For example, the following code
specifies Office 12 as the Automation Server:

Dim WordObj As Object
Set WordObj = CreateObject(“Word.Application.12”)

Word 2007 doesn’t require you to specify a version when creating instances of Word object
libraries. The version of Word installed on the user’s computer is used when a reference is made to
Word.Application. In fact, you get an error if you try to specify a version number. Therefore,
the following syntax may be more reliable in environments where different versions of Word are
used by different users:

Set WordObj = CreateObject(“Word.Application”)

Getting an existing object instance
As stated previously in this chapter, using the New keyword or the CreateObject function cre-
ates a new instance of the Automation Server. If you don’t want a new instance of the server cre-
ated each time you create an object, use the GetObject function. The format of the GetObject
function is as follows:

Set objectvariable = GetObject([pathname][, class])

The pathname parameter is optional. To use this parameter, you specify a full path and filename
to an existing file for use with the Automation Server.

The specified document is then opened in the server application. Even if you omit the
parameter, you must still include the comma (,).NOTENOTE

NOTENOTE

728

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 728

The class parameter is the same parameter that’s used with the CreateObject function. See
Table 22-1 for a list of some class arguments used in Microsoft Office.

TABLE 22-1

Class Arguments for Common Office Components

Component Class Argument Object Returned

Access Access.Application Microsoft Access Application object

Excel Excel.Application Microsoft Excel Application object

Excel Excel.Sheet Microsoft Excel Workbook object

Excel Excel.Chart Microsoft Excel Chart object

Word Word.Application Microsoft Word Application object

Word Word.Document Microsoft Word Document object

For example, to work with an existing instance of Microsoft Word, but not a specific Word docu-
ment, you can use the following code:

Dim WordObj as Word.Application
Set WordObj = GetObject(, “Word.Application”)

To get an instance of an existing Word document called MyDoc.Docx, on your C: drive, you can
use the following code:

Dim WordObj as Word.Application
Set WordObj = GetObject(“C:\MyDoc.Docx”, “Word.Application”)

Of course, this code is always placed in a new function or sub that you declare in your module.

Working with Automation objects
After you have a valid instance of an Automation Server, you manipulate the object as though you
were writing code within the application itself, using the exposed objects and their properties and
methods.

For example, when developing directly in Word, you can use the following code to change the
directory that Word uses when opening an existing file:

ChangeFileOpenDirectory “C:\My Documents\”

Consult the development help for the Automation Server (Word, Excel, and so on) for
specific information on the objects, properties, and methods available.NOTENOTE

729

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 729

Just as in Access, Word is implicitly using its Application object; the command
ChangeFileOpenDirectory is really a method of the Application object. Using the follow-
ing code, you create an instance of Word’s Application object and call the method of the object:

Dim WordObj As New Word.Application
WordObj.ChangeFileOpenDirectory “C:\My Documents\”

When using Automation, you should avoid setting properties or calling methods that
cause the Automation Server to ask for input from the user via a dialog box. When a dia-

log box is displayed, the Automation code stops executing until the dialog box is closed. If the server
application is minimized or behind other windows, the user may not even be aware that he or she
needs to provide input and therefore may assume that the application is locked up.

Closing an instance of an Automation object
Automation objects are closed when the Automation object variable goes out of scope. Such a clos-
ing, however, doesn’t necessarily free up all resources that are used by the object, so you should
explicitly close the instance of the Automation object. You can close an Automation object by
doing either of the following:

n Using the Close or Quit method of the object (consult the specific Automation Server’s
documentation for information on which method it supports)

n Setting the object variable to nothing, as follows:

Set WordObj = Nothing

The best way to close an instance of an Automation object is to combine the two techniques, like
this:

WordObj.Quit
Set WordObj = Nothing

An Automation Example Using Word
Perhaps the most common Office application that is used for Automation from a database applica-
tion like Access is Word. Using Automation with Word, you can create letters that are tailored with
information from databases. The following section demonstrates an example of merging informa-
tion from an Access database to a letter in Word by using Automation and Word’s bookmarks.
Ordinarily, you create a merge document in Word and bring field contents in from the records of
an Access database. This method relies on using Word’s MergeField, which is replaced by the con-
tents of the Database field. It normally requires that you perform this action in Word — thus limit-
ing the scope and capability of the function. For example, you merge all records from the table that
is being used rather than a single record.

The following example uses the Orders form, which calls a module named WordIntegration.
The WordIntegration module contains a function named MergetoWord() that uses the
Word Thanks.dotx template file.

TIPTIP

730

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 730

When you attempt to run this example, you must make sure that the path for the tem-
plate in the VBA code is the actual path in which the Thanks.dotx template file

resides. This path may vary from computer to computer.

The items that are discussed in this Word Automation example include the following:

n Creating an instance of a Word object

n Making the instance of Word visible

n Creating a new document based on an existing template

n Using bookmarks to insert data

n Activating the instance of Word

n Moving the cursor in Word

n Closing the instance of the Word object without closing Word

This example prints a thank-you letter for an order based on bookmarks in the thank-you letter
template (Thanks.dotx). Figure 22-5 shows the data for customers; Figure 22-6 shows the data
entry form for orders; Figure 22-7 shows the Thanks.dotx template; and Figure 22-8 shows a
completed merge letter.

FIGURE 22-5

Customer data used in the following Automation example is entered on the Customers form.

FIGURE 22-6

Each customer can have an unlimited number of orders. Thank-you letters are printed from the Orders
form.

NOTENOTE

731

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 731

The bookmarks in Figure 22-7 are shown as grayed large I-beams (text insert). The bookmarks are
normally not visible, but you can make them visible by selecting the Show Bookmarks check box in
the Show Document Content section on the Advanced Tab of the Word Options screen. The names
won’t be visible — only the bookmark holders (locations) will be visible, as shown in Figure 22-7.

FIGURE 22-7

The Thanks.dotx template contains bookmarks where the merged data is to be inserted.

If you click the Print Thank You Letter button in Access while Word is open with an
existing document that lacks the bookmark names specified in the code, the fields will

simply be added to the text inside Word at the point where the cursor is currently sitting.

CAUTION CAUTION

Full Name

Quantity

Phone Number

Product

First Name

City/State/Zip

Address 2Full Name

Company Name

Address 1

732

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 732

FIGURE 22-8

After a successful merge, all the bookmarks have been replaced with their respective data.

When the user clicks the Print Thank You Letter button on the Orders form, Word generates a
thank-you letter with all the pertinent information. The following code shows the MergetoWord
function in its entirety so you can see in-depth how it works.

Public Sub MergetoWord()
‘ This method creates a new document in
‘ MS Word using Automation
On Error Resume Next
Dim rsCust As New ADODB.Recordset
Dim sSQL As String
Dim WordObj As Word.Application
Dim iTemp As Integer
sSQL = “SELECT * FROM Customers “ _
& “WHERE CustomerNumber = “ _
& Forms!Orders![CustomerNumber]

rsCust.Open sSQL, CurrentProject.Connection
If rsCust.EOF Then
MsgBox “Invalid customer”, vbOKOnly
Exit Function

733

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 733

End If

DoCmd.Hourglass True

‘Try to get a running instance of Word:
Set WordObj = GetObject(, “Word.Application”)
If Err.Number <> 0 Then
‘An error is thrown if Word is not running,
‘so use CreateObject to start up Word:
Set WordObj = CreateObject(“Word.Application”)

End If

‘Make sure the user can see Word:
WordObj.Visible = True

‘Warning:
‘Specify the correct drive and path to the
‘file named Thanks.dotx in the line below.

WordObj.Documents.Add _
Template:=”C:\Thanks.dotx”, NewTemplate:=False

With WordObj.Selection
.GoTo what:=wdGoToBookmark, Name:=”FullName”
.TypeText rsCust![ContactName]

.GoTo what:=wdGoToBookmark, Name:=”CompanyName”

.TypeText rsCust![CompanyName]

.GoTo what:=wdGoToBookmark, Name:=”Address1”

.TypeText rsCust![Address1]

.GoTo what:=wdGoToBookmark, Name:=”Address2”
If IsNull(rsCust![Address2]) Then
.TypeText “”

Else
.TypeText rsCust![Address2]

End If

.GoTo what:=wdGoToBookmark, Name:=”City”

.TypeText rsCust![City]

.GoTo what:=wdGoToBookmark, Name:=”State”

.TypeText rsCust![State]

.GoTo what:=wdGoToBookmark, Name:=”Zipcode”

.TypeText rsCust![Zipcode]

.GoTo what:=wdGoToBookmark, Name:=”PhoneNumber”

734

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 734

.TypeText rsCust![PhoneNumber]

.GoTo what:=wdGoToBookmark, Name:=”NumOrdered”

.TypeText Forms!Orders![Quantity]

.GoTo what:=wdGoToBookmark, Name:=”ProductOrdered”
If Forms!Orders![Quantity] > 1 Then
WordObj.Selection.TypeText Forms!Orders![Item] & “s”

Else
WordObj.Selection.TypeText Forms!Orders![Item]

End If

.GoTo what:=wdGoToBookmark, Name:=”FName”

iTemp = InStr(rsCust![ContactName], “ “)

If iTemp > 0 Then
.TypeText Left$(rsCust![ContactName], iTemp - 1)

End If
.GoTo what:=wdGoToBookmark, Name:=”LetterName”
.TypeText rsCust![ContactName]

DoEvents
WordObj.Activate
.MoveUp wdLine, 6

End With

‘Set the Word Object to Nothing to free resources:
Set WordObj = Nothing
DoCmd.Hourglass False

End Sub

The MergeToWord function uses the With construct to reduce the amount of code used to refer-
ence the object variable. All of the property and method references within the body of the
With..End With construct refer to the WordObj.Selection object. The WordObj object is
set to Nothing at the end of the subroutine to remove the Word automation server from memory.

Creating an instance of a Word object
The first step in using Automation is to create an instance of an object. The sample creates an
object instance with the following code:

On Error Resume Next
...
Set WordObj = GetObject(, “Word.Application”)
If Err.Number <> 0 Then
Set WordObj = CreateObject(“Word.Application”)

End If

735

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 735

Obviously, you don’t want a new instance of Word created every time a thank-you letter is gener-
ated, so some special coding is required. This code snippet first attempts to create an instance by
using an active instance (a running copy) of Word. If Word is not a running application, an error is
generated. Because this function has On Error Resume Next for error trapping, the code doesn’t
fail, but instead proceeds to the next statement. If an error is detected (the Err.Number is not
equal to 0), an instance is created by using CreateObject.

Making the instance of Word visible
When you first create a new instance of Word, it runs invisibly. This approach enables your appli-
cation to exploit features of Word without the user even realizing that Word is running. In this
case, however, it is desirable to let the user edit the merged letter, so Word needs to be made visible
by setting the object’s Visible property to True by using this line of code:

WordObj.Visible = True

If you don’t set the object instance’s Visible property to True, you may create hid-
den copies of Word that use system resources and never shut down. A hidden copy of

Word doesn’t show up in the Task tray or in the Task Switcher.

Creating a new document based on an existing
template
After Word is running, a blank document needs to be created. The following code creates a new
document by using the Thanks.dotx template:

WordObj.Documents.Add _
Template:=”C:\Thanks.dotx”, NewTemplate:=False

The path must be corrected in order to point to the Thanks.dotx template on your
computer.

The Thanks.dotx template contains bookmarks (as shown in Figure 22-7) that tell this function
where to insert data. You create bookmarks in Word by highlighting the text that you want to make
a bookmark, selecting the Bookmark command from the Link group on Word 2007’s Insert ribbon,
and then entering the bookmark name and clicking Add.

Using Bookmarks to insert data
Using Automation, you can locate bookmarks in a Word document and replace them with the text
of your choosing. To locate a bookmark, use the Goto method of the Selection object. After
you have located the bookmark, the text comprising the bookmark is selected. By inserting text
(which you can do by using Automation or simply by typing directly into the document), you
replace the bookmark text. To insert text, use the TypeText method of the Selection object, as
shown here:

WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”FullName”
WordObj.Selection.TypeText rsCust![ContactName]

NOTENOTE

CAUTION CAUTION

736

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 736

You can’t pass Null to the TypeText method. If the value may possibly be Null, you
need to check ahead and make allowances. The preceding sample code checks the

Address2 field for a Null value and acts accordingly. If you don’t pass text to replace the book-
mark — even just a zero length string (“ “) — the bookmark text remains in the document.

Activating the instance of Word
To enable the user to enter data in the new document, you must make Word the active application.
If you don’t make Word the active application, the user has to switch to Word from Access. You
make Word the active application by using the Activate method of the Word object, as follows:

WordObj.Activate

Depending on the processing that is occurring at the time, Access may take the focus
back from Word. You can help to eliminate this annoyance by preceding the Activate

method with a DoEvents statement. Note, however, that this doesn’t always work.

Moving the cursor in Word
You can move the cursor in Word by using the MoveUp method of the Selection object. The
following example moves the cursor up six lines in the document. The cursor is at the location of
the last bookmark when this code is executed:

WordObj.Selection.MoveUp wdLine, 6

Closing the instance of the Word object
To release resources that are taken by an instance of an Automation object, you should always close
the instance. In this example, the following code is used to close the object instance:

Set WordObj = Nothing

This code closes the object instance, but not the instance of Word as a running application. In this
example, the user needs access to the new document, so closing Word would defeat the purpose of
this function. You can, however, automatically print the document and then close Word. If you do
this, you may even choose not to make Word visible during this process. To close Word, use the
Quit method of the Application object, as follows:

WordObj.Quit

Inserting pictures by using bookmarks
It is possible to perform other unique operations by using bookmarks. Basically, anything that you
can do within Word, you can do by using Automation. The following code locates a bookmark that
marks where a picture is to be placed and then inserts a .bmp file from disk. You can use the fol-
lowing code to insert scanned signatures into letters:

TIPTIP

NOTENOTE

737

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 737

WordObj.Selection.Goto what:=wdGoToBookmark, Name:=”Picture”
WordObj.ChangeFileOpenDirectory “D:\GRAPHICS\”
WordObj.ActiveDocument.Shapes.AddPicture _
Anchor:=Selection.Range, _
FileName:=”D:\GRAPHICS\PICTURE.BMP”, LinkToFile:=False,
SaveWithDocument:=True

Using Office’s Macro Recorder
Using Automation is not a difficult process when you understand the fundamentals. Often, the
toughest part of using Automation is knowing the proper objects, properties, and methods to use.
Although the development help system of the Automation Server is a requirement for fully under-
standing the language, the easiest way to quickly create Automation for Office applications like
Word is with the Macro Recorder.

Most versions of Office applications have a Macro Recorder located on the Word 2007’s Developer
ribbon (see Figure 22-9). When activated, the Macro Recorder records all events, such as menu
selections and button clicks, and creates VBA code from them.

FIGURE 22-9

The Macro Recorder in Word is a powerful tool to help you create Automation code.

If you don’t see the Developer tab in Word 2007, open the Word Options from the
Microsoft Office Button, click Personalize and select the Show Developer tab in the

Ribbon check box.

After selecting Record Macro from the Developer ribbon’s Code group, you must give your new
macro a name (see Figure 22-10). In addition to a name, you can assign the macro to a button or
keyboard combination and select the template (.dotm file) in which to store the macro. If you are
creating the macro simply to create the VBA code, the only thing that you need to be concerned
with is the macro name.

After you enter a macro name and click OK, the Macro Recorder begins recording events and the
arrow changes to an open pointer attached to a cassette, as shown in Figure 22-11. You can stop
recording events by clicking the Stop Recording button (the button with a square next to it). To
pause recording events, click the Pause Recording button.

TIPTIP

738

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 738

FIGURE 22-10

Enter a macro name and click OK to begin recording the macro. In this example, the macro is named
MyMacro.

FIGURE 22-11

The Macro Recorder records all events until you click the Stop Recording button.

After you finish recording a macro, you can view the VBA code created from your events. To view
the macro code, click the Macros button on the ribbon to display a list of all saved macros. Then
select the macro that you recorded and click the Edit button to display the VBA editor with the
macro’s code. Figure 22-12 shows the VBA editor with a macro that recorded the creation of a new
document using the Normal template and the insertion of a picture using the Picture From File
command from the Insert ribbon’s Illustrations group.

In the application for which a macro is created, the Application object is used explicitly. When you
use the code for Automation, you must create an Application object accordingly. For example, the
preceding macro uses the following code to create a new document:

Documents.Add Template:=”Normal”, _
NewTemplate:= False, DocumentType:=0

739

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 739

This code implicitly uses the Application object. To use this code for Automation, copy the code
from the VBA editor, paste it into your Access procedure, and create an object that you use explic-
itly, as follows:

Dim WordObj as New Word.Application
WordObj.Documents.Add Template:=”Normal”, _
NewTemplate:= False, DocumentType:=0

FIGURE 22-12

The VBA code recorded by Word’s Macro Recorder

The Macro Recorder enables you to effortlessly create long and complete Automation code without
ever needing to read the Automation Server’s documentation. Try using the Macro Recorder to gen-
erate VBA code instead of typing it from scratch.

Collecting Data with Outlook 2007
Access 2007 includes a new feature that lets you use Outlook 2007 to collect data from one or
more users. This feature automatically creates a data-entry form in an Outlook e-mail message,
gives you several options for sending, and then adds or modifies data in the database. This saves
you lots of time when sending out surveys or updating contact information by letting users with-
out access to your application do data entry.

Creating an e-mail
Creating an e-mail consists of a number of steps, which Access presents in a wizard when you click
the Create E-mail button in the Collect Data group of the External Data ribbon (shown in Figure
22-13). You must select a table or query in the Navigation Pane before creating an e-mail. You can’t
collect data if there’s nowhere to store it.

740

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 740

FIGURE 22-13

Use the Collect Data group on the External Data ribbon to use Outlook 2007 to get information from
users.

Click the Customers table, and then click the Create E-mail button to start the Collect Data wiz-
ard. The opening page of the wizard explains the new feature and the steps required to create an
e-mail message. Click Next to begin setting up the e-mail.

Choose the type of data-entry form you want to use to collect data. Choose either HTML or an
InfoPath form. The HTML form option creates an HTML e-mail message and the only requirement
for the recipient is that their e-mail program supports HTML. The Microsoft Office InfoPath form
option creates an InfoPath form and requires the recipients to have both Outlook 2007 and
InfoPath 2007 installed on their computers. For this example, click HTML form; then click Next.

Choose whether you’re collecting new data or updating existing data. Choose the Collect new
information only option to send the recipient(s) a blank form. Any data collected is appended to
the database. Choose the Update existing information option to send the recipient information to
review and update. Any data collected overwrites the older information in your table. You can
update existing information only if the recipients’ e-mail addresses are stored in the table. For this
example, click Update existing information, and then click Next.

Select which fields you want to include in your form. You can also set the text of the label that
appears next to each field and whether the field is read-only. For this example, add all the fields
from the Customers table (shown in Figure 22-14); then add spaces to each of the labels by
clicking the field on the right, and changing the label to display in the field properties section of
the form; then click Next.

Decide how you want to process the replies. Select the Automatically process replies and add data to
Customers check box to let Outlook and Access do all the work from the Access Data Collection
Replies folder in Outlook 2007. If you want to prevent records from being added, check the Only
allow updates to existing data check box. For this example, check both check boxes and click Next.

Specify the field in the database that contains the recipient’s e-mail address. If the e-mail address is
in the table or query the e-mail form is based on, select The current table or query option and
select the field — in this example, the EMailAddress field. If the e-mail address is in an associated
table, you have to select the An associated table option; then select the field in the current table
that identifies who receives the e-mail, the associated table, and the field in the associated table
that contains the e-mail address. For this example, select the current table; then click Next.

741

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 741

FIGURE 22-14

Select the fields to add to the e-mail form; then set the caption and read-only check box for each field.

Customize the e-mail message by typing a subject, introduction, and choosing whether you want
the e-mail addresses in the To, Cc, or Bcc fields (shown in Figure 22-15).

FIGURE 22-15

Customize the e-mail message you’re sending.

742

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 742

Accept the default settings; then click Next to review the instructions for managing the e-mails.
Click Next again, verify the recipients, and create the e-mail. Check all the recipients and click
Send to create the e-mail messages (shown in Figure 22-16).

FIGURE 22-16

The resulting data-entry form sent to each recipient.

These steps vary depending on the choices you make. Using InfoPath gives you a different look
and functionality. Adding new data creates a blank form. After creating the e-mails, you need to
manage the replies, which the next section covers.

Managing replies
After sending an e-mail to collect data, click the Manage Replies button in the Collect Data group
of the External Data ribbon (shown in Figure 22-13) to manage the e-mail messages you sent. The
Manage Data Collection Messages dialog (shown in Figure 22-17) lets you see which e-mails you
sent and when you sent them, resend the messages, and delete the messages.

743

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 743

FIGURE 22-17

Use the Manage Data Collection Messages dialog to manage replies to the e-mail forms you sent.

The list at the top of the dialog shows the message details: the message name, the table or query
the e-mail is updating, the message type, and the Outlook folder where the replies are stored. The
message details section at the bottom of the form displays information about the selected message:
the fields included in the message, the date/time the message was created and last sent, whether to
process replies automatically, and the date/time to stop processing the replies.

Click the Resend this e-mail message button to send the highlighted message again. This walks you
through a few steps of the Create E-mail wizard, letting you choose the same recipients, or a differ-
ent list of recipients. Follow the steps of the wizard to resend the message.

Click on the Delete this e-mail message button to stop processing replies to the message. If
Outlook receives any replies to the message after you delete the message, it treats those messages as
regular e-mail replies.

Import settings
The Message options button lets you customize the highlighted message. Click this button to dis-
play the Collect Data Using E-mail Options dialog (shown in Figure 22-18), which lets you specify
the import settings and automatic processing settings. Changes you make to these settings do not
affect the replies already in your Outlook mailbox.

744

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 744

FIGURE 22-18

Display the message options to customize the settings for importing and automatic processing of replies.

Select the Automatically process replies and add data to the database check box to let Access and
Outlook do all the work. This option lets Access process the replies as soon as they reach the
Outlook 2007 Inbox. If you don’t select this option, you must manually process the replies, which
is covered later in this chapter.

The Discard replies from those to whom you did not send the message check box lets you process
the replies from the original recipients of the e-mail. If this option is selected, replies from other
recipients are stored in Outlook’s destination folder, but they won’t be automatically processed. You
can, however, manually process the replies. Uncheck this option to automatically process all
replies, regardless of who they’re from.

If you choose to discard replies from non-original recipients, select the Allow multiple replies from
each recipient check box to process all replies from each recipient. Deselect this check box to
process only the first reply from each recipient; you can manually process — or delete — any sub-
sequent replies. If you’re using InfoPath 2007, this option controls only the number of replies, not
the number of records in a single reply. InfoPath lets users update multiple records in a single reply.
With the check box deselected, Access only processes the first InfoPath reply and ignores any sub-
sequent replies.

Select the Allow multiple rows per reply check box if you’re using InfoPath 2007 and you want to
allow the recipients to add more records by clicking Insert a row at the bottom of the e-mail mes-
sage. Deselect this check box if you want to process only one record per reply.

Also, when using InfoPath 2007, select the Only allow updates to existing data check box to ignore
any new records the recipients add to the reply and process just the updates to existing records. If
you want to allow recipients to add new records, clear this check box.

745

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 745

Settings for automatic processing
The settings for automatic processing let you choose when to stop automatically processing replies.
These settings apply only to the automatic processing of replies.

The Number of replies to be processed text box lets you set the number of replies from all recipi-
ents that you want to automatically process. If you want to process all the replies, enter a large
value in the text box. Replies received after you reach the specified value will be stored in the desti-
nation folder, but won’t be processed automatically. You can, however, manually process the
replies.

The Date and Time to stop option lets you pick a date and time to quit automatically processing
the replies. Replies received after the specified date and time are stored in the destination folder,
but aren’t processed automatically. You can, however, manually process the replies. Leave this
blank to process replies forever.

Manually processing replies
If you want to control which replies to process and when to process them, deselect the
Automatically process replies and add data to the database check box in the Collect Data Using
E-mail Options dialog (shown in Figure 22-18). You also need to manually process replies that
aren’t processed automatically, due to the import settings and settings for automatic processing,
described in the previous sections.

To manually process each reply, you have to use Outlook 2007. The replies reach your Outlook
destination folder, but they aren’t processed automatically. To process a reply manually, right-click
the reply; then click Export data to Microsoft Office Access from the pop-up menu (shown in
Figure 22-19). The resulting dialog lets you verify the information being updated; click OK to
process the data.

The Collect Data feature in Access 2007 is a powerful tool letting you separate some users from
your applications. If you want to add or update data to your database application, create a data-
entry form, send it to the users you want data from, and then process the replies automatically or
manually.

746

More Advanced Access TechniquesPart III

28_046732 ch22.qxp 11/21/06 8:57 AM Page 746

FIGURE 22-19

Process replies manually from Outlook 2007.

Summary
In this chapter, you learned how to use Automation to interact with other applications. You learned
about the Automation references and how to create Automation objects. Then you used
Automation to take control of the Word object to insert data from Access into a Word document
using Word’s bookmarks. Then you used Word’s Macro Recorder to generate VBA code, so you
don’t have to learn Word’s object model.

You also learned how to collect data using Outlook 2007. You walked through the steps to create
an e-mail to update the data in the Customers table, sent the e-mail, and monitored the replies.
Using Outlook 2007 and Access 2007 together lets you gather information from users without
doing data entry or giving them access to your application.

747

Integrating Access with Other Applications 22

28_046732 ch22.qxp 11/21/06 8:57 AM Page 747

28_046732 ch22.qxp 11/21/06 8:57 AM Page 748

Access and SharePoint can be transparently integrated, seamlessly
sharing data across the Internet. Access data can very simply be
linked to, or copied from, a data source located on a SharePoint Web

site. The result is data stored on a SharePoint Web site somewhere, appear-
ing to be stored in a table in Access. The connection between SharePoint
Services and an Access installation can be executed over a TCP/IP connec-
tion. This means that the connection can run over the Internet. So, in techni-
cal terms, the overall result is that SharePoint can provide an external source
of data to Access, similar to how an external database such as SQL Server can
provide data to Access, over an ODBC connection.

This chapter uses the Chapter23.accdb database. If you
haven’t already copied it onto your machine from the CD, you’ll

need to do so now.

What Is SharePoint?
SharePoint is essentially a storage framework (at a specific location), where
information can be shared across a network. Current implementations of
SharePoint are typically local area network (LAN) implementations within a
company, sometimes shared with client or partners. SharePoint is primarily
used for intranet installations, helping to share information across a com-
pany network.

SharePoint helps companies implement collaborative sharing of information
within the company and even with the company’s customers. The result is
what could be termed collaborative Web sites that can even be allowed to go
across firewalls if necessary. The real issue with the scalability of SharePoint

ON the CD-ROMON the CD-ROM

749

IN THIS CHAPTER
Getting familiar with SharePoint

Knowing what a SharePoint
Service is

Understanding SharePoint
Portal Server

Looking at SharePoint
applications

Seeing the integration of a
SharePoint Service with Access
2007

Looking at how operating
systems work with SharePoint

Working with SharePoint Lists

Integrating Access
with SharePoint

29_046732 ch23.qxp 11/21/06 8:58 AM Page 749

implementations is network bandwidth. Simply put, sharing large amounts of information takes
very large bandwidth capacity. A large portion of Internet users still use slow-speed modem con-
nections to access the Internet, so SharePoint is somewhat impractical for general Internet use. Of
course, the information being shared by SharePoint software could be kept simple, but that might
defeat the purpose of using SharePoint in the first place. Simplicity can probably be more effec-
tively catered to with a tool that’s simpler than SharePoint.

Various pieces of software are involved in a SharePoint implementation. Some software pieces are
only available with Windows Server 2003. In general, SharePoint consists of two primary pieces of
software: SharePoint Services and a SharePoint Portal Server.

What is SharePoint Services technology?
SharePoint Services technology supplies the basic structure allowing for sharing of information
across an intranet. This allows for companies to share data across their internal networks. Also, com-
panies often share their intranets with their clients — typically, in partnerships. So, an intranet does
not specially apply to only a single company. The types of data that intranet users will want to share
is varied, but it’s also very likely to include large and complex structures such as word-processing
documents, spreadsheets, and perhaps even large reports and charts.

Essentially, SharePoint Services technology is a process that provides a service to users.

What is a SharePoint Portal Server?
A server process, or server computer, is a provider of information. A server serves information up to
user computers across a network. In the case of Web services — Intranet or internet — a Web service
perform tasks such as generating Web pages from data in a database, or based on requests by specific
users, providing user- or group-specific Web page content. One of the most important functions of
server computers is as application servers and Web servers. These types of servers manage sharing of
connections to a high-intensity computer such as a database server. The Internet can host millions
of users at one time. It is impossible to expect a single database server to service data requests for
even more than a thousand users all at once. So a server process serves up information from one com-
puter to another. A database computer is a database server. Web servers and application servers serve
up information from a lower tier (such as a database server computer) to the Internet community.

A SharePoint Portal Server provides a portal between a SharePoint data source and an application
using that data, such as Access. The SharePoint Portal Server essentially manages connections
between the data and requests for access to that data. A SharePoint Portal Server is a process (a
computer program), running on a Windows Server computer, which performs a similar role to
that of a Web server or an application server.

SharePoint Portal Server is only available on Windows Server 2003 operating system and not
Windows XP. Not even Windows XP Professional is a suitable server for SharePoint Portal Server.

The implication is that SharePoint Portal Server is only available with a server-level operating sys-
tem such as Windows Server 2003. What this really means is actually very simple: A computer

750

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 750

known as a server is used to serve information to users. The intention of a database server is to
serve up data. Web servers and application servers are even more specialized, in that they help
to manage the large number of users who want to talk to a database, and all at the same time.

So, a server process simply serves information. Therefore, SharePoint Portal Server and SharePoint
Services serve up data to users. That is what a SharePoint Portal Server is. And that is why SharePoint
Portal Server is constructed to execute on top of SharePoint Services.

In truth, SharePoint Portal Server provides extra functionality in addition to that of simple SharePoint
Services functionality. That extra functionality includes capabilities such as indexing, fast searching
(using that indexing), specialized targeting modifications depending on the user population (or even
individual users), and security in the form of username and password verification. In other words,
not anyone can use SharePoint Services — you need a username and password. Confidential informa-
tion will remain confidential.

SharePoint Applications:
Types of Web Sites
There are all sorts of possibilities for sharing of information using SharePoint Web sites. Figure 23-1
and Figure 23-2 show an example SharePoint Web site allowing all sorts of information sharing of
numerous types and flavors.

FIGURE 23-1

Example applications for SharePoint Services, part 1

751

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 751

FIGURE 23-2

Example applications for SharePoint Services, part 2

Figure 23-1 and Figure 23-2 are snapshots of a Web site at http://sharepoint.bilsimser
.com/pages/templates.aspx. A similar version of this URL is currently (at the time of writ-
ing this book) available at www.microsoft.com/technet/prodtechnol/sppt/wssapps/
default.mspx.

The Microsoft SharePoint site contains more application templates in addition to those shown in
Figure 23-1 and Figure 23-2, including:

n Discussion database

n Document library

n Event coordination

n Expense reimbursement request

n Help desk

n Human resources programs and forms

n Information technology (IT) developer

n Legal document review management

n Loan initiation

n Meeting management

n New product development

752

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 752

n Performance review

n Professional services contractual services

n Professional services resourcing

n Project team site

n Public official activity and issue management

n Public relations

n Publication review center

n Recruiting resource center

n Request for proposal

n Room and equipment reservation

n Team room

n Travel request

The scale and scope of the number of different types of topics should give you an idea of the flexi-
bility of SharePoint software.

Some of the most common implementations of SharePoint Services are storing of version-controlled
documents, holding records and minutes of meetings, and listing contacts. Traditionally, e-mail is
used for passing documents back and forth within a company. The potential for mixing up different
versions of the same document is immense. Also, storing all those potentially uncontrollable copies
of the same document takes up a lot of disk space. File shares are commonly used where the possi-
bility of mixing up document versions, or even of accidental deletion of documents, can cause seri-
ous problems. Many of these issues can be alleviated by using something like SharePoint Services.

Figure 23-3 shows another site, similar to the one shown in Figure 23-1 and Figure 23-2.

FIGURE 23-3

A Microsoft-based application for a SharePoint Services Web site

753

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 753

The Web site shown in Figure 23-3 is similar to the one shown in Figure 23-1 and Figure 23-2. It
contains some of the same applications. The URL for the Microsoft Web site shown in Figure 23-3
is www.microsoft.com/technet/prodtechnol/sppt/wssapps/default.mspx.

One further and final point to make is specific capabilities of an application-specific SharePoint
application. For example, a document sharing Web site can implement, track, and correct version-
ing of documents. On the contrary, something like a SharePoint meetings application can be used
to contain functionality provided in Microsoft Outlook, such as when meetings are, how often
meetings recur, who is supposed to attend, who did attend, and so on. It’s all Microsoft Office com-
patible, so it has all the capabilities of other Office applications such as Excel and Outlook.

What Is a SharePoint List?
SharePoint Lists are an important part of SharePoint Services technology in general. They provide
a basis of static information (for example, contact lists, task list, lists of links to Web sites, among
others). These are all lists that can be stored as a SharePoint List object, even in an Access 2007
database.

Typically, a SharePoint List is known as a SharePoint List type, or even a SharePoint List data type.
In relational database terminology a data type is essentially a definition for storing data. A table is a
data type. In the case of Access (which is a relational database), Access 2007 can only link to a
SharePoint List on a SharePoint Web site. Access cannot copy or store the data that is located on a
SharePoint Web site.

Access 2007 allows specific types, of what can only be assumed to be the most commonly used
types of SharePoint List data types. These are contacts, tasks, issues, and events. Access 2007
does allow creation of a custom-designed SharePoint List and can also use an already existing
SharePoint List.

SharePoint List types are also referred to as multivalued fields or multivalued lists.
Relational database modeling terminology often refers to comma delimited string lists

of string values, as multivalued lists or multivalued fields.

You now have a general idea of SharePoint technology, including SharePoint Services, the
SharePoint Portal Server, types of SharePoint applications, and SharePoint List data types.

Introducing a SharePoint Services Web Site
Before going into the detail of describing how Access 2007 integrates with SharePoint technology,
you need to get a picture in your mind of what a SharePoint Web site is.

So, what is a SharePoint Web site? And what is its function and purpose? The first question will
be answered by example in this section. The second question is easy to answer. The function and

NOTENOTE

754

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 754

purpose of a SharePoint Services Web site is provision, servicing, and management of information —
and optionally to a specified group of users. Now back to the first question. What is a SharePoint
Web site? We’ll just demonstrate.

The following URL is a fictional SharePoint Web site for demonstrating and testing of the beta ver-
sion of Microsoft SharePoint Services: www.somesharepointsite.net. This URL is meant to
simply demonstrate how easily Access 2007 links to SharePoint resources, rather than as a bona
fide SharePoint Services location. The fictional URL contains multiple SharePoint Services portals
for different users. Each user has his own username and password to access the site.

Some items of information have been added to the SharePoint Services above, including lists, doc-
uments, calendar events, tasks, and so on. A full list of site content specific to this book (and its
principal author) is shown in Figure 23-4.

FIGURE 23-4

Data content can be altered from a SharePoint Services Web site.

Figure 23-5 shows a calendar with multiple entries, which were added just to make things a little
interesting.

Figure 23-6 shows recent and prospective tasks and team discussions.

755

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 755

FIGURE 23-5

A calendar SharePoint Services Web site

FIGURE 23-6

Task and discussion SharePoint Services

756

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 756

And all this information can be altered in detail from the SharePoint Services Web site, as shown in
Figure 23-7 and Figure 23-8.

FIGURE 23-7

Adding, changing, or deleting a calendar item in a SharePoint Services Web site

The screens shown in Figure 23-8 are displayed when clicking the link, shown as Fireworks and
Stuff in Figure 23-5.

SharePoint is able to manage virtually any type of data you want to share with other people.
Although this example concerns a specific project, SharePoint is suitable for many other purposes.
For instance, a Boy Scout troop could use SharePoint for keeping track of its members and their
merit badges. A bowling club could maintain tournament schedules and player rankings as
SharePoint Lists.

757

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 757

FIGURE 23-8

Changing a calendar item in a SharePoint Services Web site

Integrating Access 2007 and SharePoint
Integrating Access 2007 and SharePoint Services consists of the following elements:

n The data content of Access tables can be stored on the Internet. This can be done by
copying tables from Access to SharePoint Lists (on a SharePoint Services Web site).

n You can even create a SharePoint Services Web site using the Access interface.

n You can build rich content entry forms in Access, based on data content in SharePoint
Services data sets.

In other words, you pass information back and forth across the Internet, between an Access data-
base and SharePoint Services. You can also do this data transfer processing in both directions.
Figure 23-9 demonstrates how Access can be used as a rich content interface, and a SharePoint
Services Web site is used to store data.

As shown in Figure 23-9, Access becomes solely a user interface, and the SharePoint Services Web
site becomes the database. This database effectively allows multiple Access interfaces to share the
same data.

758

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 758

FIGURE 23-9

Access can provide a rich content interface to a SharePoint Services Web site “database”

Sourcing data from a SharePoint Services Web site
You can execute an Access database from the SharePoint Services Web site, and push data from the
Web site into an Access database — automatically. This is not necessarily a sequence of steps you
can follow, because you would have to substitute the SharePoint Services Web site we’re using for
another, and one you can use. So, if you can’t follow these steps, then just read them, and look at
the pretty pictures:

1. Execute a SharePoint Services Web site in your browser.

2. Isolate one of the SharePoint Lists on the page, and choose Actions ➪ Access, as
shown in Figure 23-10.

Access becomes
the interface ONLY

All data stored on
SharePoint Services

Web site

Client
computer

Client
computer

Client
computer

Server
computer

Database

Company intranet (might include clients and partners) SharePoint Services Web site

Client computers
contain Access
interfaces only

SharePoint Services Web
site becomes the data

store for Access interfacesClient computers
contain, but do not

necessarily store, data

Different client
computers can have
different interfaces
for the same data

759

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 759

FIGURE 23-10

Executing an Access database from a SharePoint Service Web site

The result of selecting Access as in Figure 23-10 is what you see in Figure 23-11.

FIGURE 23-11

Linking between an Access database and a SharePoint Services Web site

As shown in Figure 23-11, you can either make a copy of SharePoint Services Web site
data — into an Access database — or you can create a link between Access and the Web
site, allowing changes in Access to automatically propagate to the Web site.

3. Select the Access database, leave the link option selected, and click OK.

You selected the calendar SharePoint List on the SharePoint Services Web site. The result
is the calendar data in the Access database you executed, as shown in Figure 23-12.

After a brief pause in the Access database, and a quick refresh of the SharePoint Services
Web site display in the browser, the changes are clearly shown in Figure 23-13. And it’s
all automatic. Now that’s integration!

760

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 760

FIGURE 23-12

Passing data into Access from a SharePoint Services Web site

FIGURE 23-13

Changes propagate automatically from Access to SharePoint Services

761

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 761

4. Now you can get something else from the SharePoint Services Web site (for exam-
ple, tasks, as shown in Figure 23-14).

FIGURE 23-14

Getting another SharePoint List from the SharePoint Services

5. The tasks are added to the same database as before, as shown in Figure 23-15.

In the case of the data transfer shown in Figure 23-15, both tasks and a list of people
(people allocated to tasks) are passed back to the Access database.

762

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 762

FIGURE 23-15

More data is passed from SharePoint Services to Access database.

763

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 763

Sourcing data from an Access database
In the previous section, you began with the SharePoint Services Web site. This time, you begin
with the Access database, and no SharePoint Services started in a browser. In other words, you
work only with the Access database. So follow these steps, using a similar SharePoint Services Web
site if possible; otherwise, just read the steps:

1. Open up an Access database.

In this case, open the same database as before, which is Chapter23.accdb.

Assuming that nothing has changed with your database from the previous section, your
Access database screen should look something like the one shown in Figure 23-16.

FIGURE 23-16

Connecting from Access to a SharePoint Services Web site

Figure 23-16 should show the data already added in the previous section.

2. Click the Create tab at the trop of the Access window, select SharePoint List from
the SharePoint List option, and select Contacts.

The next screen you see is the one shown in Figure 23-17.

Figure 23-17 allows you to select a Web site to connect to. This Web site is a SharePoint
Services technology that you will get data from. You have to type in a name for the Web site,
as shown by the circle highlighting the typed-in name Here’s a list of contacts. Otherwise, you
won’t be able to click the OK button to continue. This is because the Access database needs
to know what to call whatever it is you’re linking to from Access to the SharePoint Services
Web site.

3. You should be prompted to log in with a username and password as shown in
Figure 23-18.

And as you see, the list of contacts is now accessible from Access, as shown in Figure 23-19.
There was nothing to copy from the SharePoint Services. So a single contact was added in
Access, which propagated to the SharePoint Services automatically.

764

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 764

FIGURE 23-17

Select a SharePoint Services Web site to connect to.

FIGURE 23-18

SharePoint Services Web sites require security.

765

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 765

FIGURE 23-19

SharePoint Services Web site link into an Access database

SharePoint and Different Operating
Systems
Different Microsoft Windows operating systems, or different variants of Windows, has varying
capabilities with respect to SharePoint Services. Windows Server 2003 will provide the most flexi-
ble and scalable options, if that is what you need:

n Windows 2K: Very basic integration with SharePoint Services only. SharePoint Portal
Server is exclusive to Windows Server 2003. Data stored with SharePoint Services can be
edited from Access 2000 and beyond.

n Windows XP: A little better than Windows 2K, allowing access to more Office products
(Office 2002 and beyond).

n Windows Server 2003: Best integration plus provision of SharePoint Services as a portal
server process as well, allowing for typical server capabilities such as much better scala-
bility and processing capacity.

766

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 766

SharePoint Lists as External Data
A SharePoint List is maintained from a SharePoint Services Web site, or from something like an
Access database. Making changes to the data at the service Web site prompts an immediate update.
Much like the updating from changes in an Access database, changing data on a SharePoint
Services Web site is performed automatically. Access 2007 can be used to maintain the integration
between Access and a SharePoint Service Web site in other ways. Figure 23-20 shows various
options that can be used to manage that integration process.

FIGURE 23-20

Access 2007 to SharePoint Services Web site integration options

As you can see in Figure 23-20 the following points are useful to remember:

n Move to SharePoint: Parts of an Access database, such as a table not part of a SharePoint
Services Web site, can be copied to the SharePoint Services Web site.

n Synchronize and Discard Changes: Normally, the integration process of propagation of
changes between SharePoint Services and an Access database is executed automatically.
When this is not the case, the two disparate data sets can be synchronized, or changes
not yet implemented from Access to SharePoint Services can be abandoned.

n Take All Offline: Access objects, which are linked to objects on a SharePoint Services
Web site, can be taken offline altogether, such that changes are no longer propagated in
either direction.

Importing a SharePoint List into Access and exporting a SharePoint List from Access use the same
process as that shown in Figure 23-17 and Figure 23-18. Figure 23-21 shows that the importing
and exporting processes for SharePoint Lists objects are simple processes of connecting Access and
the SharePoint List Web site and performing the external data import or export.

767

Integrating Access with SharePoint 23

29_046732 ch23.qxp 11/21/06 8:58 AM Page 767

FIGURE 23-21

Access 2007 to SharePoint Services Web site importing and exporting is simple.

Summary
SharePoint Services are a major advance for Access developers. Microsoft is very clearly committed
to SharePoint, and the ability to link Access to SharePoint data sources will only increase over time.
SharePoint provides a flexible, secure, efficient data repository that is Web-accessible. Anyone with
access to the Internet is able to access a SharePoint Web site and (assuming they present the appro-
priate credentials to SharePoint’s security system) is able to not only access, but to modify and add
data to the SharePoint site through Access 2007.

SharePoint integration is just one more example of Microsoft’s commitment to enhancing Access’s
ability to integrate with diverse data sources. Although the other Microsoft Office 2007 applica-
tions also integrate with SharePoint, it is a sure bet that Access 2007 will take a dominant role
when working with SharePoint. With its ability to provide the users with powerful forms and
informative reports, Access is a natural tool to use when building SharePoint client-side interfaces.

768

More Advanced Access TechniquesPart III

29_046732 ch23.qxp 11/21/06 8:58 AM Page 768

Access provides many powerful tools for enhancing your forms and
reports. These tools let you add pictures, graphs, sound, and even
video to your database application. Chart wizards make it easy to

build business graphs and add them to your forms and reports. ActiveX
controls extend the power of Access 2007; new features borrowed from
Microsoft Office 2007 make using Access forms more productive than ever.

In this chapter, you learn about the different types of graphical and ActiveX
objects you can add to your system. You learn how to manipulate them to
create professional, productive screen displays and reports. You also learn
how to use some of the new Office 2007 tools that work with Access 2007
forms.

This chapter uses the Chapter24.accdb database. If you
haven’t already copied it onto your machine from the CD, you’ll

need to do so now.

Understanding Objects
Access gives you the capability of embedding pictures, video clips, sound
files, business graphs, Excel spreadsheets, and Word documents. You can also
link to any OLE (Object Linking and Embedding) object within forms and
reports. Therefore, Access lets you not only use objects in your forms but also
edit them directly from within your forms.

ON the CD-ROMON the CD-ROM

769

IN THIS CHAPTER
Understanding the differences
between bound and unbound
objects

Reviewing the differences
between linking and embedding

Learning the different ways of
storing these objects

Modifying an existing OLE
object from your form design

Creating a graph and linking it
to a form

Customizing graphs

Using Office integration in
Access 2007

Creating an Excel PivotTable

Creating an Excel PivotChart

Using ActiveX
Controls

30_046732 ch24.qxp 11/21/06 8:59 AM Page 769

Looking at the types of objects
As a general rule, Access can add any type of picture or graphic object to a form or report. You can
interact with OLE objects with great flexibility. For example, you can link to an entire spreadsheet,
a range of cells, or even an individual cell.

Access can embed and store any binary file within an object frame control, including even sound
and full-motion video. As long as you have the software driver for the embedded object, you can
play or view the contents of the frame.

These objects can be bound to a field in each record (bound) or to the form or report itself (unbound).
Depending on how you want to process the OLE object, you may either place (embed) the copy
directly in the Access database or tell Access where to find the object (link) and place it in the bound
or unbound object frame in your form or report. The following sections describe the different ways
to process and store both bound and unbound objects by using embedding and linking.

Using bound and unbound objects
A bound object is an object displayed (and potentially stored) within a field of a record in a table.
Access can display the object on a form or print it on a report.

A bound object is bound to an OLE object data type field in the table. If you use a bound object
in a form, you can add and edit pictures or documents, record by record, the same way you can
edit other data. To display a bound OLE object, you use a bound object frame control. In Figure 24-1,
the picture of the Porsche is a bound object. Each record stores a photograph of the car in the
Picture field in the tblProducts table. You can enter a different picture for each record.

An unbound object is not stored in a table; it is placed on the form or report. An unbound object
control is the graphic equivalent of a label control. These are generally used for OLE objects in the
form or report itself. They don’t belong to any of the record’s fields. Unbound objects don’t change
from record to record.

An image control that displays a picture is another example of an unbound object. Although an
unbound OLE object frame allows you to edit an object by double-clicking on it and launching the
source application (Paint, Word, Excel, a sound or video editor or recorder, and so on), an image
control only displays a bitmap picture (usually in .bmp, .jpg, or .gif format) that cannot be
edited.

Always use an image control for unbound pictures; it uses far fewer computer resources
than an OLE control and significantly increases performance.

In Figure 24-1 the image of the car is a bound OLE object; the expected profit value is an unbound
object because it is not directly stored in the table. However, the expected profit value is calculated
for each record in the form. So, there is a dependency between the expected profit and whatever
record is currently displayed on the form. This means the graph is updated each time data in the
record changes.

TIPTIP

770

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 770

FIGURE 24-1

Bound and unbound objects

Linking and embedding
The basic difference between linking and embedding objects within a form or report is that embed-
ding the object stores a copy of it within your database. Linking an object from another application
does not store the object in your database; instead, the external location of the object is stored.
Linking an object gives you two benefits:

n You can make changes to the object using the source application, without opening
Access.

n The Access database only uses space for the file path and filename to the external
reference.

If the external file is moved to another directory (or if the file is renamed), the link to
Access is broken. Therefore, opening the Access form that is linked to the object will

result in an error message.

One benefit of embedding is that you don’t have to worry about someone changing the location
or name of a linked file. It is embedded. So, the file is part of the Access .accdb database file.
Embedding does have its costs, however. The first is that it takes up space in your database —
sometimes a great deal of space. Some pictures can take several megabytes. In fact, if you embed an
.avi video clip of just 30 seconds in your database for one record, it can use 10MB or more of
space. Imagine the space that 100 records with video could use.

After the object is embedded or linked, you can use the source application (such as Excel or
Paintbrush) to modify the object directly from the form. To make changes to these objects, you
only have to display the object in Access and double-click on it. This automatically launches the
source application and lets you modify the object.

CAUTION CAUTION

771

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 771

When you save the object, it is saved within Access.

Suppose that you’ve written a document management system in Access and have embedded a
Word file in an Access form. When you double-click on the image of the Word document, Word is
launched automatically and you can edit the document.

When you use a linked object, the external application is started, and when you modify
the object the changes are made to the external file, not within your database as they

are with an embedded file.

To edit an OLE object, you must have the associated OLE application installed in
Windows. If you have embedded an Excel .xls file but don’t own Excel, you can

view the spreadsheet (or use its values), but you won’t be able to edit or change it.

Embedding Objects
You can embed objects in both unbound and bound object frames, as well as in image frames.
Embedding places the object in the Access database, where it is stored in the form, the report, or a
record of a table.

In this section, you use the form shown in Figure 24-2. You can find the form in the
Access Auto Auctions database file, named frmProductExampleStart.

FIGURE 24-2

The frmProductExampleStart form

ON the CD-ROMON the CD-ROM

NOTENOTE

NOTENOTE

772

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 772

Embedding an unbound object
Access provides two methods you can use to embed an unbound object in a form or report:

n You can simply paste an object on the form or report. Access adds an image or unbound
object frame that contains the object.

n You can add an unbound object frame or image frame and then insert the object or pic-
ture into the frame.

Pasting an unbound object
If the object you want to insert is not an OLE object, you must first copy in the source application
and then paste the object on the form. Generally today most applications include OLE technology
and can be recognized by the Insert menu option. Sometimes, you may just want to select an image
using Windows Explorer and copy and paste the object to an Access form. As an example, to cut or
copy an object and then paste it into an image or unbound object frame, follow these steps:

1. Create or display any object by using any source application like Word, Excel, or
Paint.

2. Select the object and copy into the buffer by pressing Ctrl+C.

3. Display the Access form or report in Design View and paste from the buffer by
pressing Ctrl+V.

This process automatically adds an unbound object frame for an OLE object (such as Word or
Excel) or an Image control for a Paint picture and then embeds the pasted object in it.

If the object you paste into a form is an OLE object and you have the OLE application loaded, you
can still double-click on the object to edit it. For example, you can highlight a range of cells in an
Excel worksheet and paste the highlighted selection into an Access form or report. You can use the
same highlight-and-paste approach with a paragraph of text in Word and paste it on the Access
form or report. You can paste both OLE and non-OLE objects on a form or report with this
method, but you’ll see that there are other ways to add an OLE object.

Inserting an image-type object
You can also use the second method to embed OLE objects or pictures into an unbound object
frame or image frame. Suppose that you want to embed a file containing a Paint picture. In Figure
24-1, the picture of the Access Auto Auctions logo appears on the form in the form header in an
image control. You can embed the picture by either pasting it into the image control or by inserting
the object into the image frame (the rectangle that contains and displays the picture). Follow these
steps to add an image control:

1. Open the form frmProductExampleStart in Design View.

2. Select the Image frame tool on the Toolbox (see Figure 24-3).

The icon is under the Design tab (at the top of the Access window), in the Controls sec-
tion, and looks like a little mountain with the sun rising over it).

773

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 773

FIGURE 24-3

Creating an image frame

3. Draw a rectangle in the Form Header (refer to Figure 24-3), to add the image frame.

When you add an image frame, the Insert Picture dialog box appears. This dialog box,
shown in Figure 24-4, displays the filenames of the image objects you have on your
system.

4. To embed an existing graphic, select the file called porsche.bmp in the Navigation
window (shown in Figure 24-4), and click the OK button.

Access embeds and displays the picture in the unbound object frame, as you can see in Figure 24-5.
Notice that, in this figure, the picture may not appear to be displayed correctly. In this case, the
image is too small for the image frame. You can correct this by simply resizing the image frame until
it looks right. Otherwise, you can also use the Size Mode property. To get the Properties window up
on the screen, right-click the image and select the Properties option from the menu.

774

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 774

FIGURE 24-4

The Insert Picture dialog box

Figure 24-5 also shows some of the other properties of the Image control. The Picture property is
set to the path and filename of the image you selected. The Picture Type property below has two
choices. The default is Embedded and saves a copy of the bitmap picture in the database container
in a compressed form. The other Picture Type option is Linked and stores the image externally to
the Access database. This setting will maintain a link to the original picture. However, if you move
the bitmap, the picture will no longer be displayed and the link will be broken.

FIGURE 24-5

The image frame property sheet

775

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 775

Changing the display of an image
After you add an image to a form or a report, you may want to change the size of the object or the
object frame. If you embed a small picture, you may want to adjust the size of the object frame to
fit the picture. Similarly, you might want to reduce the size of the picture to fit a specific area on
your form or report.

To change the appearance and proportions of the object you embedded, you must change the size
of the image frame and set the Size Mode property. In Figure 24-6, you see the result of the three
choices for the Size Mode property, as well as the correct view of the picture:

n Clip: Shows the picture at its actual size, truncating both the right and bottom

n Stretch: Fits the picture within the frame, distorting the picture’s proportions

n Zoom: Fits the picture proportionally within the frame, possibly resulting in extra
white space

FIGURE 24-6

Results of using the various scaling options

You should use the Clip option only when the frame is the exact size of the picture or when you
want to crop the picture. Stretch is useful when you can accept a slight amount of distortion in the
picture. Although using Zoom fits the picture to the frame and maintains the original proportions,
it may leave empty space in the frame. To change the Size Mode setting for the porsche.bmp file
on the frmProductExampleStart form, follow these steps:

1. Select the image frame in Design View.

2. Display the Property Sheet.

3. Change the Size Mode setting to Stretch.

776

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 776

When you have added a picture with a frame (border) that is much larger than the picture itself
and you have selected a Size Mode of Clip, the picture normally is centered within the frame. You
can control this by using one of the Picture Alignment options, which are Center, Top Left, Top
Right, Bottom Left, and Bottom Right.

Embedding bound objects
You can store pictures, spreadsheets, word-processing documents, or other objects as data in a
table. For example, you can store a Paintbrush picture, an Excel worksheet, or an object created
in any other OLE application, such as a sound clip, an HTML document, or even a video clip from
a movie.

You store objects in a table by creating a field in your table that uses the OLE Object data type.
After you create a blank bound object frame, you can bind its Control Source to the OLE Object
field in the table. You can also drag the field to the form from the Field List window and it will
be automatically bound.

You can then use the bound object frame to embed an object into each record of the table.

You can also insert objects into a table from the Datasheet View of a form, table, or
query, but the objects cannot be displayed in a view other than Form. When you switch

to Datasheet View, you’ll see text describing the OLE class of the embedded object. For example, if you
insert a .bmp picture into an OLE object field in a table, the text Picture appears in Datasheet View.

Adding a bound OLE object
The image added in the previous section was not bound, in that it was not bounded, linked, con-
nected in any way, to the database. To add an embedded OLE object in a new bound object frame,
follow these steps:

1. Remove the unbound image from the previous section.

2. Select the Bound Object Frame button from the Toolbox (t).

3. Drag and size the frame, as shown in Figure 24-7.

4. Display the properties sheet.

5. Type Picture in the Control Source property of the Data tab.

This is the name of the OLE field in the tblProducts table that contains pictures of
the cars.

6. Set the Size Mode property to Zoom, on the Format tab, so that the picture will be
zoomed proportionally within the area you define.

7. Select and delete only the bound object frame label (OLEBoundxx:).

8. Close and save the changes to this form.

NOTENOTE

777

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 777

FIGURE 24-7

Creating a bound object frame

Adding a picture to a bound object frame
After you define the bound object frame control and place it on a form, you can add pictures to it
in several ways. You can paste a picture into a record or insert a file object into the frame. You
insert the file object for a bound frame in nearly the same way you would insert an unbound object
or image frame. The only difference is that, where an unbound image frame has a picture inserted
in the design screen, a bound object frame contains a picture that is stored in a table, so the picture
is inserted in Form View like any other data.

To insert a picture or other object into a bound object frame, display the form in Form View, move
to the correct record (each record can have a different picture or object), select the bound object
frame, and then right-click on the object, and select the Insert Object option from the pop-up
menu. The dialog box is a little different. Because you can insert any OLE object (in this example, a
picture), you first have to choose Create from File, and then choose the first option, Bitmap Image.
You can then select the actual picture. When you’re through, the picture or object appears in the
bound object frame in the form.

If you create the object (instead of embedding an existing file), some applications dis-
play a dialog box asking whether you want to close the connection and update the open

object. If you choose Yes, Access embeds the object in the bound object frame or embeds the object
in the datasheet field along with text describing the type object, such as Excel or Word.

After you embed an object, you can start its source application and edit it from your form or
report. Simply select the object in Form View and double-click it.

NOTENOTE

778

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 778

Editing an embedded object
After you have an embedded object, you may want to modify the object itself. You can edit an OLE
object in several ways. Normally, you can just double-click on it and launch the source application;
then you can edit the embedded OLE object. As an example, you could follow these steps to edit
the picture of the car in Windows Paint or whatever your default application is for editing bitmaps:

1. Display the form frmProductExampleStart in Form View.

2. Move to record 2 (or whichever record contains blue car) and select the picture
bound object frame of the car.

3. Double-click the picture.

The screen changes to an image-editing environment with Windows Paint, Microsoft
Photo Editor, or your default bitmap editor’s menus and functions available. You may see
the icon on the taskbar for the product (Microsoft Photo Editor) in Figure 24-8. Choose
Maximize on the icon to edit the picture if in-place editing is not allowed in Access.

If you get the message The OLE object was changed to a picture or the
link was broken, it just means that our pictures may not be compatible with your

system. Insert your own picture and try again.

Another error message might be OLE server isn’t registered. If you get this error
message, you need to register some DLL files in Windows. Go to www.microsoft.com

and search for OLE server.

Windows supports full in-place editing of OLE objects. Instead of launching a different
program, it changes the look of the menus and screen to match Windows Paint, tem-

porarily adding that functionality to Access.

4. Make any changes you want to the picture.

5. Click on any other control in the form to close Paint or Microsoft Photo Editor.

If you make any changes, you’ll be prompted to update the embedded object before continuing.

In most cases, you modify an OLE object by double-clicking on it. When you attempt to
modify either a sound or video object, however, double-clicking on the object causes it

to use the player instead of letting you modify it. For these objects, you must use the Edit menu; select
the last option, which changes (according to the OLE object type) to let you edit or play the object.
You can also convert some embedded OLE objects to static images, which breaks all OLE links and
simply displays a picture of the object.

CAUTION CAUTION

NOTENOTE

CAUTION CAUTION

CAUTION CAUTION

779

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 779

FIGURE 24-8

Editing the embedded object

Linking Objects
Besides embedding objects, you can link them to external application files in much the same way
as you would embed them. As you learned earlier, the difference is that the object itself is not
stored in the form, the report, or the database table. Instead, Access stores the filename and path to
the object, saving valuable space in the .accdb file. This feature also allows you to edit the object
in its source application without having to go through Access.

When you create a link from a file in another application (for example, Microsoft Excel) to a field
in a table, the information is still stored in its original file.

Suppose that you decide to use the OLE Object field to store an Excel file containing additional
information about the car’s sales. If the Excel file contains history about the sales, you might want
to link the information from the tblProducts record to this file.

Before linking information in a file to a field, however, you must first create and save the file in the
source application.

On the CD-ROM is a file named Car2.xls, which is an Excel worksheet. However,
you can use any spreadsheet or word-processing file in this example.

To link information to a bound object, use the following steps showing you how to use the Picture
bound object frame to link a tblProducts table record to an Excel worksheet:

ON the CD-ROMON the CD-ROM

780

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 780

1. Open Microsoft Excel or the source application, and load the document that con-
tains the information you want to link to.

2. Select the information you want to link, as shown in Figure 24-9.

3. Press Ctrl+C to copy into the buffer.

FIGURE 24-9

Copying a range from Microsoft Excel

After you copy the range to the Clipboard, paste it into the bound object frame in the
Access form by using the Paste Special option of the Edit menu.

The Clipboard is also known as the buffer.

4. Switch to Access and open the form frmProductExampleStart in Form View.

5. Go to record number 2 in the Access form or the record that contains blue car.

6. Select the bound object frame.

7. Right-click and select Paste.

This will copy the data content into the bound object, not the Excel spreadsheet object.

8. Add the spreadsheet object by right-clicking the mouse and selecting Insert Object.

9. Follow the prompts to select an Excel Worksheet object, browse for, and select the
file to add.

This will allow you to edit the spreadsheet object from within the Access form, when it is
running.

NOTENOTE

781

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 781

The linked Excel worksheet appears in the bound object frame, as shown in Figure 24-10. Access
creates the link and displays the object in the bound object frame or it links the object to the
datasheet field, displaying text (such as Microsoft Excel) that describes the object. When you
double-click on the picture of the worksheet, Excel is launched and you can edit the data.

FIGURE 24-10

The linked worksheet

Creating a Graph or Chart
You use Microsoft Graph to chart data from any of your database tables or data stored within other
applications (such as Microsoft Excel). Microsoft Graph creates graphs in a wide variety of styles,
such as bar graphs, pie charts, line charts, and others. Because Graph is an embedded OLE appli-
cation, it does not work by itself; you have to run it from within Access. It is dependent on Access.

The terms graph and chart are used interchangeably in this chapter. Technically, you use
Microsoft Graph to create a chart. There are many chart types that Microsoft Access

cannot create. These have little to do with data, and include organization charts and flow charts.

After you embed a graph, it behaves as any other OLE object. You can modify it from the Design
View of your form or report by double-clicking on the graph itself, or edit it from the Form or
Datasheet View of a form. The following sections describe how to build and process graphs that
use data from within an Access table, as well as from tables of other OLE applications.

The different ways to create a graph
Access provides several ways to create a graph and place it on a form or a report. Using the Graph
form or Report Wizard, you can create a graph as a new form or report, add it to an existing form
or report, or add it to an existing form and link it to a table data source. (To use this third method,
in form Design View, click on the Unbound Object frame tool on the Toolbox and then choose
Microsoft Graph Chart.) Unless you’re already an experienced Graph user, familiar with it from

NOTENOTE

782

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 782

previous versions of Access or Excel, you’ll find it easier to create a new graph from the Toolbox. If
you examine the Toolbox, however, you won’t see a Chart Wizard icon. You must first customize
the Toolbox so that you can add a graph to an existing form by using the Chart Wizard.

As a general rule (for both types of graph creation), before you enter a graph into a form or report
that will be based on data from one or more of your tables, you must specify which table or query
will supply the data for the graph. You should keep in mind several rules when setting up your
query:

n Make sure that you’ve selected the fields containing the data to be graphed.

n Be sure to include the fields containing the labels that identify the data.

n Include any linking fields if you want the data to change from record to record.

Creating graphs using the Toolbox
Figure 24-11 shows the Design tab, under the Design View when editing a form. The graph object
selected is highlighted in Figure 24-11 with a circle drawn around it.

FIGURE 24-11

Adding a graph to a form

Embedding a Graph in a Form
As you learned earlier in this chapter, you can both link and embed objects in Access tables, and
display objects on Access forms. Next you create and display a graph based on the Access Auto
Auction data and display it in a form.

This graph will show the dates a car was sold and the dollars received each time. When you move
through the records in the tblProducts table, the form will display the data in graph format for
each car’s prices. You’ll use the same form that you’ve used so far throughout this chapter.

Assembling the data
As a first step in embedding a graph, make sure that the query associated with the form provides
the information you need for the graph. In this example, you need both the dtmSalesDate and
the curPrice fields from the tblSalesLineItems table as the basis of the graph. You also

783

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 783

need the idsInvoiceNumber field from the tblSales table to use as a link to the data on the
form. This link allows the data in the graph to change from record to record.

Sometimes, you’ll need to create a query when you need data items from more than one table. In
this example, you select all the data you need right from the wizard. Access builds the query (actu-
ally a SQL statement) for you automatically.

Build the query like this:

1. In the leftmost, main drop-down menu, select Queries.

2. Click the Create tab (at the top), and the Query Design tool in the Other section.

3. Select the tblSales, and tblsSalesLineItems from the menu.

4. Click the Add button and close the Show Tables window.

The two tables should be linked with the invoice number (InvoiceNumber).

5. Select ProductID from the line items table, and drag it onto the first Field box
entry in the design specifications on the lower half of the Design View screen.

6. Place the SaleDate field from the sales table into the second column.

7. Place the Price field from the line items table into the third column.

8. Set the Sort option for the first two columns to an ascending sort.

9. Right-click the top of the window for the query designed, select Save from the
menu, and store the query as qryChartExample.

10. Test the query by clicking the Datasheet View option from the View menu, just to
make sure it’s doing something useful.

Adding the graph to the form
The following steps detail how to create and place the new graph on the existing form. You should
be in the Design View of the form named frmProductExampleStart. The following steps take
you through the wizard to create the desired graph and link it to your form:

1. Select the Insert Chart tool you added to the Toolbox and draw a chart onto the
form Design View.

2. Click the mouse button and hold it down while dragging the box to the desired size
for the graph.

Access displays the Chart Wizard dialog box you use to embed a graph in the form. As
shown in Figure 24-12, the first Chart Wizard screen lets you select the table or query
with the data for the chart. By using the row of option buttons under the list of tables,
you view all the tables, all the queries, or both.

784

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 784

FIGURE 24-12

Selecting the query for the source of data for the graph

3. Choose Query: qryChartExample as the data source for the graph and click Next.

The second screen of the Chart Wizard lets you select fields to include in your graph. You
could select all the fields listed by double-clicking on them to move them to the Fields
for Chart box or by clicking on the >> button to move the fields all at once. However,
you want to add them in a specific order.

4. Select the fields by double-clicking on them in the following specific order:
SaleDate, ProductID, Price.

5. Click Next.

The third Chart Wizard screen (Figure 24-13) lets you choose the type of graph you want
to create and determine whether the data series are in rows or columns.

6. In this example, select a column chart.

You’ll customize it later using the graph options. As you click on each of the graph types,
an explanation appears in the box in the lower-right corner of the screen.

7. Select the Column Chart, as shown in Figure 24-13, and click Next.

Column charts are easy to work with.

Access 2007 may do something weird at this stage. The SaleDate field must be used for
the x-axis. The Price must be used for y-axis; this determines the height of the bars on
the histogram. If you want to change the assumptions, drag the field buttons on the right
side of the screen to the simulated graph area. You drag the buttons to the little boxes,
and delete anything that should not be in the little boxes. You should eventually have
what is shown in Figure 24-12.

785

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 785

FIGURE 24-13

Selecting the type of chart

It is important to only choose the fields that you’ll use for the graph if you want the wiz-
ard to figure out for you what to graph.

You may notice in Figure 24-14, that each of the fields on the left side of the screen is a
button. By double-clicking on a field-button you further define how the data is used in
the graph.

There is a button on the top-left corner of the Chart Wizard that lets you preview that
chart at any time. This way, you can see the results of your selections.

Generally, the x-axis variable is either a date or a text field. The y-axis field is almost always
a number. That number can be an aggregation, as in the case shown in Figure 24-12. Only
numeric and date fields, such as the y-axis variable Price, can be further defined.

8. Double-click on the SumOfPrice field on the left side of the screen.

The dialog box shown in Figure 24-15 appears. You can define options for summarizing
the field. Remember that there may be many records for a given summary; in this exam-
ple, many cars may have been sold in the same month.

If you had several numeric fields, you could drag them (or any multiple fields), to the
left side for a multiple series; these would appear in a legend and display more than one

bar or lines in the graph. You can also drag the same field to both the x-axis and the Series indicator,
as long as you’re grouping differently. For example, you could group the SalesDate by month and
use it again in the Series grouped by year. Without using the SalesDate field a second time as the
series variable, you would have one bar for each month in sequential order. For example, Jan01,
Feb01, Mar01 . . . Dec01, Jan02, Feb02, and so on. By adding the SalesDate as a series variable
and grouping it by year, you could get pairs of bars. Multiple bars can be created for each month,
each a different color and representing a different year and a legend for each year.

TIPTIP

NOTENOTE

NOTENOTE

786

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 786

FIGURE 24-14

Laying out the chart’s data elements

FIGURE 24-15

Selecting options to summarize the y-axis numeric field

9. As shown in Figure 24-15, Sum is selected as the summarizing type.

You could change it to Avg to get a graphical representation of an average amount of
prices — instead of summing all the price amounts. Click Cancel to accept Sum.

You must supply a numeric variable for all the selections except Count, which can be
any data type.

10. Double-click SaleDate by month, and the dialog box shown in Figure 24-16 appears
to let you choose the date hierarchy from larger to smaller rollups.

The choices include Year, Quarter, Month, Week, Day, Hour, and Minute. If you have data
for many dates within a month and want to roll it up by month, choose Month. In this
example, you want to see all the detail data. Because the data is in Sales by date
(mm/dd/yy), you would select Day to view all the detail records.

11. For this example, change the default selection from Month to Day and click OK.

CAUTION CAUTION

787

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 787

FIGURE 24-16

Choosing group options for a date field

12. After you change the group options from Month to Day for the SaleDate field,
click on Next to go to the next wizard screen.

Figure 24-17 shows the field linking box. If you run the Chart Wizard from inside an
existing form, you have the option to link a field in the form to a field in the chart. Even
if you don’t specify the field when you select the chart fields, you can make the link as
long as the field exists in the selected table.

In this example, Access has correctly selected the ProductID field, from both the
frmProductsExampleStart form and the qryChartExample query. This way, as
you move from record to record, which is keyed by Product ID, in the frmProduct
ExampleStart form, the graph changes to display the data for that product.

13. Click Next to move to the last wizard screen.

FIGURE 24-17

Linking fields between the form and the graph

788

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 788

14. The last Chart Wizard screen, shown in Figure 24-18, lets you enter a title and
determine whether a legend is needed.

You won’t need one for this example because you have only one data series.

FIGURE 24-18

Specifying a chart title and legend

15. Enter Sale Prices by Day for the graph title.

16. Select the button next to the text No, don’t display a legend and click Finish
to complete the wizard.

The sample chart appears in the graph object frame on the design screen. This is shown
in Figure 24-19. Until you display the form in Form View, the link to the individual
product is not established, and the graph is not recalculated to show the sale dates for a
specific car’s record.

In fact, the graph shown is a sample preview. So, it doesn’t use any of your data. If you
were worried about where that strange-looking graph came from, don’t be.

17. Click the Form View button on the ribbon to display the ProductExampleStart
form and recalculate the graph.

Figure 24-20 shows the final graph in Form View.

789

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 789

FIGURE 24-19

The graph in the Form Design window

FIGURE 24-20

Recalculating the graph in Form View

In Figure 24-19, you saw the graph and the property sheet. You display a graph by using a graph
frame, which shows its data in either Form View or Design View. Now take a look at some properties

790

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 790

in the property sheet. The Size Mode property is initially set to Stretch. You can change this to Zoom
or Clip, although the graph should always be displayed proportionally. You can also size and move
the graph to fit on your form. When you work with the graph in the Graph window, the size of the
graph is the same size it will be in the Design window.

The Row Source property setting comes from the table or query you used with the graph, but it
appears as a SQL statement that is passed to the Graph. The SQL statement (more on this later)
created for this graph is as follows:

TRANSFORM Sum([Price]) AS [SumOfPrice]
SELECT (Format([SaleDate],”DDDDD”))
FROM [qryChartExample]
GROUP BY (Int([SaleDate])),(Format([SaleDate],”DDDDD”))
PIVOT [ProductID];

The next two properties — Link Child Fields and Link Master Fields — control data linking to the
form’s data. Using the link properties, you link the graph’s data to each record in the form. In this
example, the ProductID from the current Product record is linked to Sales records with the same
ProductID value.

To change the appearance of the graph, double-click on the graph in Design View to open
Microsoft Graph. After you make the changes you want, select File and Exit to return to Microsoft
Access and go back to Design View.

Customizing a graph
After you create a graph within Access, you enhance it by using the tools within Microsoft Graph.
As demonstrated in the preceding section, just a few mouse clicks will create a basic graph. In
many cases, the basic chart that you create presents the idea you want to get across. In other cases,
however, it may be necessary to create a more illustrative presentation. You accomplish this by
adding any of these enhancements:

n Entering free-form text to the graph to highlight specific areas of the graph

n Changing attached text for a better display of the data being presented

n Annotating the graph with lines and arrows

n Changing certain graphic objects with colors and patterns

n Moving and modifying the legend

n Adding gridlines to reflect the data better

n Manipulating the 3-D view to show your presentation more accurately

n Adding a bitmap to the graph for a more professional presentation

n Changing the graph type to show the data in a different graphic format, such as Bar, Line,
or Pie

n Adding or modifying the data in the graph

791

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 791

Integration with Microsoft Office
Access is not only integrated with Windows, it now shares many major components with all
Microsoft Office tools. If you’re an Excel or Word user, you’ll be especially thrilled. Access has an
integrated Spell Checker that is used to make sure that the data stored in Access tables and data-
base objects is spelled correctly. The dictionary is shared across all Office applications. There are
also specific technical dictionaries for legal, medical, and foreign languages and also several custom
dictionaries that store your own technical words.

Checking the spelling of one or more
fields and records
You can check the spelling of your data in either Form View or Datasheet View. In Form View, you
spell-check only a single record, or a single field within a record. To check the spelling of data in
Datasheet View, select the field or text containing spelling you want to check, and then click on the
Spelling button (the icon with the check mark and the small letters ABC above it) in the Records
group on the Home ribbon tab.

When you click on the icon, Access checks the field (or selected text within the field) for spelling,
as shown in Figure 24-21.

FIGURE 24-21

Spell-checking in Access

792

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 792

In the Spelling dialog box that appears, click on Add if you want to add the word in the Not In
Dictionary box to the custom dictionary.

You can select only one field at a time in Form View. You’ll probably want to use only Form View
to spell-check selected memo data. You must switch to Datasheet View to select multiple fields or
records. To check the spelling of data in Datasheet View, you would select the records, columns,
fields, or text within a field containing spelling you want to check and then click on the Spelling
icon.

You can also check the spelling in a table, query, or form in the Database window by clicking on
the table, query, or form object containing spelling you want to check.

You only spell-check the data inside the objects. Access cannot spell-check control names.

Using OLE automation with Office
Access 2007 takes advantage of drag and drop. You do it from a Datasheet View across Excel and
Word. You can instantly create a table in a Word document (or add a table to an Excel spreadsheet)
by simply copying and pasting (or dragging and dropping) data from an Access datasheet to a
Word document or an Excel spreadsheet. (Obviously, you must have Word or Excel installed on
your computer to take advantage of these features.)

Creating an Excel-type PivotTable
Access contains a PivotTable Wizard to create Excel PivotTables based on Access tables or queries.
A PivotTable is like a cross-tabulation of your data. You define the data values for rows, columns,
pages, and summarizing.

A PivotTable is like a cross-tab query, except more powerful.

Before beginning a PivotTable, make sure to display a simple datasheet containing the data you
want to analyze. Figure 24-22 shows a query using the tblContacts, tblSales, and
tblSalesLineItems tables, in addition to the qryCalculateTotalPaymentsbyInvoice
query. All this is used to create an analysis of sales.

NOTENOTE

793

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 793

FIGURE 24-22

This query combines various tables and a query for later PivotTable use.

After you create a query, display the datasheet to make sure that the data you expect to see is dis-
played, and that the type of data lends itself to PivotTable analysis. There should be many different
groupings of data because a PivotTable is intended to manipulate, or pivot about, different data
categories.

A category is the equivalent of a type table in a relational database terminology.

As shown in Figure 24-23, this data is perfect for PivotTable analysis. There are many customers,
each having several purchases, on several dates, plus a total payment for each sale.

After the data is reviewed, you can create a PivotTable. You start by selecting the View menu with
the query in Figure 24-23 still open, and then the PivotTable View on the menu. After you begin
the PivotTable Wizard process, you see an introductory screen describing exactly what to put
where, as shown in Figure 24-24.

NOTENOTE

794

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 794

FIGURE 24-23

The datasheet version of the query shown in Figure 24-22

FIGURE 24-24

The PivotTable layout design wizard

795

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 795

Figure 24-24 shows a number of sections plus a field list selection box. The qryPivotTable
Example query is selected. You can create a PivotTable report by following through with these
steps:

This is where it gets really easy and your PivotTable design screen starts to look like a
spreadsheet.

1. Select the Description field in the PivotTable field list window.

This is the name of the car.

2. Drag the field from the field list window, and drop it onto the left-hand side row
box that has Drop Row Fields Here written in it. Easy, right?

3. Now select the SaleDate by Month field, and drag and drop it onto the top box or
column heading box (Drop Column Fields Here).

So far, you’ve created rows and columns, where the data will be matched up and summa-
rized based on meeting points between cars and sale date months of those cars.

4. Now drag the Company field onto the top box (Drop Filter Fields Here).

Underneath the word Company you will see the word All. That means you are retrieving
data for all companies. You can select one or more companies if you so wish, as shown in
Figure 24-25, by clicking the Company filter field as a spin control.

FIGURE 24-25

Selecting companies to filter with

NOTENOTE

796

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 796

5. Drag and drop the TotalPayments field, and drop it onto the central section
(Drop Totals or Detail Fields Here).

The result is shown in Figure 24-26.

FIGURE 24-26

A PivotTable design with all sections selected

6. You can now click the various plus signs (to add in totals), or minus signs (to
remove totals). Click the plus sigh underneath Grand Totals. And also click the plus
sign to the left of the 2008 column header.

You get the result shown in Figure 24-27.

797

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 797

FIGURE 24-27

A PivotTable can be drilled down into for more or less detail, using the plus and minus
signs.

7. Now go to the View button and select PivotChart View.

The screen changes to that shown in Figure 24-28.

In Figure 24-28, the SaleDate field was dragged and dropped onto the Drop Data
Fields Here box. The chart gives a slightly more entertaining, summarized picture of
the data.

798

More Advanced Access TechniquesPart III

30_046732 ch24.qxp 11/21/06 8:59 AM Page 798

FIGURE 24-28

A PivotChart can also be selected.

Summary
The ability to include only objects such as Microsoft Graph in Access applications is a very power-
ful feature. ActiveX controls provide utility that simply cannot be reproduced any other way. It
would be virtually impossible to re-create the sophisticated graphs and charts possible with
Microsoft Graph using Access or even a powerful graphical design tool.

Microsoft Graph is particularly attractive because its built-in wizards make creating even complex
graphs and charts a simple task. As you saw in this chapter, Microsoft Graph provides numerous
options for customizing the appearance of Access displayed in graphs and charts.

The next chapter concludes our discussion of advanced Access techniques. There, you’ll learn the
basics of trapping runtime errors and handling them in such a way that users are not bothered
or interrupted by the errors. Proper error handling is one of the distinctions of professionally
designed and built applications. Graceful error handling is one of the earmarks of professional
database development, and you’ll be happy to note that VBA provides all of the tools necessary to
add powerful, efficient error handling to your Access applications.

799

Using ActiveX Controls 24

30_046732 ch24.qxp 11/21/06 8:59 AM Page 799

30_046732 ch24.qxp 11/21/06 8:59 AM Page 800

Access database applications prepared by even the very best develop-
ers have problems. By their very nature, database applications tend
to be fairly complicated when you consider table and query design,

forms and reports, and implementation details. All the VBA code that needs
to be written for most databases can inevitably result in coding errors. If
you’re lucky the problem and its cause are obvious and are easy to fix. The
situation becomes difficult when you know there’s a problem, but its source
is not immediately apparent. The worst situation for all concerned are those
bugs that silently and perniciously damage data, or the representation of data
in an application, and without any warning.

This chapter takes a look at the types of errors you’ll encounter in Access
applications, and some of the steps you can take to uncover and repair these
little critters. This chapter largely ignores the errors caused by poor design:
those of misrepresentation of data caused by ill-designed queries, update and
insert anomalies caused by inappropriate application of referential integrity
rules, and so on. For the most part the causes of poor design errors are
rooted in failure to conform to proper design disciplines, misunderstanding
Access query design, among other causes. Careful attention to database
design principles is required to produce truly robust Access applications.

There is no database for this chapter as the chapter contains only
fairly simple VBA code examples.

Dealing with Errors
We all have to deal with the errors that occur in our applications. Even the
best-written code fails now and then, very often because of problems with

NOTENOTE

801

IN THIS CHAPTER
Dealing with errors

How Access deals with errors

Trapping errors with VBA code

Handling errors

The Error event

The Errors collection

The Err object

The VBA On Error and Resume
statements

Handling Errors and
Exceptions

31_046732 ch25.qxp 11/21/06 8:59 AM Page 801

data entry or poorly trained users. Other times errors occur because we’ve written the code incor-
rectly, or we haven’t adequately tested and debugged an application before distributing to users.

Logical errors
Logical errors can be sometimes be difficult to detect and remove. A logical error (a bug), often
occurs because of some mathematical error: Perhaps a data was misused of in a recordset, or maybe
there is some other problem dealing with the data or program flow of the application, or unex-
pected input from the user is not properly checked by the application.

For instance, consider the situation where a patient management program assumes the user has
entered both the first name and last name for a patient. Let’s also say that a patient data entry form
contains text boxes for both these values. So, the user typing in the details will certainly fill in both
values. Right?

Either of the first or last names might be missing from the data. There could be a perfectly valid
reason. For instance, there could be a patient too young to know their own name or an Alzheimer’s
patient who can’t recall his or her last name. A text value left as empty contains a null value, unless
a default value has been provided. A logical error is generated if the application then tries to use
the patient’s first name in a lookup or sorting operation. If you’re lucky, the user will notice the log-
ical error. The user could be informed through the use of a pop-up dialog box or error message,
and the error corrected before the data is committed to the database.

Other logical errors are created when, for instance, an application incorrectly calculates the days
between dates, uses the wrong value in a division or multiplication operation, and so on. Virtually
any time data is mishandled or inappropriately used in your application, a logical error is likely to
be the result.

The obvious solution to the missing first name / last name situation described earlier is to add some
VBA code to the form’s BeforeUpdate event to verify that both a first and last name have been
entered, and notify the user that one or both names are missing. Alternatively, the application may
insert a default value such as “N/A” for the first and last names when either has been left blank.

Even so, a well-mannered application should detect errors when they occur, and handle them
gracefully. Access, like most Windows applications, handles errors in a fairly unfriendly fashion,
popping up a dialog box that may or may not adequately describe the error to the user. A carefully
written application traps these errors before Access takes over, handling them without disturbing
the user’s workflow.

Runtime errors
Assuming you get past the syntax checking using the VBA editor and your code compiles, the
errors that occur as the user works with an application are generally referred to as runtime errors.
Runtime errors occur for a multitude of reasons. When they do occur, a runtime error causes one
of following four things to happen:

802

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 802

n A fatal error and the application crashes

n An untrapped error and the default Access error dialog box appears

n The error is handled by the application and your code takes care of the problem

n An unanticipated application error that may or may not cause problems with your Access
application

Fatal errors
A fatal error is a non-recoverable and crashes the application. These errors are generally a result of
an operation outside the Access environment, and there is no way for Access to handle it. In most
cases, your code won’t be able to trap and respond to fatal errors. An example of this type of error
is calling a poorly written Windows API function. As you’ll see in Chapter 30, Windows API func-
tions are extremely fussy about the type and number of parameters passed to them. Because
Windows API functions execute outside of Access, there is no way for VBA code to trap an API
error. In extreme cases, your users encounter the dreaded blue screen of death often seen when a
computer is infected by a virus.

Because you cannot do much about these fatal errors other than fix them, you should concentrate
on the types of errors you can control.

Simple runtime errors
Runtime errors often give no direct indication of an error condition, such as a pop-up message on a
screen. More likely a runtime error is detected after the fact, when something with the data is dis-
covered to be erroneous. For instance, a report may contain blank text boxes when the user expects
to see names and other data. This situation could even occur a long time after the data entry error
has occurred, and the error may occur many times before its discovery.

On rare occasions, runtime errors are traceable to a hardware failure such as a full disk or network
problems, leading to the frequent “*&#^ computer’s fault!” complaint. Modern desktop computers
are much more reliable than they were a few years ago, making this a rare occurrence. Most appli-
cation errors are caused by the people who program computers. Many hardware failures, such as a
hard-drive crash, are easily recognized by the user.

Other runtime errors may be less obvious and more difficult to deal with. For instance, a network
glitch may cause data loss or make lookup data temporarily unavailable. Running out of swap disk
space makes Windows run erratically or crash. Many computers are equipped with marginal mem-
ory, making it difficult or impossible to run large queries or use the built-in Access wizards.

A second approach to avoiding runtime errors is to keep an Access database file well maintained by
periodically running a compact and repair cycle:

1. Click the round File icon at the very extreme top left of the Access 2007 window.

2. Select the Manage option from the menu.

3. Click the Compact and Repair database option from the menu, as shown in
Figure 25-1.

803

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 803

What used to be compact and repair functionality in Access 2003 is now under the
Microsoft Office Diagnostics option, in the Windows menu for Microsoft Office.

FIGURE 25-1

Compacting and repairing a database

Prudence dictates frequent diagnostic attention to an Access 2007 .accdb file, particularly if data
is often deleted or modified. A compact and repair cycle can also help to ensure physical integrity
of the .accdb file on the hard drive.

Default error handling in Access
Access, Visual Basic, and the other VBA applications, such as Word and Excel, can handle errors
for you. Unfortunately, the built-in error handling in most applications is not really intended for
end users. Figure 25-2 shows a typical runtime error message produced by Access. Notice how
unhelpful the message is. Most users have no idea how to respond to the error message shown in
Figure 25-2. This error message includes technical expressions, such as “type mismatch.” Unless
appropriate training has been provided, it is unlikely the user will simply guess at the correct
action to take in response.

The error in Figure 25-2 occurs because the procedure declares and creates a text string variable
and a numeric variable and then tries to assign the numeric variable the value of the text string.
The type mismatch occurs because you can’t assign nonnumeric characters to a numeric variable.

TIPTIP

804

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 804

FIGURE 25-2

Built-in error messages are usually not helpful.

The error message in Figure 25-2 reports Runtime error ‘13’:— which happens to be a type
mismatch. Unless you know the problem, how does this message help you? Without a great deal of
experience, how do you then fix this type of problem? In fact, how do you determine what the
problem is? Clearly, this message box is not much help to a user who has entered character data
into a text box that should be filled with a numeric value.

In the error dialog box in Figure 25-2, notice the Debug button. The Debug button stops the pro-
gram, opens the VBA code editor, and places a breakpoint on the offending statement. The pro-
gram is in a state of limbo. All the values of temporary variables are intact, and you can view them
to help you solve the error. The End button causes the program to stop running, and you cannot
use any tools to check the problem.

The Access Error dialog box shown in Figure 25-2 appears for untrapped errors. This can be good
for development because problems can be traced to the specific line of code that caused the error.
When you click the Debug button, the VBA window opens and highlights the guilty line of code.
But this is not the kind of reaction you generally want with your applications and end users. For
this reason, having an error handler and making it a handled error is much better. You can some-
times not just alert the user of a problem, but maybe prevent the user from even worrying about
the problem by having the code take some action to work around the error or correct the problem.

Unanticipated errors
The last type of error is the unknown or unanticipated application error. This is most often a logi-
cal error in the code. Often no error is displayed because the program is working exactly the way it

805

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 805

was coded. For example, an endless loop occurs if you forget to advance a record pointer as you
traverse a recordset or the condition ending a Do.Loop never happens. The problem is that the
code is doing the wrong thing, even though it is executing as programmed.

The unanticipated error is often the hardest type of problem to resolve. There are several different
ways to handle these errors:

n Check the results programmatically by redundantly checking the results.

n Use the Watch window or breakpoints to watch the code run line by line.

A well-written application may prevent runaway, endless loops by counting how many times the
loop has executed and forcing an end to the loop when the maximum value has been exceeded.
Other sophisticated ways of handling unanticipated errors include keeping track of the number of
times a particular function has been called, or monitoring how long it takes for a query to execute
or a form or report to open. Such extreme measures are not necessary in the vast majority of Access
applications, but you should be aware that there are solutions to virtually any unexpected applica-
tion problem.

Which Errors Can Be Detected?
There are several hundred trappable errors that can occur in VBA applications. Only a minor por-
tion of these hundreds of errors are likely to occur in your applications. The question is, then,
which of the remaining fifty or one hundred relevant errors should you trap in your applications?

Most developers begin simply and write an error handler that catches one or two of the most obvi-
ous errors. In the case of the navigation buttons on an Access or Visual Basic form, you should trap
the error that occurs when the user tries to move off either end of the recordset. Such an error is
readily anticipated and is the result of normal navigation through a recordset.

However, say a problem makes it so the recordset itself cannot be created. The solution might not
be as obvious. There are many reasons why the OpenRecordset method may fail. Perhaps the
table cannot be found because it’s been deleted or a link to the table is broken. Or, there could be
an error in the SQL statement used to create the recordset and no records are returned. During
development you may never see an error caused by an empty recordset because your test data is
always available.

Experience will tell you which errors are expected as you write your VBA procedures. But, you
should always prepare for the unexpected.

What is an error handle?
VBA provides extensive runtime error handling capabilities. You are able to add code to your appli-
cations to detect when an error occurs. Other code directs the program to handle anticipated errors
in a predictable fashion. Still other code can catch unanticipated errors, automatically correcting
the problem, preventing data loss, and reducing support costs.

806

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 806

Almost all error-handling routines in VBA programs require a three-step process:

1. Trap the error.

2. Redirect program flow to error handler.

3. Direct program flow out of error handler back to main body of procedure.

It is important to note that all VBA error handling is done locally. That is, each procedure contains
its own error handling code. Although a procedure’s error handler can call other functions and
subroutines, the error handler exists entirely within the procedure causing the error. In fact, as dis-
cussed later in this chapter, after you start implementing error handling, it is important to include
error handling code in almost every procedure. An error that occurs in a procedure without error
handling is passed back to the routine that called the procedure, causing some confusion as to
which procedure actually failed.

Setting a basic error trap
The VBA engine is constantly looking for problems and immediately notifies you when something
unexpected happens. The default error message is generally technical in nature. A single line of
VBA code is all that’s necessary to intercept an error and redirect program flow to code that pro-
vides a more user-friendly approach to error resolution.

The following procedure shows how error handling is implemented in VBA procedures:

Sub RoutineA()
On Error GoTo HandleError
MsgBox “Now in routine A”

ExitHere:
MsgBox “Now leaving routine A”
Exit Sub

HandleError:
MsgBox “Error in routine A”
Resume ExitHere

End Sub

The On Error statement near the top of the procedure sets the error trap for the routine. Code
near the bottom of the routine implements the error-handling mechanism for this subroutine. The
error-handling code in this procedure is the very least you can include in your procedures to han-
dle runtime errors effectively. The error-handling statements in this procedure are the template you
can consistently use in all your VBA programs.

The On Error clause informs VBA that you want to defeat the built-in VBA error-handling system
by sending execution to the location identified by the “HandleError” label. The GoTo Label
statement is an unconditional branch (in the event of an error) to a label somewhere within the
procedure.

807

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 807

A VBA label is nothing more than an identifier (such as “HandleError”) followed by a
colon. A word by itself on a line in a VBA procedure is interpreted as the name of a pro-

cedure, variable, or VBA keyword, and VBA tries to evaluate it. When followed by a colon, the VBA
interpreter understands that the word is actually a label and should not be executed or evaluated.

The On Error statement is a switch that disables the default VBA error handling. This statement
switches the VBA engine away from its built-in error handling and redirects error handling to your
code. After you set the error trap with the On Error statement, you suppress the appearance of
the default Access error dialog boxes.

After an error occurs the VBA engine’s normal operation is suspended. Normal execution is directed
to the error handler and further error trapping is inhibited. If an error occurs in your error handler
VBA responds with its default behavior. Some resources available to you (discussed later in this chap-
ter) determine which error occurred and exactly where the error occurred. You also have several
options as to where you want program flow to commence after the error handler has done its job.

It is important to note that there is nothing special about the labels used in the error handling state-
ments. “HandleError” and “ExitHere” are just words; they convey no special meaning to
Access or the VBA language engine. Choose any label you wish —HandleError and ExitHere
are used throughout this book simply because VBA developers understand these labels. In fact, you
can use exactly the same labels and every VBA procedure. This fact makes it easier to copy and paste
the error-handling template from one procedure to another in your Access application.

Trapping Errors with VBA
Several situations can cause a great of frustration for your application users: A program that has been
operating without a hint of trouble suddenly crashes, popping up a dialog box containing a contra-
dictory or confusing error message. Another problem is a program behaving inconsistently. In one
situation the program operates in a predictable fashion, reliably churning out reports and displaying
the results of calculations. Under other conditions the program, operating on seemingly identical
data, behaves erratically, stopping execution or perhaps displaying the data in unexpected ways.

A third, much more dangerous situation, is a program that appears to be functioning properly but
is in fact corrupting data. (Corruption in this context simply means unexpectedly changing the
value of the data.) This program silently makes changes to the data or reports erroneous values
without indicating an error exists. An example is a program that calculates currency exchange
rates. The user of this program may believe the program is correctly calculating the monetary
exchange values while in fact the program is actually reporting incorrect results.

The worst type of situation occurs when the values returned by the program appear to
be correct, but are in fact wrong.

Using VBA error-handling techniques, you can add code to your applications to prevent unexpected
crashes or inconsistent behavior. Unfortunately, there is little you can do to correct a poorly pro-
grammed application. If calculations are being performed incorrectly, there is little that the VBA

CAUTION CAUTION

NOTENOTE

808

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 808

engine can do to correct these types of error. VBA code can be utilized to gracefully cater to unex-
pected behavior in Access.

Access 2007 provides several basic programming elements used for catering to errors, including
the following:

n The Error event

n The Errors collection

n The Err object

n VBA Error statements

The following sections detail each of these program elements.

The Error event
Access provides a special Error event when running a bound form or report. The Error event
provides a nice way to trap an error that occurs in the database engine supplying data to the form
or report. You need to create an event procedure for the Error event to trap these errors. The pro-
cedure looks like one of the following, depending on whether it was a form or a report:

Sub Form_Error(DataErr As Integer, Response As Integer)
‘Insert error handler here

End Sub

Sub Report_Error(DataErr As Integer, Response As Integer)
‘Insert error handler here

End Sub

There are two arguments for these subroutines: DataErr and Response. DataErr is the error
code returned by the Access database engine when an error occurs. Note that the Err object is
superseded by Error event, and is not helpful when this event is triggered by a problem with the
data underlying the form or report. You must use the DataErr argument to determine which
error occurred. The second argument, Response, is set to either of the following constants by the
procedure:

n AcDataErrContinue: Ignore the error and continue without displaying the default
Access error message.

n AcDataErrDisplay: Display the default Access error message. (This is the default.)

When you use AcDataErrContinue, you can then supply a custom error message or handler in
place of the default error message.

The following is a typical Form_Error event procedure:

Private Sub Form_Error(DataErr As Integer, _
Response As Integer)

809

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 809

Dim strMsg As String

Select Case DataErr
Case 7787 ‘OverwriteErr:
strMsg = “You lose. Click on OK to see”_
& “updates for other people.”

MsgBox strMsg, vbOKOnly + vbInformation

Response = acDataErrContinue

Case 7878 ‘DataChangedErr:
strMsg = “Another user has changed this” _
& “data while you were looking at it.” _
& vbCrLf & “Click OK to see “ _
& “the other user changes.”

MsgBox strMsg, vbOKOnly + vbInformation

Response = acDataErrContinue

Case Else
‘Default for any other errors:
Response = acDataErrDisplay

End Select
End Sub

This particular error-handling routine traps the errors on a bound form that occur when multiple
users make simultaneous changes to the same record. The Access database engine raises the error,
allowing the form to intelligently notify the user that a problem has occurred.

Notice how DataErr is examined to see if its value is 7787 or 7878, and an appropriate
action (notifying the user of the problem) is taken to handle the problem. Response is set to
acDataErrContinue to notify Access that the form’s data error has been handled.

If any other error occurs, Reponse is set to acDataErrDisplay, allowing Access to present the
user with the default error message. Hopefully the user can make some sense of the error message,
or at least notify someone of the situation.

Keep in mind that the form and report Error event fires only in response to data errors detected
by the database engine. The Error event is not related to problems caused by the user, other than
inappropriate data entry, and a failure to add or update the wrong kind of data in the database.

The ADO Errors collection
When an error occurs in an ADO object, an error object is created in the Errors collection of
the Connection object. These are referred to as data access errors. When an error occurs, the

810

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 810

collection is cleared and the new set of objects is put into the collection. Although the collection
exists only for the most recent error event, the event could generate several errors. Each of these
errors is stored in the Errors collection. The Errors collection is an object of the Connection
object, not ADO.

The Errors collection has one property, Count, which contains the number of errors or error
objects. It has a value of zero if there are no errors. There are a few properties of the Error object.
These include Description, HelpContext, HelpFile, Number, and Source. When there
are multiple errors, the lowest-level error is the first object in the collection, and the highest-level
error is the last object in the collection.

When an ADO error occurs, the VBA Err object contains the error number for the first object in
the Errors collection. You need to check the Errors collection to see whether additional ADO
errors have occurred.

In the following code, you find an error handler that can be used in a procedure that deals with an
ADO connection. When an error occurs, the code following the label ErrorHandler runs and
first checks to see if the Error object contains any items. If it does, it checks to see if the error
is the same as the Err object. If it is the same, the error was an ADO error and the variable
strMessage contains the descriptions of all the errors in the Errors collection. If it is not an
ADO error, the error is from VBA and the single Err.Description value is displayed:

Sub ADOTest()
Dim cnn As New ADODB.Connection
Dim errX As ADODB.Error
Dim strMessage As String

On Error GoTo HandleError

‘Insert your code here
ExitHere:

Exit Sub

HandleError:

If cnn.Errors.Count > 0 Then

If Err.Number = cnn.Errors.Item(0).Number Then

‘Error is an ADO Connection Error:
For Each errX In cnn.Errors
strMessage = strMessage & Err.Description & vbCrLf

Next
MsgBox strMessage, , “ADO Error Handler”

End If

Resume ExitHere

811

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 811

Else
‘The error is a VBA Error:
MsgBox Err.Description, vbExclamation, _
“VBA Error Handler”

Resume ExitHere

End If

End Sub

The Err object
The Err object is a part of the VBA language and is always present in every Access application.
When an error occurs, information about the error is stored in the Err object, enabling you to
examine the Err object and learn the details of the error.

The Err object contains information about only the most recent error and does not contain infor-
mation about more than one error at a time. When a new error occurs, the Err object is cleared
and updated to include information about that most recent error.

The Err object has several properties, including Number, Description, and Source. The Number
is the VBA number of the ; Description gives you a little more information about the error. The
Source property is not normally very useful in Access applications; it identifies the VBA project that
generated the error, which, in Access applications, is the name of the Access application by default.

The Err object also has two methods: Clear, to clear information from the Err object; and
Raise, to simulate an error.

The Description property returns the built-in description of the error that has occurred.
Whether you choose to use this description is entirely up to you. Perhaps the most important
property of the Err object is the Number associated with the error. The following listing shows
how you might use the Err.Number property to determine which error has triggered the error
handler.

The following procedure demonstrates the use of the Err object and its Number attribute:

Sub GenericProcedure()

On Error GoTo HandleError

‘Other VBA statements here

ExitHere:
‘Shut down statements here
Exit Sub

812

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 812

HandleError:

Select Case Err.Number
Case X

‘Handle X case
Resume ExitHere

Case Y
‘Handle Y case
Resume ExitHere

Case Z
‘Handle Z case
Resume ExitHere

Case Else ‘Unanticipated error
MsgBox Err.Number & “ “ & Err.Description
Resume ExitHere

End Select

End Sub

The Select Case statement in the error handler, in the procedure called GenericProcedure
uses the Err.Number property to execute any of a number of responses to the error. The beauty
of Select Case is that the error-handling code can be extended as far as necessary. There is no
practical limit on the number of Case statements that can be contained within the Select Case
construct, and multiple Err.Number values can be handled by the same Case.

In each Case construct you choose whether to include the Resume ExitHere statement. For
instance, perhaps Case Y fixes the problem, and you really want the code to return to the state-
ment that caused the error so that it can be executed a second time. In this case, rather than
Resume ExitHere, use a simple Resume statement with no target label. Resume instructs VBA
to go back to the statement that caused the problem and execute it again.

Obviously, the Select Case construct is not the only way to handle multiple error conditions.
You could, for instance, use nested If..Then..Else and If..Then..ElseIf statements.
However, you’ll find that the If statement is not easily extensible and the logical flow through
nested If..Then..Else statements can be difficult to follow.

A bit later in this chapter you’ll read about the special Resume statement you use to redirect pro-
gram flow out of the error handler.

VBA Error statement variations
You’ve already seen several examples of the basic VBA statements for handling errors:

n On Error

n Resume

813

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 813

There are a number of forms of the On Error statement:

n On Error Resume Next

n On Error GoTo <label>

n On Error GoTo 0

An error trap is a section of code that is executed when some kind of an error occurs. That error
can be specifically specified, or it can be general. Essentially, when an error is detected by an
error trap, then whatever the error trap dictates (the code the trap contains) is what is executed.

There are obviously numerous ways to deal with errors within forms, reports, and code. Each
form and report, as well as each function and subroutine, can and probably should have an error-
handling routine. It is not unusual to see a good part of the development effort devoted to error
handling. Probably the most common routine is the following one:

Function SampleCode
‘Dim statements here

On Error goto HandleError

‘Insert functional code here

ExitHere:
Exit Function

ErrorHandler:
‘error handler code here
Msgbox err.description
‘either enter a resume statement here
‘or nothing and let the function end
Resume ExitHere

End Function

The On Error statement enables the error handler, and if an error occurs, execution branches to
the first line after the label ErrorHandler. This label could be any valid VBA label. The error-
handler code would deal with the error and then either resume execution back in the body of the
procedure or just exit the function or subroutine. The inclusion of the Msgbox statement in the
error handler is a typical way of informing the user what happened.

When an error occurs in a called function or subroutine that doesn’t have an enabled error handler,
VBA returns to the calling procedure looking for an enabled error handler. This process proceeds
up the call stack until an error handler is found. If no error handler is found, execution stops with
a default Access error message displayed.

On Error Resume Next
The On Error Resume Next statement ignores the line causing an error. Processing continues at
the line immediately following the line causing that error. No error-handling routine is called. This

814

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 814

statement is useful if you want to sometimes ignore errors. The following procedure shows that,
for any error dealing with the error log table, the rest of the routine will simply be ignored and
passed over:

Sub LogError(iNumber As Integer, sDesc As String)
Dim db As Database
Dim rs As Recordset

On Error Resume Next
Set db = CurrentDb()
Set rs = db.OpenRecordset(“SELECT * FROM ErrorLog”)
If Err.Number <> 0 Then

‘Put code here to create The table ErrorLog
End If
rs.Close

End Sub

On Error Resume Next must be used appropriately. After On Error Resume Next is set,
Access ignores all errors until the procedure ends or until another error directive is encountered,
as in this example:

Sub LogError(iNumber As Integer, sDesc As String)
Dim db As Database
Dim rs As Recordset

On Error Resume Next
Set db = CurrentDb()
Set rs = db.OpenRecordset(“SELECT * FROM ErrorLog”)
If Err.Number <> 0 Then

‘Put code here to create The table ErrorLog
End If

On Error GoTo HandleError

... Other code here ...

End Sub

In this case, the On Error Resume Next causes Access to ignore the error that occurs if the
ErrorLog table does not exist. Once past this section of code, the On Error GoTo HandleError
statement you’ve seen in several places in this chapter establishes the usual error handler for the
remainder of the procedure.

On Error GoTo <label>
The On Error GoTo <label> statement enables an error-handling routine. This is the standard
error handling directive described earlier in this chapter. This statement enables error handling for
the procedures. Here is another example of using On Error GoTo <label> as a simple error-
handling operation:

Sub LogMoreErrors(iNumber As Integer, sDesc As String)
Dim db As Database

815

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 815

Dim rs As Recordset

On Error GoTo HandleError

Set db = CurrentDb()
Set rs = db.OpenRecordset(“SELECT * FROM ErrorLog”)
If Err.Number <> 0 Then

‘Put code here to create The table ErrorLog
End If
rs.Close

ExitHere
Exit Sub

HandleError:
MsgBox Err.Number & “ “ & Err.Description
Resume ExitHere

End Sub

Keep in mind that you are free to use any labels you wish as the targets of the On Error and
Resume statements. The labels you see here were chosen simply because of the obvious purposes
they serve.

On Error GoTo 0
The On Error GoTo 0 statement disables error handling. This statement also resets the properties
of the Err object. The following procedure shows an example of using GoTo 0. After processing
has bypassed the Delete method, the On Error GoTo 0 statement disables further error traps.
This means any errors that occur after this statement will be handled by the default VBA error
mechanism:

Sub DeleteTableDef()
Dim db As Database
Set db = CurrentDb()

On Error Resume Next
db.TableDefs.Delete “tblTemp”

On Error GoTo 0
‘More code here

End Sub

Although in most cases it is not desirable to let VBA handle its own errors, one situation where you
may choose to use On Error GoTo 0 is during the development process. Assume you’re working
on a complex procedure that has a number of different failure modes. You’re never really sure
you’re trapping for all possible errors, so you may want to disable error handling temporarily so
that you’ll be sure to see all errors that occur past the error trap you’ve prepared.

816

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 816

VBA Resume statements
As with the On Error statement, there are a number of forms of the Resume statement:

n Resume

n Resume Next

n Resume <label>

Using the Resume statement is all about gaining better and more effective program control over
the occurrence of errors.

You shouldn’t simply fall out of the error handlers in your procedure. You’ve probably noticed that
the error handler usually appears near the very bottom of a procedure. It’s tempting to just let the
End Sub statement after the error handler terminate the procedure after the error has been man-
aged. There are several problems with this approach:

n The VBA error mechanism is left in an indeterminate state. You’ll recall that as soon
as the error occurs VBA enters a special “error” mode. This mode persists until the VBA
engine encounters a Resume statement (more on Resume later), or until another error
occurs. Even though the end of the procedure resets VBA’s error mode, you should not
count on this happening, particularly in deeply nested procedure calls.

n VBA procedures often open recordsets, establish object variables, and perform
other tasks that may be left incomplete unless shut down in a predictable fashion.
For instance, assume a procedure has opened a disk file and an error occurs. Unless the
disk file is explicitly closed you run the risk of damaging the disk’s file structure. Using
the Resume statement to redirect flow to the procedure’s shut down code provides a sin-
gle point at which to close resources that are no longer needed.

Every VBA error handler should include some form of the Resume statement. This special VBA
command instructs the VBA engine to resume normal execution. Depending on how you write
the Resume statement, you can redirect program execution to any of a number of different points
within the procedure.

The GoTo statement will not work in place of Resume. GoTo is an unconditional branch to
another location within the current procedure and does not reset the VBA engine error status.

Resume
The Resume statement (with no label) returns execution to the line at which the error occurred.
This statement is typically used when the user must make a correction, or when the error handler
has repaired the problem causing the error. This might occur if you prompt the user for the name
of a file to open and the user enters a filename that doesn’t exist. You can then force the execution
of the code back to the point where the filename is requested.

In almost all cases, the Resume keyword assumes that the error handler repairs the error condi-
tion. Otherwise you’ll find yourself in an endless loop. Unless the error condition is corrected,

817

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 817

every time the line causing the error is executed the error occurs, triggering the Resume statement,
causing the cycle to repeat itself an infinite number of times. The following procedure shows how
the Resume statement fits into a robust error handler, where judicious use of Resume can simplify
coding:

Public Sub ResumeDemo()

On Error GoTo HandleError

‘Statement causing error occurs here:
Kill “C:\Temp.txt”

ExitHere:
Exit Sub

HandleError:

If MsgBox(“Error! Try again?”, vbYesNo) = vbYes Then
Resume

Else
Resume Exit_ResumeDemo

End If

End Sub

If the Temp.txt file cannot be found, processing jumps down to the error handler. A message box
pops up with Yes and No buttons on it asking the user whether to try again to delete the file. If the
user selects the Yes button (vbYes) processing moves back to the Kill statement. The cycle repeats
itself until either the Temp.txt file becomes available and is deleted or until the user clicks the
No button on the message box.

Resume Next
When your error handler corrects or works around the problem that caused the error, the Resume
Next statement is used. Resume Next returns execution to the line immediately following the
line at which the error occurred.

The assumption with Resume Next is that either the error handler corrected the error condition
or that the error was relatively minor in nature and that it’s appropriate for processing to simply
continue at the statement following the error condition.

The following procedure shows how to use On Error Resume Next. This simple error-logging
routine tries to create a recordset object by selecting all fields from a table named ErrorLog. The
call to the OpenRecordset method fails if ErrorLog is unavailable. If ErrorLog cannot be
opened an error occurs, but because of the Resume Next directive processing simply falls through
to the If statement immediately following the OpenRecordset. The code to create ErrorLog is
missing from this routine, but the logic should be clear.

818

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 818

Sub LogErrors(iNumber As Integer, sDesc As String)
Dim db As Database
Dim rs As Recordset

On Error Resume Next
Set db = CurrentDb()
Set rs = db.OpenRecordset(“SELECT * FROM ErrorLog”)
If Err.Number <> 0 Then

‘Put code here to create tblErrorLog
End If
rs.AddNew
rs![TimeStamp] = Now()
rs![Number] = iNumber
rs![Description] = sDesc
rs.Update
rs.Close
Set rs = Nothing

End Sub

The LogError sub in the previous procedure does not capture the situation that occurs if
ErrorLog cannot be created. In fact, if errors occur as the code tries to assign values to the fields
in LogError, processing simply continues to fall through to the next statement until a successful
statement is encountered. In most cases this means execution ends up in an unpredictable location.
It also means subsequent errors are not properly trapped.

Resume <label>
Resume <lable> is the standard method for exiting an error handler. If you need to continue
execution at some other place besides the line that caused the error or the line after the line that
caused the error, the Resume <label> statement should be used. It returns execution to the line
specified by the label argument.

The label must be a label appearing within the current procedure. You cannot resume execution at
a point outside of the currently executing procedure. If you must use the code in another proce-
dure as part of the error handler, simply call it at a point above the Resume statement.

When using error traps, one option is to redirect processing to an error trap, and log
the error to a log file. After that, you could always continue processing. The result is

that processing is not halted, perhaps prudent for less critical error situations.

One important aspect of Resume <label> is that program execution is typically directed to the
procedures exit point. This gives you a handy place to put all of a procedure’s clean-up code, so
that it executes whether or not an error occurs:

Sub LogErrors(iNumber As Integer, sDesc As String)
Dim db As Database
Dim rs As Recordset

On Error GoTo HandleError
Set db = CurrentDb()

NOTENOTE

819

Handling Errors and Exceptions 25

31_046732 ch25.qxp 11/21/06 8:59 AM Page 819

Set rs = db.OpenRecordset(“SELECT * FROM ErrorLog”)
If Err.Number <> 0 Then

‘Put code here to create tblErrorLog
End If
rs.AddNew
rs![TimeStamp] = Now()
rs![Number] = iNumber
rs![Description] = sDesc
rs.Update

ExitHere:
‘These steps are followed whether or not an error
‘has occurred. This means there is a single place
‘in this procedure for “clean up” code:
rs.Close
Set rs = Nothing
Exit Sub

HandleError:
‘Handle the error here
Resume ExitHere

End Sub

In this short example, the statements following the ExitHere label are executed whether or not
an error has occurred. You should always close recordset objects and set them to Nothing to con-
serve memory. These “clean up” statements normally appear near the bottom of procedures, but in
this example are located midway through the subroutine. Execution of this procedure actually ends
when the Exit Sub statement executes.

Summary
This chapter surveys the important topic of adding error handling in Access applications. All VBA
hosts (Access, Word, Excel, and so on) use identical error-handling paradigms. This means that all
the code you saw in this chapter is applicable to any VBA host application.

Error handling is enabled with the On Error keywords. The typical error-handling process is to
trap the error, redirect program execution to the code segment handling the error, and then resume
out of the error handler. Most procedures use the Resume statement to redirect program flow to a
common exit point in the procedure. The code following the exit label performs any clean up
(closing and discarding object variables, closing files that are open, and so on) and is executed
whether or not an error occurs in the procedure.

820

More Advanced Access TechniquesPart III

31_046732 ch25.qxp 11/21/06 8:59 AM Page 820

Professional
Database

Development

The chapters in this part cover issues that concern profes-
sional database developers, including securing databases
from unauthorized access, enhancing the user interface

with toolbars and menus, and replicating (exchanging) data from
one Access database to another.

This part builds on the information provided in earlier chapters.
In this part, you’ll find answers to many questions and problems
facing Access developers, such as identifying a user as the user
logs on to an application, exploiting object-oriented program-
ming with the VBA language, and using advanced data manage-
ment techniques with ActiveX Data Objects (ADOs).

It is entirely possible that some developers will never use many
of the capabilities described in the chapters in this part.
However, far too often, even advanced developers overlook the
capabilities provided by a system like Microsoft Access simply
because they’re too busy or too involved in other work to truly
learn what Access is capable of. This part takes you on a tour of
some of the high-end features provided by Microsoft Access so
that you’ll know they’re there, and you’ll have a blueprint for
using these capabilities in your own applications.

IN THIS PART
Chapter 26
Optimizing Access Applications

Chapter 27
Advanced Data Access with VBA

Chapter 28
Bulletproofing Access Applications

Chapter 29
Securing Access Applications

Chapter 30
Using the Windows API

Chapter 31
Using the Access Replication
Features

Chapter 32
Object-Oriented Programming
with VBA

Chapter 33
Reusing VBA Code with Libraries

Chapter 34
Customizing Access Ribbons

Chapter 35
Distributing Access Applications

Chapter 36
Using Access Macros

32_046732 pt04.qxp 11/21/06 9:00 AM Page 821

32_046732 pt04.qxp 11/21/06 9:00 AM Page 822

When Microsoft introduced 32-bit Access, a number of new per-
formance concerns came part and parcel with the new features
and functions. Microsoft continues to make a conscious effort to

enhance the performance of Access 2007 with improvements in Jet as well as
compilation techniques and features such as the formerly undocumented
decompile command. The end result is that Microsoft has helped to ease
your burden, but in no way has it completely taken it from you.

The published minimum RAM requirement for a computer
to run Access 2007 on Windows XP (SP2 or later), Windows

Server 2003 (or higher), or Windows Vista is 256MB — with an emphasis on
minimum. If you’re going to do serious development with Access 2007, you
should have at least 512MB of RAM or, preferably, 1GB or more. With today’s
computers and memory prices, this amount of memory is a valuable invest-
ment. In fact, simply adding more memory (512MB to 1GB) will increase
speed much more than changing your processor or speed, due to the fact that
Access 2007 must use the hard drive as a virtual memory area if it doesn’t have
enough memory. Hard drives are slow, and big hard drives are even slower —
regardless of the processor speed.

Understanding Module Load
on Demand
One of the great features of Visual Basic for Applications (the core language
of Microsoft Access) is the load on demand functionality of VBA. Using load
on demand, Access loads code modules only as they are needed or refer-
enced. In early versions of Access, on-demand loading of modules wasn’t

TIPTIP

823

IN THIS CHAPTER
Tuning your computer for
maximum performance

Increasing performance
dramatically by keeping your
code in a compiled state

Using the Access 2007 large
database file format

Using .accde databases for
better performance

Getting the most from your
tables

Tuning your queries for
maximum speed

Getting the most out of your
forms and reports

Increasing performance by
optimizing your VBA code

Increasing the perceived speed
of your application

Working with large databases

Optimizing Access
Applications

33_046732 ch26.qxp 11/21/06 9:00 AM Page 823

fully realized because loading a module loaded the entire module’s potential call tree. With Access
2007, the load on demand feature truly does help reduce the amount of RAM needed and helps
your program run faster.

Because Access doesn’t unload code after it has been loaded into memory, you should
periodically close your application while you develop. When developing, you have a

tendency to open and work with many different procedures in many different modules. These mod-
ules stay in memory until you close Access.

Organizing your modules
When any procedure or variable is referenced in your application, the entire module that contains
the procedure or variable is loaded into memory. To minimize the number of modules loaded into
memory, you need to organize your procedures and variables into logical modules. For example,
it’s a good idea to place all Global variables in the same module. If only one Global variable is
declared in a module, the entire module is loaded into memory. By the same token, you should put
only procedures that are always used by your application (such as start-up procedures) into the
module containing the Global variables.

Access 2007 prunes the call tree
The call tree for a procedure contains any additional functions or procedures that the current pro-
cedure (or function) has referenced within it, as well as those referenced by the newly loaded func-
tions and procedures, and so forth. Because a procedure may reference numerous additional
functions/procedures (stored in different modules) based on the action taken by the procedure,
this loading of all potentially called functions/procedures takes a lot of time and memory.

Remember that when a procedure or function is called, the entire module in which that function is
stored is placed in memory.

Therefore, a potential call tree consists of all the procedures that could be called by the current pro-
cedure that you are calling. In addition, all the procedures that could be called from those proce-
dures and so forth are also part of the potential call tree. For example:

1. If you call Procedure A, the entire module containing Procedure A is loaded.

2. Modules containing variable declarations used by Procedure A are loaded.

3. Procedure A has lines of code that call Procedures B and C — the modules contain-
ing Procedure B and Procedure C are loaded. (Even if the call statements are in con-
ditional loops and are never executed, they are still loaded because potentially they
could be called.)

4. Any procedures that could be called by Procedure B and Procedure C are loaded, as
well as the entire modules containing those potential procedures.

5. And so on and so on. . .

TIPTIP

824

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:00 AM Page 824

Fortunately for all Access developers, this complete loading of a potential call tree has been
addressed in Access 2007. Access 2007 automatically compiles modules on demand, instead of
loading the entire potential call tree. However, you can turn this feature off, thus making Access
2007 compile all modules at one time. Do this in the Visual Basic for Applications program rather
than in Access. Access 2007 links directly to VBA’s development environment for working with
Visual Basic code. To check the status of the Compile on Demand option, follow these steps:

1. Select the Modules object type from the Navigation Pane.

2. From the ribbon’s Create tab, select Module from the Macro drop-down in the Other
group to activate the Visual Basic Development Environment.

3. Select Tools ➪ Options. The Options dialog box appears.

4. Select the General tab.

5. Verify that the Compile on Demand check box, located on the bottom right of the
dialog box, is checked. If it’s not, check it. Figure 26-1 shows the dialog box with
the option selected.

FIGURE 26-1

For maximum performance, leave the Compile on Demand check box selected.

6. Click OK.

7. Select File ➪ Close and Return to Microsoft Access (Alt + Q) or click the Access
button (first button on toolbar) if you want to return to Access and leave the VBA
window open.

Unless you have a specific reason to do so, never deselect the Compile on Demand
option. When you deselect this option, you can conceivably cause all of the modules in

a database to load and compile, simply by calling just one procedure.

TIPTIP

825

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:00 AM Page 825

With the Compile on Demand option selected, Access 2007 won’t load the entire call tree of a
module, but it will load a portion of the call tree of the executed procedure. For example, if you
call procedure A in module A, any modules that contain procedures referenced in procedure A are
loaded and compiled. However, Access 2007 doesn’t take into consideration procedures that may
be called from other procedures in module A, and it doesn’t look at the potential call tree of the
modules loaded because one of their procedures is referenced in procedure A. Because Access 2007
loads modules one-deep from the executed procedure’s immediate call tree only — and not the
module’s call tree — your applications should load and execute many times faster than they did in
previous versions.

Even though Access 2007 has made a significant improvement in the way modules are loaded and
compiled, you can still do a number of things to reduce the number of modules loaded and compiled.
For example, you should never place infrequently called procedures in a module with procedures that
are called often. At times, this may make your modules less logical and harder to conceptualize. For
example, you might have a dozen functions that perform various manipulations to contact information
in your application. Ordinarily, you might make one module called “modContacts” and place all the
contact-related procedures and variables into this one module. Because Access loads the entire module
when one procedure or variable in it is called, you might want to separate the contact-related proce-
dures into separate modules (one for procedures that are commonly used and one for procedures that
are rarely used and not referenced in commonly used procedures).

You need to be aware at all times that all modules having procedures referenced in a
procedure of a different module are loaded when that procedure is called. In your

application, if any of your common procedures reference a procedure that isn’t commonly used,
place the uncommon procedure in the same module with the common procedures to prevent a differ-
ent module (containing the uncommon procedures) from being loaded and compiled. You may even
decide to use more than two modules if you have very large amounts of code in multiple procedures
that are rarely called. Although breaking related procedures into separate modules may make your
code a little harder to understand, it can greatly improve the performance of your application.

To fully take advantage of Compile on Demand, you have to carefully plan your procedure place-
ment. Third-party tools can be invaluable for visualizing where all of the potential calls for various
procedures are located.

Using the Access 2007 Database File Format
Access 2007 supports several file formats, including Access 2002-2003, Access 2000, and Access
97. The Access 2007 format (.accdb) supports several new features, such as multivalued fields
and attachments, not available in previous versions (.mdb). The new file format cannot be opened
or linked to earlier versions of Access (although you can link tables in earlier versions to an accdb
file), does not support replication, and does not support user-level security. If you need to use the
database with earlier versions of Access or use replication or user-level security, you must use an
earlier version file format.

TIPTIP

826

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:00 AM Page 826

You can open and even run Access 97 database files, but you can’t make any design changes. You
can open Access 2002-2003 and Access 2000 database files and make any desired changes to
them. However, you’ll only be able to use features specific to those versions. Some of the new fea-
tures in Access 2007 won’t be available.

The default database file format in Access 2007 is .accdb. You can convert database saved in a
previous format by opening the database in Access 2007, clicking the Microsoft Office button in
the upper-left corner of the main Access screen, and selecting Convert. From the Convert Database
Into dialog box, give the file a new name with the .accdb extension and click Save.

Change the default file format for new files by clicking the Microsoft Office button,
selecting Access Options, and clicking the Personalize tab. Under the Creating

Databases section, change the Default file format to Access 2007, Access 2002-2003, or Access 2000,
as shown in Figure 26-2.

FIGURE 26-2

For maximum performance, change the default file format to Access 2007.

The Access 2007 file format should only be used in an Access 2007 environment where all users
are using Access 2007. In addition to complete compatibility with all Access 2007 features, you
may experience some performance advantages when using the Access 2007 file format with larger
databases. However, in a mixed environment of Access 2000, 2002-2003 and Access 2007 users,
you should stay with the Access 2002-2003 file format for compatibility with Access 2002-2003
users. The same holds true for Access 2000 compatibility; stay with the Access 2000 file format.
An Access 2003 program can attach to Access 97 data files, but if you are trying to accommodate
Access 97 users, you should not upgrade the Access 97 data files.

TIPTIP

827

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 827

Distributing .accde Files
One way to ensure that your application’s code is always compiled is to distribute your database
as an .accde file. When you save your database as an .accde file, Access compiles all code
modules (including form modules), removes all editable source code, and compacts the database.
The new .accde file contains no source code, but continues to work because it does contain a
compiled copy of all of your code. Not only is this a great way to secure your source code, but it
also allows you to distribute databases that are smaller (because they contain no source code) and
always keep their modules in a compiled state. Because the code is always in a compiled state, less
memory is used by the application, and you suffer no performance penalty for code being com-
piled at runtime.

In addition to not being able to view existing code because it is all compiled, the following restric-
tions apply:

n You can’t view, modify, or create forms, reports, or modules in Design View.

n You can’t add, delete, or change references to object libraries or databases.

n You can’t change your database’s VBA project name by using the Options dialog box.

n You can’t import or export forms, reports, or modules. Note, however, that tables,
queries, and macros can be imported from or exported to non-accde databases.

If you want to create a demo of your application — and if you don’t want the users to be
able to see your code or form and report designs — you should create an .accde file.

Because the designs of your forms, reports, and all code modules are simply not present (they are
stored in a compiled version only), you don’t have to worry about someone stealing or even modify-
ing your designs and code. An .accde file is also good for distributing your work in environments
where you don’t want the user to change your designs.

Because of these restrictions, it may not be possible to distribute your application as an .accde
file. For example, if your application creates forms at runtime, you would not be able to distribute
the database as an .accde file.

You have no way to convert an .accde file back into a normal database file. Therefore,
always save and keep a copy of the original database! When you need to make changes

to the application, you must open the normal database and then create a new .accde file before dis-
tribution. If you delete your original database, you will be unable to access any of your objects in
Design View.

To create an .accde file, follow these steps:

1. Save and close all the database objects.

If you don’t close these objects, Access attempts to close them for you, prompting you to
save changes where applicable. When working with a shared database, all users must
close the database; Access needs exclusive rights to work with the database.

CAUTION CAUTION

TIPTIP

828

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 828

2. Select the Make ACCDE command from the Database Tools group of the Database
Tools ribbon (see Figure 26-3).

The Save As dialog box appears.

FIGURE 26-3

Use the Make ACCDE command on the Database Tools ribbon to create an .accde file.

3. In the Save As dialog box, specify a name, drive, and folder for the database.

Don’t attempt to save the .accde file with the same filename (including the filename
extension) as the original database.

Don’t delete or overwrite your original database! As stated previously, you have no way
to convert an .accde file to a normal database, and you can’t edit any objects in an

.accde file. If you delete or otherwise lose your original database, you will never again be able to
access any of the objects in the design environment.

You can create an .accde file only if you first convert the database into the Access
2007 format. If the file is in an Access 2002-2003 format, you can create an .mde file —

the Access 2002-2003 equivalent.

Understanding the Compiled State
Understanding how Access performs Compile on Demand is critical to achieving maximum per-
formance from your Access application. However, it is also paramount that you understand what
compilation is and what it means for an application to be in a compiled state.

Access has two types of code — code that you write and code that Access can understand and exe-
cute. Before VBA procedure that you have written can be executed, the code must be run through a
compiler to generate code in a form that Access understands — compiled code.

Access lacks a true compiler and instead uses partially compiled code and an interpreter. A true
compiler converts source code to machine-level instructions, which are executed by your computer’s
CPU. Access converts your source code to an intermediate state that it can rapidly interpret and exe-
cute. The code in the converted form is known as compiled code, or as being in a compiled state.

NOTENOTE

CAUTION CAUTION

829

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 829

If a procedure is called that isn’t in a compiled state, the procedure must be compiled and the com-
piled code passed to the interpreter for execution. In reality, as previously stated, this doesn’t
happen at the procedure level, but at the module level. When you call a procedure, the module
containing the procedure and all modules that have procedures referenced in the called procedure
are loaded and compiled. You can manually compile your code, or you can let Access compile it
for you on the fly. It takes time to compile the code, however, so the performance of your applica-
tion suffers if you let Access compile it on the fly.

In addition to the time required for Access to compile your code at runtime, uncompiled programs
use considerably more memory than compiled code does. When your application is completely
compiled, only the compiled code is loaded into memory when a procedure is called. If you run
an application that is in a decompiled state, Access loads the decompiled code and generates the
compiled code as needed (explained previously). Access does not unload the decompiled code as
it compiles, so you are left with two versions of the same code in memory.

Even on computers with large amounts of installed memory, loading both the compiled and
uncompiled versions of modules takes more time than loading compiled modules alone.

There is one drawback to compiled applications: They use more hard drive space than their
decompiled versions. This is because both the compiled and decompiled versions of the code are
stored on the hard drive.

Hard drive space shouldn’t often become a problem, but if you have an application with an enor-
mous amount of code, you can save hard drive space by keeping it in a decompiled state. Remember
that a trade-off is made between hard drive space used and the performance of your database. Most
often, when given the choice, a user would rather give up a few megabytes of hard drive space in
exchange for faster applications.

You can use this space-saving technique to your advantage if you need to distribute a
large application and your recipients have a full development version of Access. By dis-

tributing the uncompiled versions, you need much less hard drive space to distribute the application,
and the end users can compile it again at their location. If you are going to do this, you should put
the entire application into a decompiled state. The topic of fully decompiling an application is dis-
cussed later in this chapter.

Putting your application’s code into a compiled state
You have only one way to put your entire application into a compiled state: Use the Compile
[Database Name] menu item from the Debug menu on the Modules toolbar in the VBA editor win-
dow (see Figure 26-4). You must have a module open to access the Debug menu. Generally, you
should always use the Compile [Database Name] command to ensure that all of the code is saved in
a compiled state. Complex applications may take a long time to compile, and in general, you may
choose to compile your Access projects only before distributing to end users or before performing
benchmark tests.

TIPTIP

830

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 830

FIGURE 26-4

Compile [Database Name] (in this example, Chapter 38) is the only way to fully compile your application.

When you use the Compile option in the Debug menu, you see the name of your proj-
ect. This is the name that you used to save your database file the first time that it was

created or saved. If you later rename the database file, the project name doesn’t change. You can
change it by opening the Tools menu in the module window and selecting the current project name
with the word Properties beside it.

Access 2007 has a Background Compile option. Figure 26-1 shows this option under Compile on
Demand — the default value for this option is True (selected). This option tells Access to compile
code in the background rather than to compile it all at one time.

It is especially important to close your application after performing a Compile
[Database Name]. To compile all of your modules, Access needs to load every single

one of them into memory. All this code stays in memory until you close Access.

Losing the compiled state
One of the greatest roadblocks to increasing the performance of Access applications was the fact
that an application could be uncompiled very easily. When the Access application was in an
uncompiled state, Access had to constantly compile code as it was called. In fact, losing the com-
piled state was so easy to do in previous versions of Access that it would often happen without
developers even realizing that they had done it.

In Access 2007, only portions of code affected by certain changes are put into an uncompiled
state — not the entire application. By itself, this is a tremendous improvement over previous ver-
sions of Access.

The following actions cause portions of your code to be uncompiled:

n Modifying a form, report, control, or module. (If you don’t save the modified object, your
application is preserved in its previous state.)

TIPTIP

NOTENOTE

831

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 831

n Adding a new form, report, control, or module (including adding new code behind a form).

n Deleting or renaming a form, report, control, or module.

n Adding or removing a reference to an object library or database by using the References
command on the Tools menu.

Okay, so you think that you have a handle on code that loses its compiled state? Well, here are a
couple of gotchas to consider:

n If you modify objects — such as reports or forms — at runtime through VBA code, por-
tions of your application are put into an uncompiled state when the objects are modified.
(Wizards often do this.)

n If your application creates objects like reports or forms on the fly, portions of your appli-
cation are put into an uncompiled state when the objects are created. (Wizards often do
this as well.)

When you change a project name (but not the filename), the entire application loses its
compiled state. Because of this, you should change the project name only if absolutely

necessary, and you should compile your database immediately after changing the project name.

Distributing applications in a compiled
or uncompiled state
When distributing your Access application, you need to take into consideration a couple of issues
concerning compilation.

Distributing source code for your application
First and foremost, if you distribute source code and allow your users access to modify or add
objects, you must make them completely aware of the compilation issues. If your users don’t fully
comprehend what is happening with your application’s compiled state, you can be sure that you
will receive phone calls about how your program seems to be getting slower the more that users
make changes to objects.

Putting an application in an uncompiled state
If your application is the type that will be constantly changing its compiled state (due to creating
forms and reports dynamically), or if end users will be making modifications to the application’s
objects often, or if distributed file size is an issue, you may want to consider distributing the data-
base in a fully uncompiled state.

To put your entire application into an uncompiled state, follow these steps:

1. Create a new database.

2. Import all of your application objects into the new database.

3. Compact the new database.

CAUTION CAUTION

832

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 832

Later in this chapter, you also learn how to decompile the project manually. This has
more benefits than simply letting the project become partially or completely uncompiled.

Organizing commonly used code that is never modified into a library
After your application is finished and ready for distribution, you may want to consider placing all
commonly used code that will never be modified by an end user into a library database. A library
database is an external database that your application database can reference and access. You will
incur slight overhead by calling code from the library rather than by accessing it directly in the par-
ent application, but the benefit is that the library code will never be put into a decompiled state —
even if your application creates or modifies objects on the fly or if your users add new objects or
modify existing objects. This technique can greatly increase an application’s performance and keep
the performance relatively consistent over time. Chapter 33 discusses the process of creating
Access libraries.

The first step for referencing procedures in an external database is to create the external database
with all its modules, just as you would do in an ordinary Access database.

Any procedures that you declare as Private are not made available to the calling appli-
cation, so plan carefully what you want to expose (declare as Public) and don’t want to

expose to other databases.

After you create the database and its modules, you must create a reference to that database in your
application database (which is the database that your users will run). To create a reference, first
open any module in your application in the VBA editor. With a module open in Design View, a
new command — References — is available from the Tools menu (see Figure 26-5). Select Tools ➪

References to access the References dialog box (see Figure 26-6).

FIGURE 26-5

The References option appears on the Tools menu only when you have a module open and selected in
Design View.

CAUTION CAUTION

CROSS-REFCROSS-REF

833

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 833

FIGURE 26-6

The References dialog box is where you resolve references to OLE automation servers and Access library
databases.

In the References dialog box, you specify all the references that your application needs for using
OLE automation or for using other Access databases as library databases. When making a reference
to another Access database, as opposed to an OLE server created with another development tool
like Visual Basic, you probably need to browse for the database. Use the Browse dialog box as if
you were going to open the external database. After you have selected the external Access database,
it shows up in the References dialog box with a selected check box to indicate that it is referenced.

To remove a reference, access the References dialog box again and deselect the referenced item by
clicking its check box. After you have made all the references that you need to make, click OK.

After a database is referenced, you can call the procedures in the referenced database as if they
existed in your application database. No matter what happens in your application database to
cause code to decompile, the referenced database always stays in a compiled state unless it is
directly opened in Access and modified.

To reference an external Access database to call its procedures, follow these steps:

1. Create the library database and its modules.

2. Open the database in which you want to use the external procedures.

3. Open any module in Design View.

4. Select Tools ➪ References.

5. Select the OLE server that you want to register.

If it is an Access database, you probably need to use the Browse feature to locate it.

834

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 834

If your application uses add-in databases (a special type of library database), you should
open the add-in database for read-only access. Opening add-ins for read-only access

increases performance because Jet doesn’t have to maintain locking information for the add-in data-
base in an .laccdb file.

Creating a library reference for distributed applications
If you are distributing your application, references stay in tact only if the calling database and the
library database are in the same or relative path. For example, if the main database is in C:\myapp
on your machine, and if the library database is in C:\myapp\library, the reference remains
intact if the library database is located in the same relative path, such as in C:\newdir for the
main database and C:\newdir\library for the library database. If the relative path won’t
remain consistent upon distribution, your application’s users must manually add the reference or
you must create the reference with VBA code.

The following procedure creates a reference to the file whose name is passed to it. For this function
to work, the full filename with path must be passed:

bResult = CreateReference(“C:\My Documents\MyLib.accdb”).

The function is:

Public Function CreateReference(strFileName As String) _
As Boolean

Dim ref As Reference
On Error GoTo HandleError
Set ref = References.AddFromFile(strFileName)
CreateReference = True

ExitHere:
Exit Function

HandleError:
MsgBox Err & “: “ & Err.Description
CreateReference = False
Resume ExitHere

End Function

You can verify that a reference is set by using the ReferenceFromFile function. To
verify a reference, pass the function, the full path, and the filename like this:

bResult = _
ReferenceFromFile(“C:\Windows\System32\mscal.ocx”)

The function returns True if the reference is valid and False if it isn’t.

TIPTIP

TIPTIP

835

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 835

With the References collection, the primary concern of using and distributing libraries — losing
references upon distribution — is now gone. However, library databases still have one major draw-
back: Access doesn’t support circular references. This means that the code in your library databases
can’t reference variables or call procedures that exist in your parent database.

Whether you distribute your application as one database or as a primary database that uses library
databases, if your applications are static (meaning that they don’t allow modification of objects by
end users or wizards, and don’t perform object modifications on themselves) you should always
distribute the databases in a fully compiled state so that your users experience the highest possible
level of performance.

Improving Absolute Speed
When discussing an application’s performance, the word performance is usually synonymous with
speed. You will find two types of speed in software development — absolute and perceived. Absolute
speed refers to the actual speed at which your application performs a function, such as how long it
takes to run a certain query. Perceived speed is the phenomenon of an end user actually perceiving
one application to be faster than another application, even though it may indeed be slower. This
phenomenon of perceived speed is often a direct result of visual feedback provided to the user while
the application is performing a task. Absolute speed items can be measured in units of time; per-
ceived speed can’t be measured in this manner.

Of course, some of the most important items for increasing actual speed are the following:

n Keeping your application in a compiled state

n Organizing your procedures into “smart” modules

n Opening databases exclusively

n Compacting your databases regularly

Opening a database exclusively
You should always open a database exclusively in a single-user environment. If your application is
a standalone application (meaning that nothing is shared over a network), opening the database in
exclusive mode can really boost performance. If your application is run on a network and shared
by multiple users, you won’t be able to open the database exclusively. (Actually, the first user can
open it exclusively, but if he does, no other user can access the database until the first user closes
it.) The preferred method for running an application in a network environment is to run Access
and the main code .accdb file locally, and then link to a shared database containing the data on
the server. If your application is used in this manner, you can open and run the code database
exclusively, but you can’t use exclusive links to the shared data.

To open a database exclusively in Access 2007, click the Open button down arrow and select Open
Exclusive in the Open Database dialog box (see Figure 26-7).

836

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 836

FIGURE 26-7

Select the Open Exclusive button on the Open button pull-down to open a database in a single-user envi-
ronment to increase the performance of the database.

Click the Microsoft Office button and select Access Options; then click the Advanced
tab. Under the Advanced section, change the Default open mode to Exclusive if you

always want to open a database exclusively. The default open mode is Shared.

Compacting a database
Another often-overlooked way of maximizing your database’s performance is to compact your
database regularly. When records are deleted from a database, the hard drive space that held the
deleted data is not recovered until a compact is performed. In addition, a database becomes frag-
mented as data is modified in the database. Compacting a database defragments the database and
recovers used hard drive space.

All the preceding methods are excellent (and necessary) ways to help keep your applications run-
ning at their optimum performance level, but these are not the only tasks that you can perform to
increase the absolute speed of your application. Almost every area of development, from forms to
modules, can be optimized to give your application maximum absolute speed.

If you use Jet as your data access engine, an Access application can run only so fast. With Jet, each
time you open a table, run a query, or perform an operation on data, all the data referenced by the
process or query must be moved from the data database (assuming that you have split your pro-
gram and data database files) to the computer that’s running the program. This means that you
may be moving a lot of data across your network. This is simply not fast. An Access project that’s
using the Microsoft SQL Server Desktop Engine (MSDE 2000) or SQL Server 2005 Express Edition
can use stored procedures to minimize network traffic and can drastically speed up applications
with large data databases. If you are working with large amounts of data, consider writing the
application using SQL Server as your back-end database file.

TIPTIP

837

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 837

Tuning your system
One important aspect of performance has nothing to do with the actual application design — that
is, the computer on which the application is running. Even though it’s impossible to account for all
the various configurations your clients may have, you can do some things for your computer and
recommend that end users do them for theirs:

n Equip the computer with as much RAM as possible. This step often becomes an issue of
dollars. However, RAM prices continue to decrease, and adding to a computer’s RAM is
one of the most effective methods that you can employ to increase the speed of Access.

n Don’t use wallpaper. Removing a standard Windows wallpaper background can free up
anywhere from 25K to 250K of RAM, and removing complicated bitmaps or high-color
bitmaps can free up even more space.

n Close all applications that aren’t being used. Windows makes it very handy to keep as
many applications loaded as you want — on the odd chance that you may need to use
one of them. Although Windows XP and Windows Vista are pretty good at handling
memory for multiple open applications, each running application still uses RAM. On
machines with little RAM, unnecessary open applications can significantly degrade
performance.

n Make sure that your Windows swap file is on a fast drive with plenty of free space. If pos-
sible, you should also set the minimum hard drive space available for virtual memory to
at least twice the physical RAM installed and make it a permanent swap file.

n Defragment your hard drive often. Defragmenting a hard drive allows data to be retrieved
from the drive in larger sections, thus causing fewer direct reads and less repositioning of
the read heads.

Getting the most from your tables
In addition to reviewing all the technical issues discussed in the preceding sections, it is advanta-
geous to get back to the basics when designing your applications. Tools like Access enable novices
to create relational databases quickly and easily, but they don’t teach good database design tech-
niques in the process. An exception to this statement is the Table Analyzer Wizard. However, even
though the Table Analyzer Wizard offers suggestions that are often helpful in learning good design
technique, its recommendations should never be taken as gospel. The Table Analyzer has proven to
be wrong on many occasions. Click the ribbon’s Database Tools tab, then click the Analyze Table
command in the Analyze group to start the Table Analyzer Wizard.

Entire volumes of text have been devoted to the subject of database theory. Teaching database
theory is certainly beyond the scope of this chapter (or even this book). However, you should be
familiar with many basics of good database design.

838

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 838

Creating efficient indexes
Indexes help Access find and sort records faster and more efficiently. Think of these indexes as if
they were book indexes. To find data, Access looks up the location of the data in the index and
then retrieves the data from its location. You can create indexes based on a single field or on multi-
ple fields. Multiple-field indexes enable you to distinguish between records in which the first field
may have the same value. If they are defined properly, multiple-field indexes can be used by
Microsoft’s Rushmore query optimization, which is the technology that Jet uses to optimize the
speed at which queries execute, based on the search and sort fields of the queries and indexes of
the tables included in the queries.

Deciding which fields to index
People new to database development typically make two mistakes: First, not using indexes and, sec-
ond, using too many indexes (usually putting them on every field in a table). Both of these mistakes
are serious — sometimes a table with indexes on every field may give slower performance than a
table with no indexes. Why? When a record is saved, Access must also save an index entry for each
defined index. This can take time and use a considerable amount of hard drive space. The time used
is rarely noticed in the case of a few indexes, but many indexes can require a huge amount of time
for record saves and updates. In addition, indexes can slow some action queries (such as append
queries) when the indexes for many fields need to be added or updated while performing the
query’s operations. Figure 26-8 shows the index property sheet for a sample tblContacts table.

FIGURE 26-8

Note that common search fields like ZipCode, CustomerType, and TaxLocation are indexed.

When you create a primary key for a table, the field (or fields) used to define the key is automati-
cally indexed, and you can index any field unless the field’s data type is Memo or OLE Object. You
should consider indexing a field if all the following factors apply:

n The field’s data type is Text, Number, Currency, or Date/Time.

n You anticipate searching for values stored in the field.

n You anticipate sorting records based on the values in the field.

839

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 839

n You will join the field to fields in other tables in queries.

n You anticipate storing many different values in the field. (If many of the values in the field
are the same, the index may not significantly speed up searches or sorting.)

When defining an index, you have the option of creating an ascending (the default) or a descend-
ing index.

Jet can use a descending index when optimizing queries only when the equal sign (=)
operator is used. If you use an operator other than the equal sign, such as <, >, <=, or

>=, Jet can’t use the descending index. If you plan on using operators other than an equal sign on an
index, you should define the index as an ascending index.

Using multiple-field indexes
When frequently searching or sorting by multiple fields at the same time, you can create an index
on the combined fields. For example, if you often set criteria for LastName and FirstName
fields in the same query, it makes sense to create a multiple-field index on both fields.

When sorting a table by a multiple-field index, Access first sorts by the first field defined for the
index. If the first field contains records with duplicate values, Access then sorts by the second field
defined for the index, and so on. This creates a drill-down effect. For a multiple-field index to
work, a search criterion must be defined for the first field in the index, but not for additional fields
in the index. In the preceding example, if you wanted to search for someone with the first name
Robert, but you didn’t specify a last name to use in the search, the second field in the index would-
n’t be used. If you need to perform searches on the second field in a multiple-field index, but are
not always specifying criteria for the first field in the index, you should create an index for the sec-
ond field in addition to the multiple-field index.

Continuing with the LastName, FirstName index: To search for the first name John, the multiple-
field index wouldn’t be used because you would be attempting to search only on the second field in
the index.

Getting the most from your queries
The performance problems of many Access applications result from query design. Database appli-
cations are all about looking at and working with data, and queries are the heart of determining
what data to look at or work with. Queries are used to bind forms and reports, fill list boxes and
combo boxes, make new tables, and many other functions within an Access application. Because
they are so widely used, it is extremely important to optimize your queries. A query that is prop-
erly designed can provide results minutes to hours faster than a poorly designed query that returns
the same result set. Consider the following:

n When designing queries and tables, you should create indexes for all fields that are used
in sorts, joins, and criteria fields. Indexes enable Jet to quickly sort and search through
your database.

TIPTIP

840

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 840

Sorting and searching is much faster if the indexes are unique rather than nonunique.
Also, if you are using conditions in your queries, queries can run faster if the index is

based on ascending order (as opposed to reverse, z to a, or descending order).

n When possible, use a primary key in place of a regular index when creating joins.
Primary keys don’t allow nulls and give the Rushmore query optimizer more ways to use
the joins.

n Limit the columns of data returned in a select query to only those you need. If you don’t
need the information from a field, don’t return it in the query. Queries run much faster
when they return less information.

If you need to use a field for a query condition and it isn’t necessary to display the field
in the results table, deselect the View check box to suppress displaying the field and its

contents.

n When you need to return a count of the records returned by an SQL statement, use
Count(*) instead of Count([FieldName]) because Count(*) is considerably faster.
Count(*) counts records that contain null fields; Count([FieldName]) checks for
nulls and disqualifies them from being counted. If you specify a field name instead of
using the asterisk, Count doesn’t count records that have a null in the specified field.

You may also replace FieldName with an expression, but this slows down the function
even further.

n Avoid using calculated fields in nested queries. A calculated field in a subordinate query
considerably slows down the top-level query. You should use calculated fields only in
top-level queries, and even then, only when necessary.

n When you need to group records by the values of a field used in a join, specify the
Group By for the field that is in the same table that you are totaling. You can drag the
joined field from either table, but using Group By on the field from the table that you
are totaling yields faster results.

n Domain aggregate functions, such as DLookup or DCount, that are used as expressions
in queries slow down the queries considerably. Instead, you should add the table to the
query or use a subquery to return the information that you need.

n As with VBA code modules, queries are compiled. To compile a query, Jet’s Rushmore
query optimizer evaluates the query to determine the fastest way to execute the query. If
a query is saved in a compiled state, it runs at its fastest speed the first time that you exe-
cute it. If it isn’t compiled, it takes longer the first time that it executes because it must be
compiled, but it then runs faster in succeeding executions. To compile a query, run the
query by opening it in Datasheet View and then close the query without saving it. If you
make changes to the query definition, run the query again after saving your changes and
then close it without saving it.

n If you really want to squeeze the most out of your queries, experiment by creating your
queries in different ways (such as specifying different types of joins). You will be surprised
at the varying results.

TIPTIP

TIPTIP

TIPTIP

841

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 841

Getting the most from your forms and reports
Forms and reports can slow an application by taking a long time to load or process information.
You can perform a number of tasks to increase the performance of forms and reports.

Minimizing form and report complexity and size
One of the key elements to achieving better performance from your forms and reports is reducing
their complexity and size. Try these methods to reduce a form’s or report’s complexity and size:

n Minimize the number of objects on a form or report. The fewer objects used, the fewer
resources needed to display and process the form or report.

n Reduce the use of subforms. When a subform is loaded, two forms are in memory — the
parent form and the subform. Use a list box or a combo box in place of a subform when-
ever possible.

n Use labels instead of text boxes for hidden fields because text boxes use more resources
than labels do. Hidden fields are often used as an alternative to creating variables to store
information.

You can’t write a value directly to a label like you can to a text box, but you can write
to the labels caption property using VBA like this: Label1.Caption = “MyValue”.

n Move some code from a form’s module into a standard module. This enables the form to
load faster because the code doesn’t need to be loaded into memory. If the procedures
that you move to a normal module are referenced by any procedures executed upon load-
ing a form (such as in the form load event), moving the procedures won’t help because
they are loaded anyway as part of the potential call tree of the executed procedure.

n Don’t overlap controls on a form or report.

n Place related groups of controls on form pages. If only one page is shown at a time,
Access doesn’t need to generate all of the controls at the same time.

n Use a query that returns a limited result set for a form’s or report’s RecordSource rather
than use a table or underlying query that uses tables. The less data returned for the
RecordSource, the faster the form or report loads. In addition, return only those fields
actually used by the form or report. Don’t use a query that gathers fields that won’t be
displayed on the form or report (except for a conditional check).

Using bitmaps on forms and reports
Bitmaps on forms and reports make an application look attractive and can also help convey the
purpose of the form or report (as in a wizard). However, graphics are always resource-intensive,
so you should use the fewest possible number of graphic objects on your forms and reports. This
helps to minimize form and report load time, increase print speed, and reduce the resources used
by your application.

TIPTIP

842

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 842

Often you will display pictures that a user never changes and that are not bound to a database.
Examples of such pictures include your company logo on a switchboard or static images in a wiz-
ard. When you want to display images like these, you have two choices:

n Use an Unbound Object Frame.

n Use an Image control.

If the image will never change and if you don’t need to activate it in a form’s Design View, use an
Image control. Image controls use fewer resources and display faster. If you need the image to be a
linked or embedded OLE object that you can edit, use an Unbound Object Frame. You can convert
OLE images in Unbound Object Frames.

If you have an image in an Unbound Object Frame that you no longer need to edit, you
can convert the Unbound Object Frame to an Image control by right-clicking the con-

trol and selecting Change To ➪ Image from the pop-up menu.

When you have forms that contain unbound OLE objects, you should close the forms
when they are not in use to free up resources. Also avoid using bitmaps with many

colors — they take considerably more resources and are slower to paint than a bitmap of the same
size with fewer colors.

If you want to display an Unbound OLE object but don’t want the user to be able to activate it, set
its Enabled property to False.

Speeding up list boxes and combo boxes
It’s important to pay attention to list boxes and combo boxes when optimizing your application.
You can take a number of steps to make your combo boxes and list boxes run faster:

n When using multipage forms that have list boxes or combo boxes on more than one
page, don’t set the RowSource of the list boxes or combo boxes until the actual page
containing the control is displayed.

n Index the first field displayed in a list box or combo box. This enables Access to find
entries that match text entered by the user much faster.

n Although it’s not always practical, try to refrain from hiding a combo box’s bound col-
umn. Hiding the bound column causes the control’s searching features to slow down
considerably.

n If you don’t need the search capabilities of AutoExpand, set the AutoExpand property of
a combo box to No. Access is then relieved of the task of constantly searching the list for
entries matching text entered in the text portion of the combo box.

n When possible, make the first nonhidden column in a combo or list box a text data type,
and not a numeric one. To find a match in the list of a combo box or list box, Access
must convert a numeric value to text to do the character-by-character match. If the data
type is text, Access can skip the conversion step.

TIPTIP

TIPTIP

843

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 843

n Often overlooked is the performance gain achieved by using saved queries for
RecordSource and RowSource properties of list boxes and combo boxes. A saved
query gives much better performance than an SQL SELECT statement because an SQL
query is optimized by Rushmore on the fly.

You will find one problem with combo boxes present in Access 2007, which poses a per-
formance concern. Because Access 2007 supports hyperlinks, Access has to perform

some additional work when first painting a combo box; it needs to determine the data type of the
combo box.

The result is that the combo box takes a little longer to paint — up to a couple of seconds on some
computers. If your combo box is a bound combo box, this isn’t a problem because Access gets the
data type from the ControlSource’s data type. In addition, if you save a RowSource for the combo
box when you save the form, Access determines the data type from the RowSource and doesn’t need
to determine the data type at runtime. The only time that this paint delay is an issue is when you have
an unbound combo box that has its RowSource set programmatically. When this is the case, the
combo box takes slightly longer to paint the first time it is displayed.

Getting the most from your modules
Perhaps the area where you’ll be able to use smart optimization techniques most frequently is in
your modules. For example, in code behind forms, you should use the Me keyword when referenc-
ing controls. This approach takes advantage of the capabilities of Access 2007; using Me is faster
than creating a form variable and referencing the form in the variable. Other optimization tech-
niques are simply smart coding practices that have been around for many years. You should try to
use the optimum coding technique at all times. When in doubt, try different methods to accom-
plish a task and see which one is fastest.

Consider reducing the number of modules and procedures in your application by consoli-
dating them whenever possible. A small memory overhead is incurred for each module

and procedure that you use, so consolidating them may free up some memory.

Using appropriate data types
You should always explicitly declare variables using the Dim function rather than arbitrarily assign
values to variables that haven’t been dimmed. To make sure that all variables in your application are
explicitly declared before they are used in a procedure, while in the VBA development environment,
select Tools ➪ Options, choose the Editor tab, and then set the Require Variable Declarations option
on the tab (second from the top in the Code settings section).

Use integers and long integers rather than singles and doubles when possible. Integers and long
integers use less memory, and they take less time to process than singles and doubles do. Table
26-1 shows the relative speed of the different data types available in Access.

TIPTIP

TIPTIP

844

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 844

TABLE 26-1

Data Types and Their Mathematical Processing Speed

Data Type Relative Processing Speed

Integer/Long Fastest

Single/Double Next to Fastest

Currency Next to Slowest

Variant Slowest

In addition to using integers and long integers whenever possible, you should also use integer
math rather than precision math when applicable. For example, to divide one long integer by
another long integer, you can use the following statement:

x = Long1 / Long2

This statement is a standard math function that uses floating-point math. You can perform the
same function by using integer math (notice that the mathematical sign is the regular slash versus
the backward slash) with the following statement:

x = Long1 \ Long2

Of course, integer math isn’t always applicable. It is, however, commonly applied when returning a
percentage. For example, you can return a percentage with the following precision math formula:

x = Total / Value

However, you can perform the same function using integer math by first multiplying the Total by
100 and then using integer math like this:

x = (Total * 100) \ Value

You should also use string functions ($) where applicable. When you are manipulating variables
that are of type String, use the string functions (for example, Str$()) as opposed to their variant
counterparts (Str()). If you are working with variants, use the non-$ functions. Using string
functions when working with strings is faster because Access doesn’t need to perform type conver-
sions on the variables.

When you need to return a substring by using Mid$(), you can omit the third parameter to have
the entire length of the string returned. For example, to return a substring that starts at the second
character of a string and returns all remaining characters, use a statement like this:

strReturn = Mid$(strMyString, 2)

845

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 845

When using arrays, use dynamic arrays with the Erase and ReDim statements to reclaim memory.
By dynamically adjusting the size of the arrays, you can ensure that only the amount of memory
needed for the array is allocated.

In addition to using optimized variables, consider using constants when applicable.
Constants can make your code much easier to read and won’t slow your application if

you compile your code before executing it.

Writing faster routines
You can make your procedures faster by optimizing the routines that they contain in a number of
ways. If you keep performance issues in mind as you develop, you will be able to find and take
advantage of situations like the ones discussed here.

Some Access functions perform similar processes but vary greatly in the time that they take to
execute. You probably use one or more of these regularly, and knowing the most efficient way to
perform these routines can greatly affect your application’s speed:

n For/Next statements are normally faster than Select Case statements are. They tend
to process less logic.

n The IIF() function is much slower than a standard set of If/Then/Else statements is.

n The With and For Each functions accelerate manipulating multiple objects and/or their
properties.

n Change a variable with Not instead of using an If . . . Then statement. (For example,
use x = Not(y) instead of If y = true then x= false.)

n Instead of comparing a variable to the value True, use the value of the variable. (For
example, instead of saying If X = True then . . ., say If X then . . .)

n Use the Requery method instead of the Requery action. The method is significantly
faster than the action.

n When using OLE automation, resolve references when your application is compiled
rather than at runtime by using the GetObject or CreateObject functions.

Using control variables
When referencing controls on a form in code, there are some very slow ways and some very fast
ways to use references to form objects. The slowest possible way is to reference each control explic-
itly. This requires Access to search for the form name sequentially, starting with the first form name
in the database and continuing until it finds the form name in the forms list (msysObjects
table). If the form name starts with a z, this can take a long time if the database contains many
forms. For example:

Forms![frmSales]![SaleDate] = something
Forms![frmSales]![InvoiceDate] = something
Forms![frmSales]![SalespersonID] = something

TIPTIP

846

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 846

If the code is in a class module behind the frmSales form, you can use the Me reference. The Me
reference refers to the open object (forms or reports) and substitutes for Forms![formname].
This is a much faster method because it can go right to the form name. For example:

Me![SaleDate] = something
Me![InvoiceDate] = something
Me![SalespersonID] = something

If your code is not stored behind the form but is in a module procedure, you can use a control
variable like the following:

Dim frm as Form
set frm = Forms![frmSales]
frm![SaleDate] = something
frm![InvoiceDate] = something
frm![SalespersonID] = something

This way, the form name is looked up only once. An even faster way is to use the With construct.
For example:

With Forms![frmSales]
![SaleDate] = something
![InvoiceDate] = something
![SalespersonID] = something

End With

You can then reference the variable rather than the actual control. Of course, if you don’t need to
set values in the control but rather use values from a control, you should simply create a variable
to contain the value rather than the reference to the control.

Using field variables
The preceding technique also applies to manipulating field data when working with a recordset in
VBA code. For example, you may ordinarily have a loop that does something like this:

...
Do Until tbl.EOF
MyTotal = MyTotal + tbl![OrderTotal]
tbl.MoveNext

Loop

If this routine loops through many records, you should use the following code snippet instead:

Dim MyField as Field
...
Set MyField = tbl![OrderTotal]
Do Until tbl.EOF
MyTotal = MyTotal + MyField
tbl.MoveNext

Loop

847

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 847

The preceding code executes much faster than code that explicitly references the field in every iter-
ation of the loop.

Increasing the speed of finding data in code
Use the FindRecord and FindNext methods on indexed fields. These methods are much more
efficient when used on a field that is indexed. Also, take advantage of bookmarks when you can.
Returning to a bookmark is much faster than performing a Find method to locate the data.

The procedure shown in Listing 26-1 is an example of using a bookmark. Bookmark variables must
always be dimmed as variants, and you can create multiple bookmarks by dimming multiple variant
variables. The following code opens the tblCustomers table, moves to the first record in the data-
base, sets the bookmark for the current (first) record, moves to the last record, and finally repositions
back to the bookmarked record. For each step, the debug.print command is used to show the rel-
ative position in the database as evidence that the current record changes from record to record.

LISTING 26-1

Using a Bookmark to Mark a Record

Public Sub BookmarkExample()

Dim rs As Recordset
Dim bk As Variant

Set rs = Workspaces(0).Databases(0).OpenRecordset(_
“tblContacts”, dbOpenTable)

‘Move to the first record in the database:
rs.MoveFirst

‘Print the position in the database:
Debug.Print rs.PercentPosition

‘Set the bookmark to the current record:
bk = rs.Bookmark

‘Move to the last record in the database:
rs.MoveLast

‘Print the position in the database:
Debug.Print rs.PercentPosition

‘Move to the bookmarked record:
rs.Bookmark = bk

‘Print the position in the database:
Debug.Print rs.PercentPosition

848

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 848

rs.Close
Set rs = Nothing

End Sub

Eliminating dead code and unused variables
Before distributing your application, remove any dead code — code that is not used at all — from
your application. You will often find entire procedures, or even modules, that once served a pur-
pose but are no longer called. In addition, it isn’t uncommon to leave variable declarations in code
after all code that actually uses the variables has been removed. By eliminating dead code and
unused variables, you reduce the amount of memory your application uses and the amount of time
required to compile code at runtime.

Although it isn’t easy and is often impractical, removing large numbers of comments
from your code can decrease the amount of memory used by your application.

Other things that you can do to increase the speed of your modules include opening any add-ins
that your application uses for read-only access and replacing procedure calls within loops with in-
line code. Also, don’t forget one of the most important items: Deliver your applications with the
modules compiled.

Increasing Network performance
The single most important action that you can take to make sure that your networkable applica-
tions run at their peak performance is to run Access and the application database on the worksta-
tion and link to the shared network database. Running Access over the network is much slower
than running it locally.

Improving Perceived Speed
Perceived speed is how fast your application appears to run to the end user. Many techniques can
increase the perceived speed of your applications. Perceived speed usually involves supplying
visual feedback to the user while the computer is busy performing some operation, such as con-
stantly updating a percent meter when Access is busy processing data.

Using a splash screen
Most professional Windows programs employ a splash screen, as shown in Figure 26-9. Most peo-
ple think that the splash screen is simply to show the product’s name and copyright information
and the registered user’s information, but this isn’t entirely correct. The splash screen greatly con-
tributes to the perceived speed of an application. It shows the user that something is happening,
and it gives users something to look at (and hence occupy their time) for a few seconds while the
rest of the application loads.

TIPTIP

849

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 849

In large applications, you may even display a series of splash screens with different
information, such as helpful hints, instructions on how to use the product, or even

advertisements. These are known as billboards.

FIGURE 26-9

A splash screen to display product and version information

To create a splash screen, create a basic form with appropriate data, such as your application infor-
mation, logo, and registration information. Then set this form as the Display Form in the Current
Database options. Setting the form as the Display Form ensures that the splash screen is the first
form to be loaded. You then want to call any initialization procedures from the On Open event of
the splash form. A good splash screen should automatically disappear after a few seconds. To make
this happen, use the timer event. Chapter26.accdb contains a simple splash screen named
frmSplashScreen to help get you started and includes some simple code to initialize the timer
and remove the form after a few seconds.

For more information on splash screens and setting Current Database options (including
the Display Form), see Chapter 35.

You need to remember a few issues when using splash screens:

n Never use custom controls in a start-up form. Custom controls take time to load and con-
sume resources.

n Minimize code in start-up forms. Use only code that is absolutely necessary to display
your start-up form and use a light form if possible.

n The start-up form should call only initialization procedures. Be careful about call trees; you
don’t want your start-up form to trigger the loading of many modules in your application.

CROSS-REFCROSS-REF

NOTENOTE

850

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/27/06 5:10 PM Page 850

Loading and keeping forms hidden
If you have forms that are displayed often, consider hiding them rather than closing them. To hide
a form, set its Visible property to False. When you need to display the form again, set its
Visible property back to True. Forms that remain loaded consume memory, but they display
more quickly than forms that must be loaded each time they are viewed. In addition, if you are
morphing a form or report (changing the way it looks by changing form and control properties),
keep the form hidden until all changes are made so that the user doesn’t have to watch the changes
take place.

Using the hourglass
When your application needs to perform a task that may take a while, use the hourglass. The hour-
glass mouse pointer shows the user that the computer is not locked up but is merely busy. To turn
on the hourglass cursor, use the Hourglass method like this:

DoCmd.Hourglass True

To turn the hourglass back to the default cursor, use the method like this:

DoCmd.Hourglass False

Using the built-in progress meter
In addition to using the hourglass, you should consider using the progress meter when performing
looping routines in a procedure. The progress meter gives constant visual feedback that your appli-
cation is busy, and it shows the user in no uncertain terms where it is in the current process.

Chapter26.accdb includes two types of progress meters. Using the standard
Microsoft Access progress meter that is displayed in the status bar creates the first type

that is discussed in this chapter. The other meter is a pop-up form that uses a colored rectangle to
show the progress of an activity.

The sample database file Chapter26.accdb contains a number of progress meter samples. Each
uses the progress meter a little differently but all run the same example. The example creates 50,000
records in a table named SampleData. Each of the examples uses a simple form with several text box
controls and a button to start the process. The basic progress meter form in Design View is shown in
the following figure. Each of the examples contains code to display either the built-in Access progress
meter or one within the pop-up form. Each contains a button to start the process, as well as two text
boxes to display the start time and end time of the process.

The following code demonstrates how to use the built-in progress meter in a loop to show the
meter starting at 0 percent and expanding to 100 percent, 1 percent at a time. The first example is
named ProgressMeterUsingBuiltInAccessMeter. This example doesn’t actually use the
text box in the sample progress meter form, but rather uses the progress meter built into Microsoft
Access that displays as a bar at the bottom-left corner of the screen in the status bar.

ON the CD-ROMON the CD-ROM

851

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 851

If you don’t display the status bar, you won’t see the built-in progress meter when
it runs.

The code to initialize, update, and remove the meter is shown in Figure 26-10.

FIGURE 26-10

Code to run the built-in progress meter

The first step for using the percent meter is initializing the meter. You initialize the meter by calling
the SysCmd function like this:

ReturnValue = SysCmd(acSysCmdInitMeter, “Creating Records”, lngCounter)

The acSysCmdInitMeter in this line is an Access constant that tells the function that you are
initializing the meter. The second parameter is the text that you want to appear to the left of the
meter. Finally, the last value is the maximum value of the meter (in this case, 100 percent). You
can set this value to anything that you want. For example, if you were iterating through a loop of
50,000 records, you may set this value to 50,000. Then you can pass the record count at any given
time to the SysCmd function; Access decides what percentage the meter shows as filled.

After the meter has been initialized, you can pass a value to it to update the meter. To update the
meter, you call the SysCmd function again and pass it the acSysCmdUpdateMeter constant and

CAUTION CAUTION

852

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 852

the new update meter value. Remember, the value that you pass to the function is not necessarily the
percent displayed by the meter. It can be the number of records processed or any number that when
divided by the initial counter provides a percentage from 1 to 100. For example, if 50,000 records are
being processed and the number 12,500 is passed to the meter, it will display 25 percent.

ReturnValue = SysCmd(acSysCmdUpdateMeter, i)

After all the records are processed, you want to remove the meter from the status bar. To do this,
use the following command. (There are no parameters to pass when you remove the meter.)

ReturnValue = SysCmd(acSysCmdRemoveMeter)

The progress meter displayed in the status bar is shown in Figure 26-11.

FIGURE 26-11

The progress meter displayed in the status bar

Creating a progress meter with a pop-up form
To run the sample progress meter that uses the pop-up form, open the form ProgressMeter
CallingEveryRecord and click the Search button. The progress meter form appears, and the
bar grows from 0 to 100 percent. This may take 15 to 20 seconds on a high-end machine, but a
little longer on a slower machine.

The Progress Meter form in progress is shown in Figure 26-12.

FIGURE 26-12

A graphical progress meter

This progress meter has some advantages over the standard Microsoft Access progress meter. The
progress meter that comes with Access uses the status bar to display the meter and isn’t always as

853

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 853

visible as you may want it to be. The pop-up progress meter pops up in the middle of the screen
and is immediately visible to the user. The meter that comes with Access, however, usually displays
faster because it requires less overhead to run, although with longer tasks the difference may not be
noticeable. The speed of the pop-up meter can be controlled by updating the meter every x per-
cent. Therefore, if the form meter is set for fast execution, it displays with speed comparable to
that of the built-in meter.

The progress meter form is created from a few simple controls, as shown in Figure 26-12. It con-
tains a rectangle control, two label controls, and option group controls. In Figure 26-12, you can
see that the rectangle is shown 10 percent completed. In reality, the width of the rectangle is
manipulated by the program that is used to display the meter’s progress. The width is reset to 0
when the progress meter starts, and it is slowly built back to its original length.

The code for the progress meter is also simple and shown in its entirety, including the three-line
function that is called in Figure 26-13.

FIGURE 26-13

The Progress Meter form call to the pop-up progress meter

854

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 854

The code that calls the meter is one simple line buried in the middle of the iteration loop. It calls the
display function by passing it the iteration number and total number of iterations expected. In this
example, i is the record number being processed and lngCounter is the expected 50,000 records.

SetPMeter i / lngCounter

The function SetPMeter consists of only three lines: one to display the rectangle and manipulate
its width, one to display the caption on the bar as it grows inside the rectangle in the form, and
one to repaint the screen each time so that the bar is animated.

Public Function SetPMeter(p As Single)
‘p is percent of total
Me.PMeterBar.Width = p * Me.PMeter.Width
Me.PMeterBar.caption = Format(p, “##%”)
Me.Repaint

End Function

Speeding up the progress meter display
This routine is called whenever you want to update the progress meter. You can decide when to do
this. Generally, you should call the progress meter only when it is likely to be updated. If you
know that you have 1000 records, you may call the meter every 10 records; if you have 10,000
records, you may call the meter every 100 records.

Although this code is simple, it is not the best option. In fact, because this code calls the progress
meter for every record, it is much slower than the built-in progress meter. A better approach is to
call the progress meter only once in a while. The following code can replace the call in the code
previously discussed:

If (i / lngCounter) * 100 = Int((i / lngCounter) * 100) Then
SetPMeter i / lngCounter

End If

The If statement checks to see whether the calculation of the completion percentage is an integer
(whole number). This calls the progress meter function (SetPMeter) that moves the progress
meter rectangle and displays the percentage completed. It is called only 100 times to move the rec-
tangle; even though the If statement is run 50,000 times, you may wonder why the If statement
is faster. The reality is that the If statement takes very few resources to process, but a function that
changes the width of a rectangle or control, writes to the screen, and then repaints the screen uses
a lot of resources — as evidenced by the time to process falling by 90 percent.

Follow these steps to integrate the Progress Meter into your application:

1. Import the Progress Meter form into your application.

2. Change the code behind the form to interact with your application.

855

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 855

Working with Large Program Databases
in Access 2007
When someone mentions large databases in Microsoft Access, they are generally thinking about a
database with tables that contain hundreds of thousands of data records. Though this can be con-
sidered to be a large database, another definition is a database that contains hundreds of objects —
tables, queries, forms, reports, and thousands of lines of VBA program code. Although you can
sometimes solve data performance problems by changing the back end from Jet to SQL Server, you
will probably have to deal with much more complex problems if you create applications with many
queries, forms, reports, and lots of VBA module code.

If your database has hundreds of objects, especially forms and reports, you may have run into
problems that cause your database to exhibit strange behavior. These include

n Not staying compiled or not compiling at all

n Growing and growing and growing in size, even after compiling and compacting

n Running slower and slower

n Displaying the wrong record in linked subforms

n Displaying compile errors when you know that the code is correct

n Corrupting constantly

Compacting your database doesn’t always work as advertised. Compiling and saving all modules
becomes a long wait with a seemingly perpetual hourglass. After you compact and open the data-
base, it is uncompiled again. If you work with large databases, chances are good that you have had
these experiences. This section shows you how to solve these problems and get you up and run-
ning fast again.

How databases grow in size
Many things can cause a database to grow. Each time that you add an object to an Access 2007
database (.accdb) file, it gets larger. And why shouldn’t it? You are certainly using more space to
define the properties and methods of the object. Reports and forms take the most space because
the number of properties associated with each form or report and each control on a form or report
uses space. Table attachments (links) and queries take up very little space, but VBA code grows
proportionally to the number of lines in both modules and code behind forms and reports. If you
store data in your program database, this also takes up space proportionally to the number of
records in the table. Many other things cause a database to grow.

Each time you add another new form or report, more space is used. Each time you add a new con-
trol and define some properties, even more space is used. When you define any event in a form or
report that contains even a single line of VBA code, more overhead is used, because the form or
report is no longer a lightweight object but one that is VBA-aware. This requires more space and

856

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 856

resources than a lightweight form or report containing no VBA code. If you embed images into your
forms and reports, these also will use space. Embedding bound OLE aware data, such as pictures,
sound, video, or Word or Excel documents, uses more space than unbound objects or images.

Each time that you make a change to any object — even a simple one — a duplicate copy of the
object is created until you compact the database. Within even a few hours of work, Access 2002
databases can begin to grow larger and larger. If the database contains thousands of lines of VBA
code, the database can grow to two or three times its original size very quickly, especially when
compiled and before it is compacted.

Compiling and compacting may not be enough
As you add, delete, and modify objects, Access doesn’t always clean up after itself. You have proba-
bly learned that after you make changes to your objects, especially VBA code, you should open any
module and select Debug ➪ Compile [Database Name], save the module, and close the Visual Basic
Development Environment. After you do this, click the Microsoft Office button and select Manage;
then click Compact and Repair Database. This action compacts the database to the same name and
reopens the database running any startup commands or autoexec macros that you may have. If you
prefer to be less aggressive, close the database first and compact the database to a different name,
effectively creating a compacted backup. You can then use the new database or delete the old one
and rename the new database to the original name.

Compiling and compacting may not be enough to solve some of the problems mentioned at
the beginning of the section. Databases have been known to grow in size after compiling and
compacting — even without adding new objects, code, or data. Sometimes, strange things happen
to databases without a good explanation. The database might not compile code properly if the
database is too large, or you may see compile errors on perfectly written code. The database may
run slowly even if there’s nothing wrong. There are still a few techniques to use, even when you
think you’re out of options.

Rebooting gives you a clean memory map
We have always noticed that strange behavior in any program gets better when you reboot your
system. Access is particularly bad at memory leaks, especially if you’re going in and out of form,
report, and module design. If you don’t want to reboot, at least close your database and exit Access
before beginning the examination of your problem.

Fixing a single corrupt form by removing the
record source
Sometimes, you may have a single form that doesn’t run properly. To fix this, try opening the
form in Design View and removing any record source. Then, close and save the form. Reopen the
form in Design View and reenter the original (or a new) record source. This may fix your problem.
When the record source of an Access form or report is changed, it forces various pieces of internal
code behind the form to be rebuilt. Sometimes, this simple process works.

857

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 857

Creating a new database and importing all objects
It’s important to have your database as clean as possible. Although we’re not sure if gremlins crawl
into some obscure portion of the database file, we are sure that you can’t import or export them. A
technique that usually proves to be successful is to simply create a new database and then import
all of the objects from the original database. Access 2007 makes it easy to import all of your objects
by using the Select All button found in the Import Objects dialog box. You can get to this dialog
box by first opening a new empty database; then click the External Data tab and click the Access
command on the Import group, selecting the database you’re having problems with, and then
clicking the Import option button (not the Link option button). Click OK then import all of the
database objects.

If you have any custom menus and toolbars, Import/Export specifications, or Navigation Pane
groups, you should remember to use the Options button and check off those options as shown in
Figure 26-14. The default for these options is False. If you have created any current database prop-
erties in the database, you have to create them again because they are not importable.

If you use externally referenced libraries or add-ins, you must manually reference these
libraries in the new database. You can display a module and use the Tools ➪ References

menu to do this.

FIGURE 26-14

Importing database objects the Options button pressed

Using the decompile option in Access 2007
A little known start-up, command-line option is called /decompile. You may have seen many
of the command-line options, such as /nostartup, /cmd, and /compact. This option starts

CAUTION CAUTION

858

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 858

Access 2007 in a special way and, when a database is opened, saves all VBA modules as text. This
works with module objects and all the code behind forms and reports.

To do this, go to the Windows Start menu Run command and type msaccess /decompile as shown
in Figure 26-15. Hold down the Shift key before you launch Microsoft Access. This prevents any
startup forms or autoexec macro processes from running. You don’t want the database to run code
that forces even a single module to be compiled. This prevents the decompile process from actually
doing any good.

FIGURE 26-15

Starting Access 2007 with the decompile command-line option

Access appears to start as usual. It takes about three minutes to open a database and decompile all
of the objects in a 20MB database. At this point, the real question is whether the database gets suf-
ficiently smaller, runs faster, and stays compiled after it was compiled and compacted.

After the database window is displayed, close Access. Don’t just close the database window —
actually exit Microsoft Access.

After you exit Access, you can restart Access normally. You can then open your database, open any
module, and select Debug ➪ Compile projectname where projectname is simply the name of your
project (original database filename). After the database compiles, you should close the module,
return to the Access window, and compact and repair the database. You should find that Access
runs these procedures much faster than usual.

Make sure that you immediately exit Access 2007 after it finishes decompiling and then
start Access again before running Compile projectname or Compact and Repair Database.

Recapping the six steps to large database success
If you’re ready to release your application for a real test by the users, you should follow the steps
below to insure a clean-running system:

1. Reboot your computer to clean up memory.

2. Create a new Access database and import all the objects. Then close Access.

3. Restart Access by using the /decompile option while holding down the Shift key.
Close Access after the database window is displayed.

CAUTION CAUTION

859

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 859

4. Restart Access normally while holding down the Shift key.

5. Compile the database.

6. Compact and Repair the database.

By releasing a clean, fully compiled and compacted system your application runs faster and has
fewer technical or maintenance problems.

Detecting an uncompiled database and
automatically recompiling
It’s very important that you make sure that a database is always in a compiled state. If you release
your application as a modifiable .accdb file, your customers may make simple or even complex
changes to your application and then complain because their system is running slowly. Although
some of your customers may be serious developers, our experience is that many customers who
make changes to Access databases don’t know about compilation or compacting.

To see if your database is compiled, open the Visual Basic window for any module, display the
Debug window at the bottom of the editor, and type ? IsCompiled(), as shown in Figure 26-16.
If the database is compiled, it displays True. If it is in a decompiled state, it displays False, as
shown in Figure 26-16.

FIGURE 26-16

Checking to see if an Access 2007 program is compiled

To solve this problem, you can create an interface that automatically detects whether the database
is not in a compiled state and then gives the user the option of compiling the application. This
automatic detection runs each time the database is opened. The user still has to compact the data-
base, but the hard part is compiling. Figure 26-17 shows the message that is automatically dis-
played if the database is uncompiled. The code is shown in the following example.

860

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 860

FIGURE 26-17

A form to help the user compile your application

One line of code can be added anywhere in your program to detect an uncompiled application and
start the process:

If IsCompiled() = False Then DoCmd.OpenForm “MessageImprovingPerformance”

The code uses the Access 2007 built-in function IsCompiled to determine the compiled state of
the application. If the application isn’t compiled, the form is displayed, as shown in Figure 26-17.
Users have two choices. If they are still testing, they may not want to compile yet. If they want to
compile, they simply have to click the Yes button.

The compile and compact code is shown in Figure 26-18. The application is compiled first and then
compacted. If the database is already compiled, the compile function is skipped and the database is
only compacted. You can simply insert this module and the message box into any application and
call the form.

Making small changes to large databases — Export
One final tip for working with large databases: Always work with a copy of the program file and
export the changed objects. When you are making lots of changes to a few objects to try a new
technique or to get a stubborn algorithm to work, you are constantly opening and closing objects.
This tends to negatively affect large databases. Work with a copy of the database, and then when
you have the changes just the way you want, you can export the changed objects from the test
database to the production database. Any object that you export with the same name as the pro-
duction database is exported with a 1 at the end of the name. You can then open the production
database, delete the original objects, and rename the changed objects that have a 1 on the end of
their name. New objects are obviously exported with their name intact.

The fewer changes to a large database, the better off you are. By following the tips and techniques
in this section, you will have fewer problems and you will be more productive.

861

Optimizing Access Applications 26

33_046732 ch26.qxp 11/21/06 9:01 AM Page 861

FIGURE 26-18

A module to automatically compile and compact your database

Summary
In this chapter, you learned techniques to improve the performance and operation of your database.
You learned how to set up tables, queries, forms, and reports to optimize performance. You saw
techniques to take a problem database and turn it into a working database. You even used methods
to make the user think the application was running faster.

Through judicious use of the techniques discussed in this chapter, you can increase the perform-
ance of your Access application to the highest level possible.

862

Professional Database DevelopmentPart IV

33_046732 ch26.qxp 11/21/06 9:01 AM Page 862

In the previous few chapters, you learned the basics of programming,
reviewed some built-in VBA functions, and experienced the various VBA
logical constructs. You learned about ADO and how to access data in

tables and queries through SQL recordsets. You also learned a lot about
forms and queries in previous chapters. In this chapter, you use all this
knowledge and learn how to display selected data in forms or reports using a
combination of techniques involving forms, Visual Basic code, and queries.

In the Chapter27.accdb database, you will find several
forms to use as a starting point and other completed forms

to compare to the forms you change in this example. All of the examples use a
modified version of the frmProducts form and tblProducts.

Adding an Unbound Combo Box
When viewing a form, you often have to page through hundreds or even
thousands of records to find the record or set of records you want to work
with. You can teach your user how to use the Access “find” features and
wildcards, what to do to see other records, and so on, but this defeats the
purpose of a programmed application. If you build an application, you want
to make it easier for your users to become productive with your system, not
teach them Microsoft Access.

Figure 27-1 shows the frmProducts form with an additional control at the
top — a combo box that is not bound to any control source in the form. The
unbound combo box is used to look up a record in tblProducts and then
display the record in the form using a bit of code. You see several ways to do
this in the chapter.

ON the CD-ROMON the CD-ROM

863

IN THIS CHAPTER
Creating code that finds a record
by using a form control

Creating code that uses a
bookmark to find a record

Using the form’s filter options

Using a form to filter records

Creating a parameter query

Interfacing a parameter query to
a form dialog

Advanced Data Access
with VBA

34_046732 ch27.qxp 11/21/06 9:01 AM Page 863

FIGURE 27-1

The frmProductsExample1 form with an unbound combo box

The design for the combo box is shown in Figure 27-2. Notice that the Control Source property is
empty. This combo box is not bound to any field in a table. It is used only by the form. There are
four columns that can be viewed in the query for the Row Source, as shown in Figure 27-3. The
first is the Description from tblProducts. The second and third columns are taken from
tblContacts. The second column is the seller from an auction’s Last Name and First Name
together. The third column is the seller’s company. The last column is not displayed and is the
ProductID field in tblProducts.

FIGURE 27-2

The Property window for the unbound combo box control

864

Professional Database DevelopmentPart IV

34_046732 ch27.qxp 11/21/06 9:01 AM Page 864

This column is also the bound column for the combo box and is the value the combo box will
equal when a description record is selected in the combo box. Notice that the fourth column width
is 0, which hides the displayed value when the combo box is pulled down.

The Column Heads property is set to Yes because whenever there are three or more displayed
columns, you should display column heads as well.

FIGURE 27-3

The query behind the Row Source property of cboQuickSearch

This combo box will be used for all the examples in this chapter. Next you see how to find records
in a variety of ways using the combo box and the code behind it.

Using the FindRecord Method
The first form to look at is frmProductsExample1. You enhance the code behind the form and the
combo box that selects a specific record.

When a user selects a record using a combo box, it triggers the AfterUpdate event. This exam-
ple uses the AfterUpdate event procedure to find the record selected in the combo box.

The FindRecord method locates a record in any field by specifying a value passed to it as a
parameter. This is equivalent to using the binoculars in the Access ribbon to find a record.

To create an event procedure behind the combo box, follow these steps:

1. Display the frmProductsExample1 form in Design view, click cboQuickSearch, and
display the Property window (press F4).

2. Select the Event tab and click the AfterUpdate event.

865

Advanced Data Access with VBA 27

34_046732 ch27.qxp 11/21/06 9:01 AM Page 865

3. Click the combo box arrow in the AfterUpdate event property and select Event
Procedure.

4. Click the Builder button that appears in the right side of the property.

The procedure appears in a separate VBA code window. The shell of the event procedure
(Private Sub cboQuickSearch_AfterUpdate()...End Sub) is automatically
created. As you have learned, whenever you create an event procedure, the name of the
control and event are part of the subprocedure.

5. Enter the four lines of code exactly as shown in Figure 27-4.

FIGURE 27-4

Using the FindRecord method to find a record

The first line is:

txtProductID.SetFocus

This statement moves the cursor to the txtProductID control. Just as you need to manually move
the cursor to a control in order to use the Find icon in the Access ribbon, you must place the cur-
sor in the control. In this case, you’re moving the cursor to the control containing the ProductID
value because the search will look for a particular ProductID.

The next block of code is:

If Not IsNull(cboQuickSearch.Value) Then
DoCmd.FindRecord cboQuickSearch.Value

End If

This block of code first checks to make sure that cboQuickSearch contains a value (is not null)
before using the FindRecord method. If a value is found in the combo box, the FindRecord
method uses the combo box’s value (which happens to be the selected item’s ProductID) to search
for the selected vehicle’s record.

866

Professional Database DevelopmentPart IV

34_046732 ch27.qxp 11/21/06 9:01 AM Page 866

The first value found by the FindRecord method is determined by a series of parameters, includ-
ing whether the case is matched and whether the search is forward, backward, or the first record
found. Enter DoCmd.FindRecord in the code window and press the spacebar to see all available
options. The FindRecord method finds only one record at a time while allowing all other records
to be viewed.

Using the Bookmark to Locate a Record
The FindRecord method is a good way to search when the control you want to use to find a
record is displayed on the form. It is also a good way if the value being searched for is a single
value. However, many times multiple values are used as look-up criteria. A bookmark is another
way of finding a record.

You can use the form named frmProductsExample2 to follow this example.

Figure 27-5 shows code to use a bookmark that is added behind the AfterUpdate event of the
combo box.

FIGURE 27-5

Bookmark code used to find a record

The first three lines are:

Dim rs As Recordset
Dim strCriteria As String
Set rs = Me.RecordsetClone

867

Advanced Data Access with VBA 27

34_046732 ch27.qxp 11/21/06 9:01 AM Page 867

The first two lines declare a recordset named rs and a string named Criteria. These will be
used later in the code. The next line sets the recordset to a copy of the form’s bound recordset (the
RecordsetClone).

The Recordset object’s FindFirst method requires a search string containing criteria to look
up in the recordset (yes, that is correct — you’re actually asking the recordset to search itself for a
particular record, based on some criteria).

The criteria string can be as complicated as needed. The following statement concatenates the field
name ProductID with the value of cboQuickSearch:

strCriteria = “[ProductID] = “ & cboQuickSearch.Value

Notice the parts of the criteria string that are concatenated.

The first part is a double quote, then the field name followed by an equal sign:

[ProductID] =

The value of Me. cboQuickSearch is then added to the string. Assuming the value of
cboQuickSearch is 17, the string is now:

[ProductID] = 17

Creating criteria in code is sometimes complicated. Remember that the objective is to
build a string that could be copied into a query SQL window and run as is. Often, the

best way to create a criteria string is to create a query design, switch to SQL view, and then copy the
SQL to a code window. Then, break up the code’s WHERE clause into field names and control values,
inserting concatenation symbols and delimiters. In this example, there is no WHERE clause but the
idea is the same.

After the criteria string is completed, you use the recordset’s FindFirst method to search for the
record. The following line uses the FindFirst method of the recordset, passing the criteria string
like the WHERE clause of a SQL statement:

rs.FindFirst strCriteria

The FindFirst method looks for a record matching the criteria property’s value.

You don’t have to create a Criteria variable and then set the criteria string to it. You
can simply place the criteria after the rs,FindFirst method, like this:

rs.FindFirst “ProductID = “ & cboQuickSearch.Value

However, when you have complex criteria, it may be easier to create the criteria separately from the
command that uses the criteria string so you can debug the string separately.

The next lines are used to determine whether the record pointer in the form should be moved.
Notice the Bookmark property referenced in the following code block. A bookmark is nothing

NOTENOTE

TIPTIP

868

Professional Database DevelopmentPart IV

34_046732 ch27.qxp 11/21/06 9:01 AM Page 868

more than a pointer to a record in a recordset. The FindFirst method positions the recordset’s
bookmark on the found record.

If Not rs.NoMatch = True Then
Me.Bookmark = rs.Bookmark

End If

If no record was found, the NoMatch property is True. Because you want to set the bookmark if a
record is found, you need the computer equivalent of a double negative. Essentially, it says if there
is “not no record found” then the bookmark is valid. Why Microsoft chose NoMatch instead of
Match (which would reduce the logic to If rs.Match Then...) is a mystery to everyone.

An alternative way to write the logic for checking the NoMatch property is:

If rs.NoMatch = False Then
Me.Bookmark = rs.Bookmark

End If

If a matching record is found, the form’s bookmark (Me.Bookmark) is set to the found recordset’s
bookmark (rs.Bookmark) and the form repositions itself to the bookmarked record. This does
not filter the records but merely positions the form’s bookmark on the first record matching the cri-
teria. All other records are still visible in the form.

The last lines of code simply close and discard the recordset.

Criteria can be as complex as you need them to be, even involving multiple fields of dif-
ferent data types. Remember that strings must be delimited by single quotes (not double

quotes, because double quotes surround the entire string), dates are delimited by pound signs (#), and
numeric values are not delimited.

The FindFirst/bookmark method is preferable to using FindRecord because it allows for
more complex criteria and doesn’t require the control being searched to be visible. You don’t have
to preposition the cursor on a control to use the recordset’s FindFirst method.

Filtering a Form Using Code
Although using the FindRecord or FindFirst methods allow you to quickly locate a record
meeting the criteria you want, it still shows all the other records in a table or query recordset and
doesn’t necessarily keep all the records together. Filtering a form lets you view only the record or
set of records you want, hiding all non-matching records.

Filters are good when you have large recordsets and want to view only the subset of records match-
ing your needs.

NOTENOTE

869

Advanced Data Access with VBA 27

34_046732 ch27.qxp 11/21/06 9:01 AM Page 869

Figure 27-6 shows the two lines of code necessary to create and apply a filter to a form’s recordset.
Each form contains a Filter property that specifies how the bound records are filtered. Usually
the Filter property is blank and means the form is unfiltered (all of the records are displayed).

FIGURE 27-6

Code for filtering and clearing a filter behind a form

The first line of code sets form’s Filter property:

Me.Filter = “ProductID = “ & cboQuickSearch.Value

Notice that this is exactly the same string used as the criteria passed to the recordset’s FindFirst
property.

The second line of code (Me.FilterOn = True) turns on the filter. You can put all the criteria that
you want in a filter property, but unless you explicitly set the FilterOn property to True, the fil-
ter is never applied to the form’s recordset. The filter hides all the records that do not meet the crite-
ria, showing only the records meeting the filter’s value.

Me.FilterOn = True

If you create a form filter and then save the form design with the filter set, the filter is
saved with the form. The next time the form is opened, the filter is active. Always clear

the filter manually from the form’s Filter property before saving the form.

Whenever you turn on a filter, you must create a way to turn it off. If you look at the top of Figure
27-7, you can see a small button (cmdClearFilter) next to the combo box. This button turns off the
filter and sets the form’s Filter property to an empty string (vbNullString). The second pro-
cedure shown in Figure 27-6 is the button’s Click event procedure:

Private Sub cmdClearFilter_Click()
Me.Filter = vbNullString
Me.FilterOn = False

End Sub

CAUTION CAUTION

870

Professional Database DevelopmentPart IV

34_046732 ch27.qxp 11/21/06 9:01 AM Page 870

FIGURE 27-7

frmProductsExample3 uses the form’s Filter and FilterOn properties.

Using a Query to Filter a Form Interactively
At times you want to have one form control another. There may be times when you want a record-
set to display selected data based on instant user decisions. For example, each time a report is run,
a dialog box is displayed and the user enters a set of dates or selects a product or customer. One
way to do this is to use a parameter query.

Creating a parameter query
A parameter query is any query that contains criteria based on a reference to a variable, a function,
or a control on a form. Normally, you enter a value such as “SMITH”, 26, or 6/15/04 in a crite-
ria entry area. You can also enter a variable such as [Enter the Last Name] or a reference to a
control on a form such as Forms!frmProducts![cboQuickFind].

The Chapter27.accdb database contains a parameter query named qryProductParameterQuery.

The simplest way to create a parameter query is to create a select query, specify the query’s criteria,
and run the query to make sure it works. Then change the criteria to the following:

Like [<some prompt>] & “*”

where some prompt is the question you want to ask the user. Figure 27-8 shows a parameter
query that prompts the user whenever the query is run to enter the Product Category.

871

Advanced Data Access with VBA 27

34_046732 ch27.qxp 11/21/06 9:01 AM Page 871

FIGURE 27-8

Creating a simple parameter query

Any time the query is run, even if it is used as the record source for a form or report or the row
source for a list or combo box, the parameter is displayed — and depending on what is entered, the
query criteria filters the query results. Figure 27-9 shows the Parameter dialog box open, asking for
the product category value required by the query.

FIGURE 27-9

Running the parameter query

872

Professional Database DevelopmentPart IV

34_046732 ch27.qxp 11/21/06 9:01 AM Page 872

You may remember learning that the Like operator allows for wildcard searches. For example,
if you want to filter the query records for any product category that starts with “car” (or “CAR”),
you enter CAR when the parameter dialog box displays the question Enter the Product
Category. Without the parameter, you would have to enter Like “CAR*” in the criteria area
of the query. Also, because the wildcard “*) is included as part of the parameter, users don’t have
to include the wildcard when they respond to the parameter dialog.

The wildcards * (anything after this position) and ? (one character in this position) can
be used with a Like operator in any query or SQL string.

Figure 27-10 shows the Query Parameters dialog (opened by right-clicking the query’s upper area
and selecting Parameters from the shortcut menu). You use the Query Parameters dialog to specify
parameters that require special formatting, such as date/time entries or specially formatted num-
bers. One text entry has been entered in the Query Parameters dialog to show how it works. You
enter the name of the parameter text and then choose the data type.

FIGURE 27-10

The Query Parameters dialog

If you want to add more complex parameters, such as a range of dates, use an expres-
sion such as Between [Enter the Start Date] and [Enter the End Date] as a

criteria in a date field. This would display two separate parameter dialog boxes and then filter the
date value appropriately.

TIPTIP

TIPTIP

873

Advanced Data Access with VBA 27

34_046732 ch27.qxp 11/21/06 9:01 AM Page 873

Creating an interactive dialog box
The problem with parameter queries is that they are suitable for only simple parameters. It is fairly
difficult to use parameter queries for entering complex criteria. A better technique is to create a
simple form and place controls in the form that are used by a query as criteria.

Figure 27-11 shows frmFilterProducts, which contains a combo box for selecting a record. On the
left side of Figure 27-11 the combo box is closed while the right side shows the combo box open.

FIGURE 27-11

Creating a dialog box for selecting records

A combo box gives the user the choice of selecting a single record from a set of records or entering
a wildcard (if the combo box’s Limit to List property is False). The combo box (cboDescription)
shown in Figure 27-11 contains two columns — Description and Seller. The Description is the
bound column and makes the selected description available to a query that references the combo
box, as shown in Figure 27-12.

Figure 27-12 shows qryProductFormReference. This query selects all the fields in tblProducts
based on the description retrieved from the combo box on frmFilterProducts. Notice the expres-
sion in the query criteria area:

Like [Forms]![frmFilterProducts]![cboDescription] & “*”

This expression references cboDescription in frmFilterProducts. cboDescription
returns the value of the selected description or a selection like 1992, which would show all of the
vehicles with descriptions beginning with 1992.

874

Professional Database DevelopmentPart IV

34_046732 ch27.qxp 11/21/06 9:01 AM Page 874

FIGURE 27-12

Creating a query that references a form control

Linking the dialog box to another form
The frmFilterProducts dialog box (you saw this back in Figure 27-11) does more than just create a
value that can be referenced from a query. It actually contains code to open frmProductsExample4.
The RecordSource property of frmProductsExample4 is set to qryProductFormReference.

Figure 27-13 shows the cmdCancel_Click and cmdOK_Click event procedures behind the
Cancel and OK buttons found on frmFilterProducts.

FIGURE 27-13

Creating a dialog box that opens a form

875

Advanced Data Access with VBA 27

34_046732 ch27.qxp 11/21/06 9:01 AM Page 875

The cmdOK_Click event procedure code opens frmProductsExample4, sets the focus on it, and
then requeries the form to make sure the latest selection is used on the form. The SetFocus
method is necessary to move focus to the form that is opened. The Requery method isn’t strictly
required because a form automatically requeries its record source the first time it is opened.
However, if the form is already opened — for example, if you use the dialog box a second time
to search for another record — the Requery method ensures the form displays fresh data.

Summary
This chapter examines several fairly advanced techniques for working with data on Access forms.
In each case, a few lines of VBA code are all you need to make a form more efficient and effective
for users.

We looked at several different filtering and searching techniques for bound Access forms. Each bound
Access form includes a RecordsetClone property that references the set of records bound to the
form. You saw how a recordset’s FindFirst method and Bookmark property work together to
locate and display data selected by the user.

You also reviewed the process of building parameter queries that include the parameter as part of
the query’s design, and another example where the parameter references a control on a dialog form.

The techniques described in this chapter greatly extend the utility of Access forms and empower
users to quickly look up data without having to learn the built-in filtering and searching features
of Access forms.

876

Professional Database DevelopmentPart IV

Using the With Keyword

The With keyword is used to save time by not referencing the controls on the form explicitly
(which means directly): for example, Forms!frmProductsExample4.SetFocus. This requires Access

to search alphabetically through the list of forms in the database container. If there are 500 forms
(and some large systems have this many or more) and the form name started with z, this would take
a measurable amount of time. Because there is more than one reference to the form, this would have
to take place multiple times. The With command sets up an internal pointer to the form so that all
subsequent references to the form control or property or to use a form method (like Requery or
SetFocus) are much faster.

When you use the With keyword and reference the form name, you simply use a dot (.) or a ! to
reference a control, property, or method just like the Forms!FormName was first. You can see this in
Figure 27-13.

For each With, you must have an End With.

34_046732 ch27.qxp 11/21/06 9:01 AM Page 876

One of my favorite old movies is Desk Set, starring Spencer Tracy and
Katharine Hepburn. In this movie (produced in 1957), Spencer
Tracy plays a computer consultant responsible for installing a large

computer system in Katharine Hepburn’s office. Typical of computers in
older movies, the massive wall-to-wall mainframe featured in Desk Set under-
stands plain-English queries (“How many ounces of gold were mined in
South Africa in the last ten years?”) and is equipped with a galaxy of flashing
lights that indicate when the machine is “thinking.” And of course, the
machine and its software work flawlessly, delivering the requested informa-
tion in seconds (after much clicking, clacking, and spinning of the huge tape
drives, of course).

As we all know, Hollywood’s vision of computer systems has always been far
from reality. Even now, in the 21st century, computers still can’t “understand”
plain-English commands, hardware still doesn’t perform flawlessly, and users
still have trouble getting their applications to do what they want and need
them to do. Most important, software cannot be made to anticipate what the
user wants. How many times have you heard people complain that they know
the computer can do what they want but they just can’t get it to happen?

In this chapter, the expressions end user, user, client, and
customer all mean the same thing: the person or group of

people using the application you’ve created. Although the terms client and
customer are normally applied to the parties who pay to have the application
produced, thinking of all users as clients should be your first step toward pro-
ducing bulletproof applications. Always think of your users as the important
people they are, and your work will reflect a conscientious attitude and a pro-
fessional approach.

TIPTIP

877

IN THIS CHAPTER
Defining bulletproofing

Looking at the characteristics of
bulletproof applications

Understanding that bulletproofing
goes beyond code

Identifying the principles of
bulletproofing

Developing to a specification

Securing the environment

Providing user feedback

Adding logging to applications

Bulletproofing Access
Applications

35_046732 ch28.qxp 11/21/06 9:02 AM Page 877

What Is Bulletproofing?
Advanced database systems like Access bring valuable data and information directly to the user’s
desktop. Unlike traditional mainframe and midrange databases, very often the data contained in an
Access database resides on the user’s computer or is only slightly removed by being connected to a
file server on a LAN. In either case, the valuable data contained in an Access database is exposed to
potential loss or corruption by a well-meaning user.

For instance, unless you have added appropriate data validation to the applications you build,
it’s far too easy for a user to enter “bad” data into the database, causing errors later on. Or if you
haven’t applied adequate levels of security, an unauthorized user may accidentally (or intentionally)
change sensitive data. At the very least, security prevents unauthorized users from viewing confi-
dential information. When applied to their fullest, the Access security features will ensure that
valuable data is not accessed by any but the most trusted and reliable users.

By one definition, bulletproofing an application means that you trap all errors, preventing crashes
and unexpected behavior. This book assumes that you’re already a good programmer who under-
stands that properly handling errors is a required part of any database development project.

Chapters 15 and 25 explain how to “crash-proof” Access applications and how to
remove errors that may silently and perniciously mangle the data entrusted to the data-

bases you build.

In this chapter, the term bulletproofing means applying safeguards to the data in an application
through various techniques and methods. The objective of this chapter is to explain a development
philosophy that leads to highly reliable and secure databases that protect the valuable data entrusted
to them.

As you’ll see, protecting the data very often means limiting the user’s interaction with the Access
environment. Data must be validated as it is input by the user to prevent inappropriate values from
distorting the user’s interpretation of the information contained in the database. Other techniques
described in this chapter make Access applications easier to learn and use, reducing the possibility
that a simple misunderstanding harms the data.

Characteristics of Bulletproof Applications
Although, as a developer, you want to provide users with maximum flexibility, you simply can’t
allow full access to the entire database environment. If users have unrestricted access to tables,
queries, forms, and other database objects, chaos will inevitably ensue. Through mischief or igno-
rance, damaging changes to the database’s structure and logic will occur. Only the most disinter-
ested and unimaginative user will resist the temptation to “improve” the forms and reports you’ve
carefully crafted.

CROSS-REFCROSS-REF

878

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 878

Perhaps the most important step to bulletproofing applications is to provide end users with the
Access runtime environment, described in Chapter 35. As you’ll see in Chapter 35, the Access run-
time provides full support (well, almost full support) of all the features you build into Access data-
bases without giving end users the tools needed to change the underlying database structures.
Chapter 35 also explains how to add context-sensitive help to Access databases, an important part
of adding documentation to an application.

Unrestricted access to tables could mean deletion or modification of multiple records. Even though
Access warns of most changes to data, an untrained user may ignore these warnings and proceed
with the changes.

Applications that have been bulletproofed protect the data through a number of techniques:

n Rock-solid construction: No database exhibiting unexplained crashes, general protec-
tion faults (GPFs), or other instabilities can be considered bulletproof. First and foremost,
an Access application must be reliable and free from programming bugs that lead to
crashes or other undesirable behavior.

Chapter 15 explains how to use the built-in debugging tools and how to test a database
to improve its reliability.

n Self-documenting behavior: Built-in security features — helpful text on the screen, warn-
ing messages that caution the user when something dangerous is about to happen, and
context-sensitive help to explain how the application should be used — guide the user.

n Controlling the flow through the application: Controlling an application’s flow chan-
nels the user through the application in a logical sequence that’s best suited to the appli-
cation’s purposes.

n Error handling that stops otherwise damaging actions on the part of the user: You
shouldn’t let a user destroy, delete, or modify data without understanding what’s happen-
ing. Whenever possible, warn the user before he performs an irreversible action.

n Providing feedback so that the user is never left in the dark about the database sta-
tus: Long operations are indicated by progress meters, an hourglass cursor, or other
visual indicators.

Some of these concepts are covered in this chapter, while others are explained in chapters else-
where in this book.

Bulletproofing Goes Beyond Code
Bulletproofing means much more than simply writing the right VBA code in your Access programs.
You must adopt a certain attitude that leads to the careful, methodical approach necessary to suc-
ceed in bulletproofing applications. This means taking a professional approach to your develop-
ment activities. Here are some guidelines. (If you’re already employing these procedures in your
applications, the following will serve as reminders.)

CROSS-REFCROSS-REF

879

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 879

Document the code you write
Include comments, use naming conventions, and name your procedures and variables logically.
Don’t, for instance, accept the default names Access provides for database objects such as forms
and controls. The default names are simply a convenience for simple applications and should not
be used in professional-quality work. Figure 28-1 is an example of clear commenting and docu-
menting. Imagine even this small section of code without comments and it’s easy to see how
important documentation is.

The chapters in Part II describe many valuable Access programming techniques.

FIGURE 28-1

Well-documented code is easier to maintain and is less likely to lead to coding errors.

Build to a specification
All of your serious development work should be done to specification. A written specification is
your best guarantee that you’re creating what the users expect. (We discuss specifications in the
“Develop to a Specification” section later in this chapter.)

Document the application
The applications you deliver to end users should be accompanied by printed documentation that
explains how the applications are meant to be used. End-user documentation doesn’t have to
include descriptions of the internal structure or logic behind the user interface. It should, however,
explain how the forms and reports work, describe things the users should be wary of (for instance,
changing existing data), and include printouts of sample reports. Use screenshots to illustrate the

CROSS-REFCROSS-REF

880

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 880

documentation. Be sure the documentation includes the exact version number in the title or footer
so that users can verify that the documentation is the right version for the software they’re using.

The users of your applications will benefit from the online Help you build into the database. Online
Help, of course, means everything from the ToolTips you attach to the controls on a form to status-
bar text, to sophisticated context-sensitive and “What’s This” Help you build with the Microsoft
Office Developer Extension tools.

Use professional installation tools
The days of distributing an application as zipped files on a floppy disk are long gone. Microsoft
Windows has become so popular that every possible type of user is working with applications run-
ning under this operating system. This means that many end users are people with virtually no
computer experience, and you can’t expect them to create directories, unzip files, and create pro-
gram icons on their own.

In many cases, an Access application is simply copied across a network or copied to a CD-ROM
or DVD. Other times, a more formal distribution package is needed by users. Chapter 35 explains
the process of preparing Access applications for distribution to remote users. The Microsoft Office
Developer Extensions include a very nice deployment wizard that walks you through all the steps
necessary to build an effective distribution package. Figure 28-2 is an example of an application
setup screen that will guide the user through the applications installation.

FIGURE 28-2

A professional-quality installation program adds a welcome touch to most applications.

881

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/27/06 5:21 PM Page 881

Remember that the user’s first impression of your work is often based on how easily the application
installs. If the user encounters problems or can’t understand how to get the program installed on
his computer, you’re off to a bad start with the very people you’ve worked so hard to please.

Provide the Access runtime module to users
Although Access 2007 is included in the Microsoft Office Professional package, it’s probably not a
good idea to give the full development environment wide distribution in your organization. The
most direct approach to preventing users from modifying the design of tables, forms, and other
database objects is to only give them the Access runtime version. Although the runtime program
requires the same memory and disk space as the full development environment, all of the menu
options required to modify database objects have been removed and are not accessible to users. In
the runtime environment, even the Database window is hidden.

As a registered owner of the Visual Studio Tools for the Microsoft Office System, you are permitted
to distribute as many copies of the Access runtime and its support files as you want. The ActiveX
custom controls, the Replication Manager (described in Chapter 31), and other utilities may also
be distributed as necessary.

When you follow Microsoft’s guidelines as you prepare a distributable application, your users may
not even be aware that they’re using Microsoft Access. You can modify or hide the runtime’s title
bar, menus, toolbars, dialog boxes, and other components to create a highly customized environ-
ment for your application.

Consider the user’s skill and training requirements
If you know in advance that the majority of your users are relatively unskilled or untrained, or if
they won’t have a lot of on-site support, you should “overengineer” the messaging and Help file in
the application. On the other hand, if the users are relatively experienced in computing, less hand-
holding will be necessary.

One valuable technique used by many developers is to keep messages such as you see in Figure 28-3
in a table within the database. Figure 28-4 shows such a table and a message box displaying the first
message in this table.

This table and the accompanying form (frmMessageDemo) are included in this chapter’s
example database (Chapter28.accdb) on this book’s CD-ROM.

FIGURE 28-3

The messages you provide your users don’t have to be extensive or sophisticated.

ON the CD-ROMON the CD-ROM

882

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 882

FIGURE 28-4

A simple message table and message box containing Help text

In practice, the MessageID is used to reference a particular message in this table. You could store
the MessageID in the Tag field of a control or form and invoke the message when some error has
occurred or when the user presses a button on a form. The message could also be displayed in the
Access status bar or in a designated message area on a form. The code required to display a mes-
sage stored in this table is quite simple:

Public Function DisplayMessage(iMsgNumber As Long)
Dim sMsg As String
Dim sSQL As String
Dim db As DAO.Database
Dim rs As DAO.Recordset

Set db = CurrentDb()
sSQL = “SELECT * FROM tblMessages WHERE “ & _

“MessageID = “ & iMsgNumber & “;”
Set rs = db.OpenRecordset(sSQL)

MsgBox rs(“Message”), vbInformation, “Helpful Hint”

End Function

The beauty of this little messaging system is that you could easily add a form to the application
that permits users to add to the message list or change the existing text messages. Because the
MessageID field is an AutoNumber, new messages are sequentially numbered without dealing
with primary-key collisions. You’ll also have to provide a form that sets a control or form’s Tag
property whenever a new message has been added to the database.

You could extend the messaging concept a bit and provide multiple levels of help. For instance, a
novice user receives more extensive help than a more experienced user, while an expert should be
able to turn off help completely.

883

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 883

Understand the user’s motivations
The people using your applications have a number of basic needs that must be met. The applica-
tions you produce are expected to save time and/or money, produce new business, replace obsolete
paper methods, reduce staffing requirements, or improve data reliability. Your applications may be
expected to meet several or all of these objectives. Whatever the situation, you should have a firm
understanding of what is needed. The better you understand the client’s goals, the more you can
concentrate on the most important aspects of the application.

Check for obvious hardware errors
Whenever possible, you should monitor how much disk space, memory, and other resources are
available to the application. Many problems users encounter are avoided by simply testing to con-
firm that adequate disk space exists. As you’ll read in Chapter 31, the databases in a replica set
grow every time they are replicated, even if there are no data changes (replication events are logged
in each database in the replica set). It is possible, therefore, for an Access data file to completely fill
up a small hard drive over time, causing the application (and Windows itself) to fail. All of the
error messages you see in Figure 28-5 were caused by running out of disk space on the computer.

FIGURE 28-5

Careful planning will help to avoid the unpleasant events that trigger these error messages.

884

Professional Database DevelopmentPart IV

Why Not Just Use Windows Help?

The messaging system described in this section is not intended to replace the Help files built with
the Microsoft Office Developer Extension’s Help authoring system (called the Microsoft Help

Workshop). There are many things that can be done in a Windows Help file (such as displaying a
graphic) that are difficult or impossible to do in an Access message box. But if your applications
make frequent use of the Access status bar to display Help or error text, or if you want to provide
your users with the flexibility of changing the messages themselves, a “home-grown” messaging sys-
tem might be an appropriate solution.

35_046732 ch28.qxp 11/21/06 9:02 AM Page 884

Unfortunately, the VBA language built into Access does not provide functions for checking free
disk space or available memory. You must resort to Windows API calls to interrogate the system for
this information. Chapter 15 explains how to call Windows API functions from your databases.

Continue to improve the product
A developer’s work is never done. Surely you came up with new ideas as you built the basic appli-
cation, or your clients pestered you with improvement requests as they beta-tested the interim
builds. Although not allowing “off-spec” changes to interfere with the main development effort is
important, you should record these ideas and use them as starting points for the next iteration of
the product.

In many cases, improvements to the application consist of enhancements to the user interface. If
you discover that users misunderstand how to enter data, perhaps you need to add more label text
to the forms to serve as guidance. Or, if people complain that the application is hard to use, you
might have to add more menu options or liberally use “plain English” throughout the program.

In the “Add Logging to your applications” section, later in this chapter, you’ll read about building
usage logs into your applications. A properly designed and maintained usage log provides invalu-
able information about how the database is being used. You may be surprised at how often errors
occur, or how rarely a particular form or report is used. Any feedback you get from your users or
the application itself will help you as you begin the next phase of what might turn out to be an
endless project.

Principles of Bulletproofing
A few simple rules go a long way toward bulletproofing your applications. The following principles
are easily applied to most any Access application, and once you’ve implemented them, the tech-
niques and objects you’ve built are easily exported to future databases.

885

Bulletproofing Access Applications 28

What Does Disk Space Have to do With Memory Errors?

You may be wondering why inadequate disk space leads to the memory errors you see in Figure
28-5. Windows uses disk space as virtual memory when all of the physical memory (RAM) on the

machine has been used. Windows creates virtual memory by allocating disk space to use as a swap file
to temporarily store things that otherwise must be stored in memory. Windows continues allocating
available disk space until nothing is left, leading to the “memory” error messages in Figure 28-5. To the
application there is no difference between running out of physical memory or swap space — a memory
error is a memory error, regardless of the cause.

35_046732 ch28.qxp 11/21/06 9:02 AM Page 885

Make the application easy to start
You shouldn’t expect users to locate the Access data file (.accdb or .mdb) or to use the File Open
dialog box in Access to invoke the application. Adding items to the Windows Start menu or to a
program group isn’t difficult. When properly implemented, a program icon creates the impression
that the application exists as an entity separate from Access and endows it with a status equivalent
to Word, Excel, or other task-oriented programs.

Creating a program icon is not difficult. Many freeware and shareware versions of icon editors are
available online. The Chap28.accdb example database comes with its own program icon
(Earth.ico) for you to experiment with. You designate the program icon in the Access 2007
startup options (see the next section) or by setting a program icon in Windows Explorer.

Follow these steps to establish a program icon for an Access database:

1. Hold down the Ctrl key as you drag the Access 2007 program icon to a new posi-
tion in the Office 2007 program folder.

This copies the existing Access 2007 icon.

2. Press F2 while the icon is highlighted and type in the new caption for the icon.

3. Press Alt+Enter. (Alternatively, right-click on the icon and select Properties from the
shortcut menu.)

The Properties dialog box for the icon opens.

4. Select the Shortcut tab in the Properties dialog box and add a complete path refer-
ence to the application’s .accdb or .mdb file to the Target text box.

In Figure 28-6 the application database’s path is C:\Apps\Contacts.mdb. Notice that
the Target text box contains the path to the Access 2007 executable.

5. The icon properties dialog lets you specify an icon to use in the application folder
or Windows desktop (see Figure 28-7). Click on the Change Icon button and use
the Browse button in the Change Icon dialog to locate the icon file (.ico extension)
you want to use.

Use startup options
When properly designed, users should not even be aware that they’re working with Microsoft
Access. Use the Access 2007 Application Options (see Figure 28-8) to hide the Navigation pane,
and replace the default menus and ribbons with application-specific menus and ribbons. These
options give the application control from the start, instead of having to wrest it away from the user
once things are under way.

886

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 886

FIGURE 28-6

It’s easy to get Access to automatically open a database from a program icon.

FIGURE 28-7

A colorful icon can make an application easy to find in a crowded folder or desktop.

887

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 887

FIGURE 28-8

The Access Application Options help you simplify the user interface.

Figure 28-8 illustrates the first step to simplifying the user interface. The Current Database dialog
box (File ➪ Access Options) includes options for hiding the Navigation pane, disabling the default
ribbons, and trapping the built-in “special keys” (like Ctrl+F6) that may otherwise confuse users.

For example, notice the Application Icon option in the Application Options dialog box in Figure
28-8. The icon file (.ico) that you specify in this text box is used in the Access title bar, replacing
the default form icon you see in Figure 28-9. The same icon appears at the top of reports displayed
in Print Preview.

The icon you specify using the Windows properties (described in the “Make the application easy to
start” section, later in this chapter) do not affect the Access application itself. For instance, the icon
you assign to the application icon on the Windows desktop or in a program folder does not show
up in the Access title bar and does not appear on the Windows taskbar. You must specify an icon
in the .database’s Startup dialog box to see the icon in the Access title bar.

888

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 888

FIGURE 28-9

The application icon you specify in the Startup dialog box replaces the default icons in form and report
title bars.

The user can bypass all of the startup options by holding down the Shift key as the data-
base opens. See the “Disable Startup Bypass” section, later in this chapter, to see how

you can disable this Access feature. Once you’ve disabled the startup bypass, only the most sophisti-
cated user will be able to reinstate the bypass feature.

Use a login form
The user’s name or ID can be valuable information, even if not part of a security scheme. In the
“Maintain usage logs” section, later in this chapter, you’ll read about logging activity during a
database session to provide an audit trail that helps determine what went wrong and who was
responsible when failures occur as people work with the database. The login information you see
in Figure 28-10 can be an invaluable aid to deciphering the audit trail.

FIGURE 28-10

Capture useful information on the login form.

TIPTIP

889

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 889

The login information should also include the date and time the user logged in to the
application. You shouldn’t make the user enter this information, however. The built-in Now()
function returns the current system time and date and can be used in any logging features you
build into the application.

Confirm the user ID and password from the login form with data stored in a hidden table. You
could even include code to temporarily link to the password table in an “administration” database
that resides in another location on the network. Store the user ID from the login form in a global
variable to use in error logs, send e-mail messages, or stamp records with the user’s identification.

In any case, set the Modal property of the login form to Yes (True) to prevent the user from access-
ing any other part of the application until the user ID, username, and password have been verified.

Use the predefined Password value for the Password text box’s InputMask property
to display an asterisk for each character entered into this box.

Although a simple login form such as you see in Figure 28-10 does not deter a determined hacker
or sophisticated user, the average user will comply with the request for the user information on this
form. When used in conjunction with the BypassSetupKey property (which prevents the user
from using the Shift key to bypass the startup options) described later in this chapter, a startup
form such as you see in Figure 28-10 provides a reliable login procedure for most applications.

Use a splash screen
Although a splash screen (also called a startup form) might not sound like a bulletproofing tech-
nique, one aspect of professional application development is providing high-quality information to
the user in a timely fashion. An appropriately designed splash screen gives the user such valuable
information as the version number of the database application, the user name (or login ID), the
date the database was most recently replicated, and so on. A simple splash screen is shown in
Figure 28-11.

Chapter 26 describes adding splash screens to Access applications and how to add valu-
able data to the splash screen.

FIGURE 28-11

A splash screen confirms the application name and version number.

CROSS-REFCROSS-REF

TIPTIP

890

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 890

Add switchboards to the application
Switchboard forms are an invaluable way to keep users focused on using the database as intended.
A switchboard form presents the user with a limited number of choices for working with the appli-
cation and makes the application easier to use. You could use the user’s login information to deter-
mine which of a number of switchboard forms to use. For instance, a manager with a higher level
of privileges may be given a form with more options than a clerical worker would be given.

Figure 28-12 shows the switchboard form from the Access Auto Auctions database. Each button in
this switchboard triggers some action within the database or leads to another switchboard form.

FIGURE 28-12

Switchboard forms control a user’s access to the application.

Control the ribbons
In most applications, you don’t want the user to have access to dangerous ribbon commands. If, for
instance, users are able to access the export or import commands in the External Data ribbon, they
may be tempted to experiment with exporting and importing data. This could have serious reper-
cussions on the security and integrity of the data stored in the database.

Removing default ribbon command options requires a bit of work, but is worth the trouble.
Actually, you don’t remove ribbon items as much as you replace the built-in ribbons with custom
ribbons that become part of the database.

Chapter 34 explains how to create custom ribbons containing virtually any built-in or
custom commands or functions.

In addition, Access 2007 allows you to easily modify the Quick Access bar in the upper-left corner
of the Access environment. Figure 28-13 shows the Quick Access toolbar customization dialog
box. You open this dialog from the File menu.

CROSS-REFCROSS-REF

891

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 891

FIGURE 28-13

Creating a custom Quick Access bar in Access 2007 isn’t too difficult.

Figure 28-14 shows a Quick Access toolbar after adding several new commands. The two File
menus you see in this figure are equivalent except that the one on the right has had certain com-
mands removed with the Menu Builder.

FIGURE 28-14

The Quick Access toolbar is easy to customize.

Hide the Navigation Pane and remove menus
Notice the Display Navigation Pane check box, the Allow Full Menus check box, and the Allow
Built-in Toolbars check box in the startup dialog box in Figure 28-8. When not selected, these check
boxes hide the Navigation Pane and remove the built-in menus from the Access environment. This

892

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 892

means, of course, that your application will be totally reliant on the switchboard forms and toolbars
you create, but it is a good way to control the user’s access to the environment.

Display one form at a time
If appropriate for the application, you’ll probably want to restrict the user to a single form to avoid
problems. Many inexperienced users are confused by the multiple document interface (MDI) para-
digm used by Access. Having too many forms open on the screen can lead the user to jump from
task to task in no particular order.

As an alternative to displaying a single form at a time, you can also use the Modal property to
force a form to retain the focus during some operation. A good example is selecting from a number
of reports to print. Once the user has decided to print a report, you might want to keep him
focused on that task, instead of allowing him to jump back to the data-entry form. With access to
both printing and data entry, the user might start a print job, jump back to data entry as the print
job begins (to make changes to the data), and then wonder why the printout doesn’t include the
changes made after the printing has begun. Or Access may lock the records the user is trying to
change during the print event.

Trap unwanted keystrokes
Many simple keystrokes (like pressing the Delete key) can lead to data loss. The easiest way to cap-
ture keystrokes is to create an AutoKeys macro that simply remaps dangerous keystrokes to harm-
less equivalents. The problem with AutoKeys, however, is that the remapped keystrokes are applied
globally, rather than locally on a particular form. You can set up any number of keystroke macros,
however, and enable or disable keys as the user enters and leaves forms.

Build bulletproof forms
You can take several steps to make each form in an application virtually bulletproof:

n Remove the Control Box, Min, Max, and Close buttons from the form at design
time. Your users will be forced to use the navigation aids you’ve built into the application
to close the form, ensuring that your application is able to test and verify the user’s input.

n Always put a Close or Return button on forms to return the user to a previous form
in the application. The buttons should appear in the same general location on every
form and should be consistently labeled. Don’t use “Close” on one form, “Return” on
another, and “Exit” on a third.

n Set the ViewsAllowed property of the form to Form at design time. This will prevent
the user from ever seeing a form as a datasheet.

n Use modal forms where appropriate. Keep in mind that modal forms force the user to
respond to the controls on the form — the user can’t access any other part of the applica-
tion while a modal form is open.

893

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 893

n Use your own navigation buttons that check for EOF (End of File) and BOF
(Beginning of File) conditions. Use the OnCurrent event to verify information or set
up the form as the user moves from record to record.

n Use the StatusBarText property on every control, to let the user know what’s
expected in each control. The Control TipText property should also be set on all
relevant controls.

n Disable the Del key or trap the OnDelete event to confirm deletions.

Validate user input
One of the most important bulletproofing techniques is to simply validate everything the user
enters into the database. Capturing erroneous data input during data entry is one of the most
import safeguards you can build into your applications. In many cases, you can use the table-level
validation (determined by each field’s ValidationRule and ValidationText properties) pro-
vided by Jet, but in many other cases you’ll want more control over the message the user receives
or the actions taken by the database in response to erroneous input.

One of the major problems with the ValidationRule property is that it isn’t checked until
the user actually tabs to the next control, making it impossible to capture erroneous null values.
You’re much better off in many cases validating entries in code. Very often you’ll want to validate
all controls on a form from the BeforeUpdate event instead of checking each and every control
on the form.

Keep the user informed
An uninformed user is a dangerous user. Keep the user informed of the database status through the
hourglass mouse cursor, message boxes, status-bar text, and progress meters. A simple progress
meter (see the “Creating and using a progress meter” section, later in this chapter) can keep a user
from frustration during long queries or printouts. The last thing you want a user doing is hitting
keys in a panic, thinking the application has crashed or is hung up.

Also, always warn the user when something dangerous (like a delete query that removes data from
the database) is about to happen. You don’t have to inform users of trivial or expected actions, but
make them aware when irreversible changes are being made.

Maintain usage logs
In the “Adding Logging to Applications” section, later in this chapter, you’ll read about adding
usage logs to your applications. These logs — which capture information such as the user’s name
or ID, the date, and the time — provide valuable information, especially in the event that an error
occurs. Although you can easily record too much information, a properly designed usage log will
permit you to pinpoint whether a certain type of error always seems to occur when a particular
user is working with the system or when a certain query is run.

894

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 894

The logging information you add to a database might include updating a time stamp on records in
a table when changes are made. Be aware, however, that the more logging you do, the slower the
application becomes. The log information will cause the database to grow as well, unless the log
information is stored in another location.

You can even tailor the level of logging to suit particular users or user groups. Using the informa-
tion captured on a login form, the application can determine at startup what level of logging to
impose during the session. To make reviewing the logs much easier, you can even log to a table
located in an external database in a different location on the network.

Develop to a Specification
All databases are meant to solve some problem experienced by users. The problem might be some
inefficiency in their current methods or an inability to view or retrieve data in a format they need.
Or you may simply be converting an obsolete database to a more modern equivalent. The effective-
ness of the solution you build will be judged by how well it resolves the problem the users are
having. Your best guarantee of success is to carefully plan the application before building any table,
query, or form. Only by working to a plan will you know how well the application will solve the
user’s problem.

Most Access development projects follow this general sequence of events:

1. Define the problem.

Something is wrong or inadequate with the current methods — a better system is needed
and Access appears to be a good candidate to produce the new system.

2. Determine the requirements.

Interviews with the client yield a description of the basic features the program should
provide. The product of these discussions is the design specification, a written document
that outlines and details the application.

3. Design the application.

The developer uses the initial design specification to design the basic structure of the
database and its user interface.

4. Develop the application.

This is where most developers spend most of their time. You spend a great deal of time
building the tables, queries, forms, and other database objects needed to meet the specifi-
cation produced in Step 2.

5. Test.

The developer and client exercise the application to verify that it performs as expected.
The application is tested against the requirements defined in the design specification, and
discrepancies are noted and corrected for Step 6.

895

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 895

6. Distribute and roll out.

After the application’s performance has been verified, it is distributed to its users. If nec-
essary, users are trained in the application’s use and instructed on how to report problems
or make suggestions for future versions.

Many inexperienced Access developers dive right into development without adequately defining
the application’s objectives or designing the database’s structure. Unless the application is incredi-
bly simple, a developer who does not work to a specification will surely end up with a buggy,
unreliable, and trouble-prone database.

Another major error is allowing the database to stray too far from the initial design specification.
Adding lots of bells and whistles to an otherwise simple and straight-forward database is all too
tempting. If implementation digresses too far from the design specification, the project may fail
because too much time is spent on features that do not directly address the user’s problem.

Before any work begins, most professional application developers demand that the client submit a
written document describing the intended application and specifying what the program is expected
to do. A well-written design specification includes the following information:

n Expected inputs: What kind of data (text, numeric, binary) will the database have to han-
dle? Will the data be shared with other applications like Excel or another database system?
Does the data exist in a format that is easily imported into an Access database, or will the
data have to be re-keyed at runtime?

n User interface: Will the users be comfortable with simple forms, or will they need cus-
tom menus, ribbons, and other user-interface components? Is context-sensitive online
help required?

n Expected outputs: What kind of reports are needed by the user? Will simple select
queries be adequate to produce the desired results, or are totals, crosstabs, and other
advanced queries necessary as well?

The whole point of a design specification is to avoid adding unplanned features that decrease the
database’s reliability without contributing to its utility. Writing a design specification before begin-
ning the actual implementation will consistently yield the following benefits:

n A guide to development effort: Without some kind of design specification, how can you
possibly know whether you’re building an application that truly meets the client’s expec-
tations? As you work through the development phase, you can avoid adding features that
don’t contribute to the application’s objectives and concentrate on those items that the
client has identified as having priority.

n Verification that the application meets expectations: All aspects of the application
must be tested to verify its operation. The best way to conduct testing is to confirm that
all design objectives have been met and that no unexpected behavior is observed during
the testing phase.

896

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 896

n Minimization of design changes during implementation: Many problems can be
avoided by sticking to the specification. One of the easiest ways to break an application is
to add new features not included in the original design. If the application was properly
planned, the specified features will have been designed to work together. Introducing
new features once development has begun will most likely result in a less reliable system.

Overall, a well-written design specification provides the basis for creating tight, bulletproof applica-
tions that fulfill the user’s requirements. At the conclusion of the project, the finished database can
be compared to the design specification, and its effectiveness in addressing the original problem can
be objectively evaluated. Without the design specification written at the beginning of a project, there
is no valid measure of how well the application resolves the problem that inspired the project in the
first place.

Securing the Environment
Obviously a serious Access application must be secured from unauthorized users. The built-in
security system (enforced by the Jet database engine, not by Access) provides multiple levels of
security. You can, for instance, secure a single database object (form, table, report) from individu-
als, groups, or individuals within groups. A user can even have multiple levels of security (pro-
vided the user has been assigned multiple login names). All of the Access security objects, their
properties, and methods are accessible throughout Access Visual Basic code.

The Access security system is described in detail in Chapter 29. As you’ll see in Chapter
29, it is possible to use code to add any level of security into an Access application

required by the users.

Setting Startup Options in Code
The options you set in the Current Database dialog box (refer to Figure 28-8) apply globally to
every user who logs into the database. There are times when you want to control these options
through startup code instead of allowing the global settings to control the application. For
instance, a database administrator ought to have access to more of the database controls (menus,
the Navigation Pane) than a data-entry clerk has.

Every option you see in the Options dialog box, except for options on the Module tab, can be set
through code. You are able to use Access VBA to control the settings of the Application object
properties listed in Table 28-1.

CROSS-REFCROSS-REF

897

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 897

TABLE 28-1

Startup Option Properties of the Application Object

Startup Option Property to Set Data Type

Application title AppTitle dbText

Application icon AppIcon dbText

Display form StartupForm dbText

Display database window StartupShowDBWindow dbBoolean

Display status bar StartupShowStatusBar dbBoolean

Menu bar StartupMenuBar dbText

Shortcut menu bar StartupShortcutMenuBar dbText

Allow full menus AllowFullMenus dbBoolean

Allow default shortcut menus AllowShortcutMenus dbBoolean

Allow built-in toolbars AllowBuiltInToolbars dbBoolean

Allow toolbar changes AllowToolbarChanges dbBoolean

Allow viewing code after error AllowBreakIntoCode dbBoolean

Use Access special keys AllowSpecialKeys dbBoolean

Depending on the username (and password) provided on the login form, you can use VBA code in
the splash screen or switchboard form to set or reset any of these properties. Clearly these proper-
ties have much to do with controlling the Access environment at startup.

Disable Startup Bypass
In old versions of Access, developers used the AutoExec macro to do things like hide the database
container, open a startup form, and execute some startup code. The problem was that any user
could easily bypass the AutoExec macro by holding down the Shift key while opening the database.

The Access startup properties provide some relief from reliance on startup macros and other routines.
Unfortunately the user is still able to bypass your carefully designed startup options by holding down
the Shift key as the application starts. This action, of course, will reveal the application’s design and
objects that you’ve hidden behind the user interface.

Fortunately, the Access designers anticipated the need for bulletproofing an application’s startup by
providing a database property named AllowBypassKey. This property, which accepts True or
False values, disables (or enables) the Shift key bypass at application startup.

898

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 898

Because AllowBypassKey is a developer-only property, it is not built into Access databases.
You must create, append, and set this property sometime during the development process. Once
appended to the database’s Properties collection, you can set and reset it as needed.

Here is the code you need to implement the AllowBypassKey property:

Function SetBypass(BypassFlag As Boolean) As Boolean
‘Returns True if value of AllowBypassKey
‘is successfully set to BypassFlag.

On Error GoTo SetBypass_Error

Dim db As DAO.Database
Set db = CurrentDb
db.Properties!AllowBypassKey = BypassFlag

SetBypass_Exit:
Exit Function

SetBypass_Error:
If Err = 3270 Then
‘AllowBypassKey property does not exist
MsgBox “Appending AllowBypassKey property”
db.Properties.Append _

db.CreateProperty(“AllowBypassKey”, _
dbBoolean, BypassFlag)

SetBypass = True
Resume Next

Else
‘Some other error
MsgBox “Unexpected error: “ & Error$ _

& “ (“ & Err & “)”
SetBypass = False
Resume SetBypass_Exit

End If
End Function

This function first tries to set the AllowBypassKey property to whatever value is passed in
as BypassFlag. If the attempt to set the property generates an error, indicating that the
AllowBypassKey property doesn’t exist, the error trap checks to see if the error value is 3270.
If it is, the AllowBypassKey property is created and appended to the database’s Properties col-
lection after being set to the BypassFlag value.

If the error is anything other than 3270, the function simply exits and doesn’t try to resolve the
problem.

899

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 899

The AllowBypassKeyDemo objects (frmAllowBypassKeyDemo and modAllow
BypassKey) in the Chap26.mdb sample file on this book’s companion CD-ROM

demonstrate how to set and use the AllowBypassKey property. The frmAllowBypassKeyDemo
form contains two toggle buttons that alternately enable or disable the bypass feature.

Setting property values
You use the Application object’s SetOption method to set each of these properties, and the
GetOption method to retrieve the current value. The syntax of the SetOption method is:

Application.SetOption OptionName, Setting

where OptionName is the name of an option in Table 28-1, and Setting is one of a number of
different data types, depending on the option being manipulated with SetOption.

In most cases, unless the property has already been set in the Access Options dialog box, the prop-
erty has not been appended to the Application object’s properties collection. You must make
sure the property exists before trying to set its value in code. The following function sets the value
of a startup property, creating and appending the property to the Application object’s Properties
collection if the property does not exist:

Function AddStartupProperty(PropName As String, _
PropType As Variant, PropValue As Variant) _
As Integer

‘Consult the Access online help for the PropName
‘and PropType for each of the startup options.
‘Adding a property requires the appropriate
‘PropType variable or the property creation fails.
Dim MyDB As DAO.Database
Dim MyProperty As Property
Const _PropNotFoundError = 3270
Set MyDB = CurrentDB
On Error GoTo AddStartupProp_Err

‘The following statement will fail if the
‘ property named PropName doesn’t exist.
MyDB.Properties(PropName) = PropValue
AddStartupProperty = True

AddStartupProp_OK:
Exit Function

AddStartupProp_Err:
‘Get here if property doesn’t exist.
If Err = _PropNotFoundError Then
‘Create the new property and set it to PropValue
Set MyProperty = MyDB.CreateProperty(PropName, _

PropType, PropValue)

ON the CD-ROMON the CD-ROM

900

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 900

‘You must append the new property
‘to the Properties collection.
MyDB.Properties.Append MyProperty
Resume

Else
‘Can’t add new property, so quit
AddStartupProperty = False
Resume AddStartupProp_OK

End If
End Function ‘AddStartupProperty

Using AddStartupProperty() is quite easy. You must know the exact property name and data
type of the property before invoking AddStartupProperty(). The following subroutine
demonstrates how to set a startup property with AddStartupProperty():

Sub cmdAddProperty_Click()
Dim iRetVal As Integer
iRetVal = AddStartupProperty(“AppTitle”, dbText,

“Marketing Contact Management”)
iRetVal = AddStartupProperty(“AppIcon”, dbText,

“C:\My Documents\World.ico”)
End Sub

Notice that both the AppTitle and AppIcon properties are string data types (dbText).

Use the RefreshTitleBar method to see the changes made by setting either the
AppTitle or AppIcon property. The syntax of RefreshTitleBar is simple:

Application.RefreshTitleBar

Getting property values
Getting the value of a property is much easier than setting a property’s value. The GetOption
method returns the value of a property. The syntax of GetOption is as follows:

vRetVal = GetOption(PropertyName)

where vRetVal is a variant and PropertyName is the name of a property in Table 28-1. The fol-
lowing code fragment shows how to use the GetOption method to read an option property:

Dim vRetVal As Variant

‘ Get the current setting.
vRetVal = Application.GetOption(“AppTitle”)

A variant is used to capture the return value because of the different data types used for startup
properties. Also, a property that has not yet been set may be null, and the variant is the only type
of variable that can accept null values without error.

TIPTIP

901

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 901

GetOption works for any of the options you see in the Options dialog box (Tools ➪

Options). For instance, the following statement returns the current setting of the
Hidden Objects check box in the View tab of the Options dialog box:

vRetVal = Application.GetOption(“Hidden Objects”).

Providing User Feedback
You can use any of numerous techniques to provide feedback to the user. One of the easiest ways
to communicate (but sometimes the most annoying to the user) is with the MsgBox function.
Although message boxes are easy to add to applications, they’re always modal and require the user
to acknowledge the message before it’s dismissed. Message boxes can disrupt the workflow if the
user is constantly required to dismiss multiple message boxes containing low-value information. In
fact, flooding a user with silly message boxes containing unimportant information may cause a user
to ignore truly important messages.

In many situations, message boxes are invaluable. A message box can be used to obtain confirma-
tion before performing an irreversible action, or to deliver important information.

The MsgBox function accepts a number of parameters that specify the message text, which buttons
to display on the message box, and the text to display in the message box title bar. The MsgBox
function returns a value indicating which button displayed on the message box has been clicked by
the user. The syntax of MsgBox is as follows:

MsgBox(Prompt[, Buttons][, Title][, HelpFile, Context])

where the function parameters are:

n Prompt: The message displayed in the message box. Prompt can be a maximum of
approximately 1,024 characters. Separate lines in Prompt with a carriage return charac-
ter (Chr(13)), a linefeed character (Chr(10)), or a carriage return-linefeed character
combination (Chr(13) & Chr(10)) between the lines.

n Buttons: A numeric expression that defines the number and type of buttons to display
in the message box, the icon style to use, which button to use as the default button, and
the modality of the message box. The Buttons parameter completely defines the nature
of the message box; therefore, there are many different values for this parameter. Table
28-2 contains all of the possible values. If omitted, the default value for Buttons is 0.

n Title: The text to display in the title bar of the message box. If you omit the title, the
name of the application is used in the title bar.

n HelpFile: A string that is the name of the Help file to use to provide help for the
dialog box. If the HelpFile parameter is provided, the Context parameter must also
be provided.

n Context: The help context number assigned to the message-box Help topic. If the
Context parameter is provided, HelpFile must also be provided.

TIPTIP

902

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 902

Table 28-2 lists the valid values for the Buttons parameter. When more than one button or set-
ting is required, sum the Constant values and pass the total to the MsgBox() function.

TABLE 28-2

MsgBox Button Constants

Button Constant Value Description

vbOKOnly 0 Display only the OK button.

vbOKCancel 1 Display the OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button in message box is default.

vbDefaultButton2 256 Second button in message box is default.

vbDefaultButton3 512 Third button in message box is default.

vbDefaultButton4 768 Fourth button in message box is default (new at Access 2007).

vbApplicationModal 0 Make the message box application modal — the user must
respond to the message box before continuing work in the
current application.

vbSystemModal 4096 Make the message box “System modal” — all applications are
suspended until the user responds to the message box.

The Button value you provide MsgBox can be a combination of several options. For instance, the
following command pops up a message box containing the famous Are you sure? message seen
in many Windows applications. The message box contains Yes, No, and Cancel buttons:

iRetVal = MsgBox(“Are you sure?”, _
vbQuestion + vbYesNoCancel, “Confirm, please”)

Alternatively, a number can be used in place of the VBA intrinsic constants. The following state-
ment is equivalent to the previous example:

iRetVal = MsgBox(“Are you sure”, 35, “Confirm, please”)

903

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 903

The 35 is the sum of vbQuestion (value = 32) and vbYesNoCancel (value = 3). You’ll
find using the VBA intrinsic constants is more self-explanatory. Figure 28-15 is an example of dif-
ferent message boxes.

FIGURE 28-15

Message boxes come in a variety of sizes and display a number of different icons.

MsgBox(), like all VBA functions, returns a value. The value returned depends on which button
displayed on the message box is clicked by the user. By default, a message box contains a single
OK button, and the return value of the MsgBox() function is 1 when the OK button is clicked.
The return values of the different message box buttons are shown in Table 28-3.

TABLE 28-3

MsgBox Return Values

Button Pressed Constant Returned Value Returned

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

904

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 904

The form named frmMsgBoxDemo in the Chap28.mdb example database contains a
number of different varieties of message boxes and command buttons. You’ll see how

the different VBA constants influence the command buttons displayed in message boxes and how
each command button returns a different value.

Creating and using a progress meter
Setting up and using a progress meter requires an initializing step, then incrementing the meter to its
next value. As you increment, you don’t just increment a counter that is managed by SysCmd. You
must explicitly set the meter’s value to a value between 0 and the maximum you set at initialization.

The following code and demonstration is contained in a form named frmSysCmdDemo
in the Chapter28.accdb database.

Use the acSysCmdInitMeter constant to initialize the meter. You must pass some text that is
used to label the meter as well as the meter’s maximum value:

Private Sub cmdInitMeter_Click()
Dim vRetVal As Variant

MeterMax = 100
vRetVal = SysCmd(acSysCmdInitMeter, _

“Reading Data”, MeterMax)

End Sub

When this subroutine is run, the Access status bar appears, as shown in Figure 28-16.

FIGURE 28-16

The progress meter after initialization

Incrementing the meter is a little tricky. In the following subroutine, the global variable MeterInc
is incremented by 10 and the meter’s position is set to the value of MeterInc.

Private Sub cmdIncrementMeter_Click()
Dim vRetVal As Variant

MeterInc = MeterInc + 10
vRetVal = SysCmd(acSysCmdUpdateMeter, MeterInc)

End Sub

Figure 28-17 shows the progress meter after five increments. It’s easy to see that the meter has
moved a distance proportional to the value of MeterInc after being incremented five times.

ON the CD-ROMON the CD-ROM

ON the CD-ROMON the CD-ROM

905

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 905

FIGURE 28-17

The progress meter midway in its movement

A meter is a valuable way to keep the user informed of the progress of a lengthy process. Because
you control its initial value and the rate at which it increments, you are able to fairly precisely
report the application’s progress to its users.

Adding Logging to Applications
Throughout this chapter you’ve seen multiple references to logging errors. An error log provides an
excellent way to perform a postmortem on an application that does not operate properly. By adding
error logging to each subroutine and function that might fail at runtime, you can see exactly what
happened at the time an error occurred, instead of relying on the user’s description of the error.

Error logging can produce undesirable results at times. For instance, an error that causes an endless
loop can easily consume all available disk space on the user’s computer if each iteration of the loop
adds a message to an error log. Use error logging wisely. You may want to add error logging to every
procedure in an application during the beta-test process, and reduce the number of calls to the logging
procedure just before distributing the application to its users. You may even provide some way that
users can turn on error logging if they encounter a reproducible problem in a database application.

You can easily activate or deactivate the calls to logging before distributing the application to users
using the compiler directives described in Chapters 8 and 11. For instance, the following call to
the Logger() function will be ignored if the DEVELOPMENT constant has not been defined in the
application.

#If DEVELOPMENT Then
Logger(“Begin function TestuserInput() “, Now())

#End If

During the development cycle, include the following statement in the Declarations section of the
form module, and calls to Logger() will be enabled. Before compiling and distributing to the
user, either comment out this statement or set the DEVELOPMENT constant to 0.

#Const DEVELOPMENT = 1

The function shown in the following listing provides an elementary form of error logging.
LogError() writes the following information to a table named tblErrorLog:

n The current date and time

n The procedure name that produced the error

n The error number

906

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 906

n The error description

n The form that was active at the time the error occurred (may be null if no form is open)

n The name of the control that was active at the time the error occurred (may be null if no
control is selected)

Function LogError (ProcName As String, _
ErrNum As Integer, ErrDescription) As Integer

Dim MyDB As DAO.Database
Dim tblErr As Table
Set MyDB = CurrentDB()
Set tblErr = MyDB.OpenTable(“tblErrorLog”)
tblErr.AddNew
tblErr(“TimeDateStamp”) = Now
tblErr(“ErrorNumber”) = ErrNum
tblErr(“ErrorDescription”) = ErrDescription
tblErr(“ProcedureName”) = ProcName
‘ The following may be null if no form
‘ or control is currently active.
tblErr(“FormName”) = Screen.ActiveForm.FormName
tblErr(“ControlName”) = Screen.ActiveControl.ControlName

tblErr.Update
tblErr.Close

End Function

This simple subroutine adds to an existing table named tblErrorLog. What you do with the
data in this table is up to you. You may, for instance, trigger a hard copy of the error log’s report at
the end of a session, or e-mail the report to a database administrator. A sophisticated application
would create tblErrorLog at the first instance of a logged error, and then check for the existence
of tblErrorLog at the end of the session.

tblErrorLog contains the fields listed in Table 28-4.

TABLE 28-4

Structure of tblErrorLog

Field Name Data Type

TimeDateStamp Date/Time

ErrorNumber Long Integer

ErrorDescription String 255

ProcedureName String 64

FormName String 64

ControlName String 64

907

Bulletproofing Access Applications 28

35_046732 ch28.qxp 11/21/06 9:02 AM Page 907

The ProcedureName, FormName, and ControlName fields are 64 characters in length — long
enough to accommodate the longest possible names for these Access database objects. Error
descriptions are usually short, but you want to provide as much space as possible to hold them.

A prototype of using LogError() is shown in the following subroutine. Notice that the
LogError() function is triggered by the subroutine’s error handler. After the error is logged,
you handle the error by other code that may be needed.

Sub MySubroutine
On Error GoTo MyErrorHandler
<Your code goes here>
Exit Sub

MyErrorHandler:
LogError(“MySubroutine”, Err.Number, Err.Description)
<Handle error here>
Resume

End Sub

The most critical items in the error log are the date and time, the error number, and the error descrip-
tion. The procedure name is useful, but it has to be hard-coded for each procedure (subroutine or
function) you log with LogError().

Summary
This chapter has taken a quick look at the steps required to bulletproof Access applications. Although
it’s true that entire books could be written on this important subject, the concepts presented in this
chapter will be adequate for most Access applications.

Obviously, bulletproofing a database application takes a lot of time. Validating all of the data entry
on every form or adding status bar messages to every control in an application isn’t easy. But the
time you spend bulletproofing your databases will be paid back many times over in reduced sup-
port calls and happier users.

908

Professional Database DevelopmentPart IV

35_046732 ch28.qxp 11/21/06 9:02 AM Page 908

Although Access provides the interface to maintain security options, it
is Jet that actually performs security functions. The Jet security model
has changed little from Access 95 to Access 2003. Jet’s security in

those versions is a workgroup-based security model; all users in a workgroup
are bound to the same security rules. The rules enforced for individual users
may vary from user to user based on the permissions assigned to each user.

Microsoft removed the user-level security features from the new Access 2007
(.accdb) format but retained the functionality to manage user-level security
for previous versions of Access databases (.mdb files). Microsoft retained the
functionality in Access 2007 to manage user-level security for the older file
formats; however, you can’t set user-level security for an Access 2007 data-
base. Other options, such as setting a database password, are available for all
database versions.

In this chapter, you will use the database file
Chapter29.mdb. This is in an Access 2000 format data-

base file that demonstrates all the functionality, including user-level security,
not available in an .accdb file.

Understanding Jet Security
Jet security is defined at the object level for individuals or groups of users.
The Jet security model is rather complex, but it isn’t too difficult to under-
stand when broken down into its core components, which are as follows:

n Workgroups

n Groups

n Users

ON the CD-ROMON the CD-ROM

909

IN THIS CHAPTER
Understanding Jet security

Deciding on a security level to
implement

Creating a database password

Using the /runtime option

Using the Current Database
options

Manipulating users and groups

Securing objects by using
permissions

Using the Access Security Wizard

Protecting Visual Basic code

Encrypting or encoding a
database

Using the Trust Center

Securing Access
Applications

36_046732 ch29.qxp 11/21/06 9:02 AM Page 909

n Object owners

n Object permissions

The two main reasons for employing user-level security are

n To protect sensitive data in the database.

n To prevent users from accidentally breaking an application by changing the objects
(tables, queries, and so on) of the application.

By using passwords and permissions, you can allow or restrict access of an individual or groups of
individuals to the objects (forms, tables, and so on) in your database. This information, known as a
workgroup, is stored in a workgroup information file.

Understanding workgroup files
Jet stores security information for databases in workgroup information files, usually the default file
is named SYSTEM.MDW. This workgroup information file is a special Access database that con-
tains a collection of usernames and passwords, user group definitions, object owner assignments,
and object permissions. The SYSTEM.MDW file is often located, by default, in C:\Documents
and Settings\<user name>\Application Data\Microsoft\Access\.

When Access opens a database, it reads the workgroup information file associated with the data-
base. Access reads the file to determine who is allowed — and at what level — to access the objects
in the database and what permissions they have to those objects.

You can use the same workgroup file for multiple databases. After you enable security for a data-
base, however, users must use the workgroup information file containing the security information.
If users use a workgroup other than the one used to define security, however, they are limited to
logging into the database as the Admin user with any permissions the database administrator
assigned to Admin user.

When securing a database, one of the first things to do is remove all permissions for the
Admin user. Removing these permissions prevents other users from opening the data-

base as the Admin user by using another Access workgroup file and obtaining the rights of the Admin
user. Users can still open the database as the Admin user by using a different workgroup, but they
won’t have any object permissions. This measure is discussed later in this chapter in the section
“Working with workgroups.”

Understanding permissions
The permissions in Jet security are defined at the object level. Each object, such as a form or report,
has a specific set of permissions. The system administrator defines which permissions each user or
group of users has for each object. Users may belong to multiple groups, and they always inherit the
highest permission setting of any of the groups to which they belong.

TIPTIP

910

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 910

For example, every table object has a set of permissions associated with it: Read Design, Modify
Design, Read Data, Update Data, Insert Data, Delete Data, and Administrator. (See Table 29-1, later
in this chapter, for a complete list of permissions and their meanings.) The database administrator
has the ability to assign or remove any or all of these permissions for each user or group of users in
the workgroup. Because the permissions are set at the object level, the administrator may give a user
the ability to read data from Table A, as well as read data from and write data to Table B, but prevent
the user from even looking at Table C. In addition, this complexity allows for unique security situa-
tions, such as having numerous users sharing data on a network, each with a different set of rights
for the database objects. All security maintenance functions are performed from the Users and
Permissions command in the Administrator group on the Database Tools ribbon (see Figure 29-1).

FIGURE 29-1

All user-level security functions are performed from the Database Tools ribbon.

Understanding security limitations
You need to be aware of the fact that you can’t depend on the Jet security model to be foolproof.
For example, security holes have been discovered and exposed in previous versions of Access —
in effect, unprotecting every database distributed under the assumption that the code and objects
were protected. The amount of resources involved in developing an application is often huge, and
protecting that investment is essential. The most that you can do for protection is to implement the
Jet security model fully and properly and use legally binding licensing agreements for all your dis-
tributed applications. Unfortunately, the security of your databases is at the mercy of software
hackers.

You should monitor the Microsoft Update service on the Web at windowsupdate.com/
to keep your Windows operating system and Office programs up to date.

We recommend that you use Microsoft Access security to lock up your tables and prevent access
to the design of your forms, reports, queries, and modules. However, if you want to control data at
the form level — for example, suppose you want to hide controls or control access to specific form-
level controls or data — you have to write your own security commands. You can also use the
operating system (Windows) to prevent access to the folders.

TIPTIP

911

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 911

Choosing a Security Level to Implement
As an Access developer, you must determine the level of security appropriate for your application;
not every database needs user-level security. If your application contains non-sensitive data or is
implemented in a fairly low-risk workgroup, you may not need the powerful permission protection
of Jet’s security. For applications that need to be secure, you need to answer the following questions:

n Which users are allowed to use the database?

n Can individual users be categorized into similar groups?

n Which objects need to be restricted for individual users or groups?

After you have made these determinations, you are ready to begin implementing security in your
application. Access includes a tool to help you implement security — the User-Level Security
Wizard (available from the Users and Permissions command’s drop-down list in the Administrator
group on the Database Tools ribbon). This chapter teaches you how you can implement security
using Access’s interface; each security element is discussed in detail. A thorough understanding of
the workings of the security model is essential in developing well-secured applications. (The wiz-
ard is discussed later in this chapter.)

This chapter uses two example databases: Chapter29.mdb and AAASecureWizard.
Later in this chapter, you see how the second database is created from the first data-

base. You should copy the Chapter29.mdb database from the CD, included with this book, into a
folder on your hard drive.

Creating a Database Password
You can use Jet security at its most basic level simply by controlling who can open the database.
You control database access by creating a password for the databases that you want to protect.
When you set a database password for a database, users are prompted to enter the password each
time they attempt to access the database. If they don’t know the database password, they are not
allowed to open the database. When using this form of security, you are not controlling specific
permissions for specific users; you are merely controlling who can and can’t access the secured
database.

To create a database password, follow these steps:

1. In Access, open the Chapter29.mdb database exclusively.

You must open the database exclusively to set the database password. To open the data-
base exclusively, click Open Exclusive from the Open pull-down menu in the lower-right

corner of the Open dialog box, as shown in Figure 29-2.

2. Select the Set Database Password command from the Database Tools group on the
Database Tools ribbon.

NOTENOTE

ON the CD-ROMON the CD-ROM

912

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 912

FIGURE 29-2

Opening a database in exclusive mode

3. In the Password field, type the password that you want to use to secure the data-
base (see Figure 29-3). For this example, use the password bible.

Access does not display the password; rather, it shows an asterisk (*) for each letter.

FIGURE 29-3

Creating a database password is the simplest way to secure your database.

4. In the Verify field, type the password again.

This security measure ensures that you don’t mistype the password (because you can’t see
the characters that you type) and mistakenly prevent everyone, including you, from
accessing the database.

For maximum security, when entering a password you should follow standard password
naming conventions. That is, you should make the password a combination of letters

and numbers that won’t represent any easily known or deduced combination. People often unwisely
use a birthday, their name, their address number, or a loved one’s name, which are all poor choices
for passwords because another person could deduce them fairly easily. On the other hand, you
shouldn’t make the password so difficult to remember that you and others accessing the database will
have to write it down to use it. A written password is a useless password.

TIPTIP

913

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 913

5. Click OK to save the password.

You can’t synchronize replicated databases that have database passwords. If you plan to
use Jet’s replication features and you need database security, you must use user-level

security.

After you save the database password, any user who attempts to open the database must enter the
password. Although this method controls who can access the database, it doesn’t control what users
are allowed to do with the objects and data after they have opened the database. To control objects,
you need to fully implement Jet’s user-level security, which is discussed in the following section.

After a database has been protected with a database-level password, you must supply
the password when linking to any of its tables. This password is stored in the definition

of the link to the table.

To remove a database password, follow these steps:

1. In Access, open the secure database exclusively.

You must open the database exclusively to be able to remove the database password.

2. Select the Unset Database Password command from the Database Tools group on
the Database Tools ribbon.

This command replaced the command labeled Set Database Password before the database
password was set.

3. In the Password field, type the password of the database (see Figure 29-4).

FIGURE 29-4

You can remove a database password by entering the password in the Unset Database
Password dialog box.

4. Click OK to unset the password.

If you remove a database password from an Access database, users are no longer required to enter a
password to access the database unless you have enabled user-level security.

Any user who knows the database password has the ability to change or remove the
database password. You can prevent this situation by removing the Administer permis-

sions from the database for all users except the database administrator. This is discussed in more
detail later in this chapter.

NOTENOTE

NOTENOTE

CAUTION CAUTION

914

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 914

Microsoft Access stores the database password in an unencrypted form. If you have sen-
sitive data, this can compromise the security of the password-protected database. When

data security is critical, you should consider defining user-level security to control access to sensitive
data. User-level security is covered in depth later in this chapter.

For an Access 2007 database (.accdb file), the Encrypt with Password command in the Database
Tools group adds a password to the database. You have to open the database exclusively to set and
unset the password. When you encrypt an Access 2007 database with a password, the data is
unreadable by other tools and forces any user opening the database to enter a password. This
higher level of security is available only in the .accdb file format.

Using the /runtime Option
If you’re not concerned with protecting your application but simply want to prevent users from mis-
takenly breaking your application by modifying or deleting objects, you can force your application
to be run in Access’s runtime mode. When a database is opened in Access’s runtime mode, all the
interface elements that allow changes to objects are hidden from the user. In fact, while in runtime
mode, it is impossible for a user to access the Navigation Pane. When using the runtime option, you
must ensure that your application has a startup form that gives users access to any objects you want
them to access. Normally this is the main menu or main switchboard of your application.

CAUTION CAUTION

915

Securing Access Applications 29

Using Visual Basic to Set a Password

You also can set a database password using Visual Basic code. The following code changes the
database password of the currently opened database:

Public Sub ChangeDatabasePassword()
On Error GoTo ChangeDatabasePasswordErr
Dim strOldPassword As String, strNewPassword As String
Dim db As DAO.Database
Set db = CurrentDb
strOldPassword = “”
strNewPassword = “shazam”
db.NewPassword strOldPassword, strNewPassword
Exit Sub
ChangeDatabasePasswordErr:
MsgBox Err & “: “ & Err.Description
Exit Sub

End Sub

If no database password is set, you pass a zero-length string (“”) as the old password parameter. If a
database password is assigned and you want to remove the password, pass the database password as
the old password parameter and pass a zero-length string (“”) as the new password.

36_046732 ch29.qxp 11/21/06 9:02 AM Page 915

To assign a form as a startup form, open the database that you want to use, click the
Microsoft Office Button, select Access Options, and click Current Database on the left

side of the window. Under Application Options, set the Display Form to the form you want to be the
startup form for the application. Startup forms are covered more in depth in the following section.

To create a shortcut to start your application in Access’s runtime mode, follow these steps, using
the Chapter29.mdb database:

1. Go to the folder that contains Microsoft Access (MSACCESS.exe).

On most computers, the MSAccess.exe file is located in the C:\Program
Files\Microsoft Office\Office12\ folder.

2. Highlight the Microsoft Access program and select File ➪ Create Shortcut, or right-
click the program file and select Create Shortcut from the pop-up menu.

Windows creates a shortcut in the same folder, naming it Shortcut to MSAccess.exe.

3. Right-click the newly created shortcut, select Properties from the menu, and then
click the Shortcut tab when the Properties dialog box opens.

4. In the Target: field, append the following parameters to the path of MSAccess.exe
(program): A space, the full path name and filename of the database (in quotation
marks) to open in runtime mode, another space, and then /runtime.

For example, the following command line starts Access and opens the Chapter29.mdb
database in runtime mode on our computers:

C:\Program Files\Microsoft Office\Office12\MSAccess.exe
C:\Access 2007 Access Auto Auctions\Chapter29.mdb” /runtime

The path to MSAccess.exe should have already been in the Target: field. Note that
Windows automatically places the path and filename for MSAccess.exe in quotation

marks. The /runtime switch should not be enclosed in quotes. If you enclose the /runtime switch
in quotes, an error occurs when you attempt to execute the shortcut.

5. After you’ve specified the path and filename, placing the /runtime switch at the end
of the Target field, you can optionally remove the path name in the Start In field.

Figure 29-5 shows how the Shortcut properties should look at this point.

6. After the fields have been updated, click the Apply button to process the changes
and save the shortcut.

7. You can rename the shortcut icon to any name that you want and move it from the
current folder to another folder, or even to the desktop.

After you have created the shortcut, you can distribute or re-create the same shortcut for
each user installation.

NOTENOTE

NOTENOTE

TIPTIP

916

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 916

FIGURE 29-5

Modifying the Target and Start in fields of the shortcut by using the /runtime switch of
Access 2007

If your database has a password associated with it, the user will still be prompted to
enter the password prior to opening the database.

Access contains a new extension —.accdr— that automatically puts your Access
2007 database in the runtime environment when it’s opened. Change your database

file’s extension from .accdb to .accdr to create a locked-down version of your Access 2007 data-
base. Change the extension back to .accdb to restore full functionality.

Using the Current Database Options
A slightly less secure alternative to using the /runtime option or the .accdr extension is to set
the Current Database options. This alternative is not a complete solution for situations where tight
security is paramount. Figure 29-6 shows the Access Options window, accessible from the
Microsoft Office Button. These options are available for both the .accdb and .mdb file formats.

NEW FEATURENEW FEATURE

TIPTIP

917

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 917

FIGURE 29-6

The Current Database options provide another way to secure an application.

By making the appropriate specifications in the Access Options window, you can do the following:

n Assign a title to the application

n Assign an application icon to the application

n Assign a form or data access page to immediately run when the database is open

n Prevent the Navigation Pane from being displayed

n Prevent the status bar from being displayed

n Designate a menu bar to be used on startup of your application.

n Designate a shortcut menu to be used on startup of your application

n Prevent full menus from being displayed

n Prevent Access’s built-in shortcut menus from being displayed

n Prevent users from modifying toolbars (toolbar/menu changes)

n Prevent users from using Access’s special keys to display the Navigation Pane, Immediate
window, or VB window, or pause execution

918

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 918

To designate frmSwitchboard as the default form to open whenever the Chapter29.mdb
database opens, follow these steps:

1. Open the Chapter29.mdb database and select Access Options from the Microsoft
Office Button, and then click Current Database.

2. Click the Display Form field and select frmSwitchboard from the drop-down list
(refer to Figure 29-6).

3. Click OK.

Chapter 35 covers the Current Database options in more detail.

After you have assigned a form to open automatically, you can also specify that the Navigation Pane
or status bar not be displayed to give even greater security to your application. Using a database
password and the Current Database options, you can assign minimum security to the database and
your application.

The user can bypass these options by simply holding down the Shift key while opening
the database. However, if you assign a database password, users are required to enter

the password to use the database.

Using the Jet User-Level Security Model
Most often when security is required, setting a database password and runtime option is simply not
enough. Access 2003 and earlier allowed you to set user-level security. While this is no longer
available in Access 2007 databases, you can still administer databases created in previous versions
of Access.

When you need more security, you can use Access user profiles that are implemented by the user-
level/object permissions security of Jet. The Jet Database Engine offers additional levels of cus-
tomization and security for your application. When using Jet level security, you need to complete
the following series of steps:

1. Select or create a workgroup database.

2. Define the workgroup database’s security groups.

3. Create the users of the workgroup database.

4. Define permissions for each user and security group.

5. Enable security by setting an Admin user password.

CAUTION CAUTION

CROSS-REFCROSS-REF

919

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 919

Enabling security
Jet database security is always on. Whenever a new workgroup database is created, an Admin user
is automatically created within the workgroup. This Admin user has no password assigned to it.
When the Admin password is blank, Access assumes that any user attempting to open the database
is the Admin user, and that this user is automatically logged in to the database as the Admin user.
To force Access (Jet) to ask for a valid username and password to log in to the database (see Figure
29-7), you simply create a password for the Admin user. (Creating passwords is discussed later in
this section.) To disable security, clear the Admin user’s password. The security permissions that
you designed are still in effect, but Access doesn’t ask for a username and password; it logs on all
users as the Admin user and gives them any permissions assigned to the Admin user. Be careful
about clearing the Admin user’s password when you have modified other users’ permissions.

FIGURE 29-7

When security is enabled, Jet forces all users to enter a valid username and password to use the secured
database.

Any changes that you make to security won’t take effect until you restart Access. If you
have cleared the Admin password only to find that some or all of the Admin user’s per-

missions have been revoked, open the database and create a password for the Admin user. Then exit
Access and restart Access (not the database). When you restart Access, you are prompted to enter a
username and password.

TIPTIP

920

Professional Database DevelopmentPart IV

What Is Jet and a User Profile?

When you create a Microsoft Access database (.mdb or .mde), Access uses an internal program
to create and work with the database and its objects. Microsoft calls this internal program the

Jet Database Engine. Its purpose is to retrieve and store data in user and system databases. Some
people refer to the Jet engine as a data manager that the database system is built upon. Jet works only
with Access databases; it doesn’t work with other ODBC databases, such as SQL Server, Oracle, and
others. When you installed Access, the installation program created several Registry settings for the
Jet engine. You can use the Registry Editor to examine and even change these settings for Access.
However, we highly recommend you not change the setting in the Microsoft Windows Registry.

Using Jet, you can build an Access user profile, comprised of a special set of Window’s Registry keys,
to override the standard Access and Jet database engine settings.

36_046732 ch29.qxp 11/21/06 9:02 AM Page 920

Working with workgroups
A workgroup is a collection of users, user groups, and object permissions. You can use a single
workgroup file for all of your databases, or you can use different workgroups for different data-
bases. The method that you use depends on the level of security that you need. If you give
Administrative rights to users of some databases but not to users of other databases, you need to
distribute separate workgroup files with each database. Access always uses a workgroup file when
you open it. By default, this workgroup file is the System.mdw workgroup file. This file comes
with Access 2007.

Creating a new workgroup
If you’ve used the Workgroup Administrator in previous versions of Access to create and join
workgroups, you’ll be sad to see it’s been removed from Access 2007. To create a new workgroup
file, use the Workgroup Administrator in previous versions of Access or use the User-Level Security
Wizard, covered later in this chapter.

Joining an existing workgroup
The Workgroup Administrator in previous versions of Access also let you switch between work-
group files. In Access 2007, you must use the /wrkgrp switch on the command line to use a spe-
cific workgroup.

To create a shortcut that opens an Access database using existing workgroup, follow these steps:

1. Go to the folder that contains Microsoft Access (MSAccess.exe).

2. Highlight the Microsoft Access program and select File ➪ Create Shortcut, or right-
click the program file and select Create Shortcut from the pop-up menu.

Windows creates a shortcut in the same folder, naming it Shortcut to MSAccess.exe.

3. Right-click the newly created shortcut, select Properties from the menu, and then
click the Shortcut tab when the Properties dialog box opens.

4. In the Target field, append the following parameters to the path of MSAccess.exe
(program): A space, the full pathname and filename of the database to open in run-
time mode, another space, and then /wrkgrp.

For example, the following command line starts Access and opens the Chapter29.mdb
database with the AutoAuction workgroup file:

“C:\Program Files\Microsoft Office\Office12\MSAccess.exe”
“C:\Access 2007 Access Auto Auctions\Chapter29.mdb” /wrkgrp
“C:\Access 2007 Access Auto Auctions\AutoAuction.mdw”

Working with users
Every time a user opens an Access (Jet) database, Jet must identify the user opening the database. In
Access, security is always enabled, regardless of whether you explicitly created a workgroup for your
database. If you did not define a workgroup, Jet assumes that any user who opens the database is

921

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 921

the Admin user. When a new workgroup is created, Access automatically creates a default user
named Admin. The Admin user automatically receives full permissions to all objects in the database.
Obviously, when you secure a database, you don’t want everyone to be able to open the database
with full permissions on all objects, so you must create additional users for the workgroup.

Adding and deleting user accounts
To add, delete, and edit user information, you use the User and Group Accounts dialog box (see
Figure 29-8). To open the User and Group Accounts dialog box, select User and Group Accounts
from the Users and Permissions command’s drop-down in the Administrator group on the Database
Tools ribbon. The Users tab of the User and Group Accounts dialog box consists of two sections:
User and Group Membership. You use the User section to create and maintain usernames and pass-
words. You use the Group Membership section to assign users to user groups. Assigning users to
groups is discussed in detail later in this chapter.

FIGURE 29-8

Creating and maintaining users in the User and Group Accounts dialog box.

To fully secure your database with users and groups, you should generally follow these steps:

1. Create a new user.

2. Add the new user to the Admins group.

3. Remove the Admin user from the Admins group.

4. Assign all object ownerships to the new user.

When you create a user, you supply the username and a personal identifier. Jet then combines
these two items and processes them in a special algorithm, producing a unique security ID (SID). It
is this SID that Jet uses to recognize users. To re-create a user in the workgroup, you need to know
the username and the personal ID (PID) that was used to create the user. Consequently, you should
always write down and store all usernames and PIDs that you create in a safe place.

922

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 922

To create a new user in a workgroup, follow these steps:

1. Open the database Chapter29.mdb.

2. Select User and Group Accounts from the Users and Permissions command’s drop-
down in the Administrator group on the Database Tools ribbon.

3. Select the New button in the User section to display the New User/Group dialog
box (see Figure 29-9).

FIGURE 29-9

Jet combines the username and Personal ID to create a unique SID for the user.

4. Enter the name Student1 for the name, and enter a unique Personal ID of 1234.

You can enter any appropriate information into these two fields, if you don’t want to use
these example names. Write this information down and store it in a safe place; you will
need it if you have to re-create the user in the workgroup.

5. Click OK to save the new user.

After you create the new user, Student1, you can assign group memberships and/or a password for
the user. Notice that Student1 is automatically a member of the Users group. Any new member
must at least belong to this group. You can make Student1 a member of the Admins group by sim-
ply clicking the Add button in the Group Membership section.

To secure your database fully, you must remove all permissions for the Admin user.
(Defining Group Permissions is covered later in this chapter.) All Admin users share the

same SID in all workgroups, on all machines. If you don’t remove the permissions for the Admin user,
an unauthorized user using a different workgroup can open the database as the Admin user with all
permissions of the Admin user. The Admin user can’t be deleted, so the Admin user account needs to
be adjusted accordingly.

If you want to delete the user Student1 that you just created, follow these steps:

1. Display the User and Group Accounts dialog box.

2. From the User Name drop-down list, select Student1.

3. Click the Delete button to delete the selected user.

CAUTION CAUTION

923

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 923

Creating and changing user passwords
Any user who is a member of the Admins group can remove a password from any user account.
A user who is a not a member of the Admins group can change his or her own password. However,
a user who is not a member of the Admins group cannot change or create a password for any
other user.

When Access opens and a password has been assigned to any user, the Logon dialog box
displays (refer to Figure 29-7).

If no passwords are assigned to any users, however, Access automatically opens, using the Admin user.
This means that any additional users that you create in Security will not be able to set a password. To
correct this, you need to create a password for the Admin user. Then exit from Access and restart
Access, logging on as the user whose password you want to change.

To create or change the Admin password, follow these steps:

1. Open the database Chapter29.mdb.

2. Display the User and Group Accounts dialog box.

Make sure that the username selected is Admin (not Student1 that you created earlier).

3. Click the Change Logon Password tab (see Figure 29-10).

FIGURE 29-10

The Change Logon Password tab of the User and Group Accounts dialog box. Notice
that the name is “Admin” and can’t be changed.

4. Because no password has been assigned to Admin, leave the Old Password field
blank.

CAUTION CAUTION

CAUTION CAUTION

924

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 924

If you are logging on as the Admin user after you have assigned a password, or if a pass-
word exists for the user that you logged on as, enter it in the Old Password field. If no

password is assigned to the user, leave the Old Password field blank.

5. Move to the New Password field and enter the new password Admin (or any other
password that you want to assign — remember that Access’s security is case-sensitive)
in the New Password field.

Access won’t show you the word that you are typing; rather, it shows an asterisk for each
character that you type.

6. Move to the Verify field and enter the new password Admin again.

Again, remember that Access’s security is case-sensitive. Each character is represented
with an asterisk.

7. Click the Apply button to save the new password for the Admin user.

8. Click OK to close the User and Group Accounts dialog box.

After you have created a password for the user, you have to exit from Access and restart
it for the changes to take effect. Simply closing the database and opening it again won’t

activate the security changes (such as assigning a password to Admin) that you made.

Any user who is a member of the Admins group can clear the password of another user, so that user
can log on if he or she has forgotten his or her password.

To change another person’s password, you have to restart Access and open the database by logging
on as the user whose password you want to change.

Working with groups
Groups are collections of users. A user may belong to one or more groups. You use groups to group
multiple users who have the same object permission privileges. You can then define object permis-
sions to the group once, versus having to assign them individually for each user. When you create
a new user, you simply add the user to the group that has the object permission privileges that the
new user should have.

For example, you may have a number of users in a credit department and in a sales department. If
you want to allow all these users to look at a customer’s credit history but restrict the sales staff to
viewing only basic customer information, you have the following options:

n Create an individual user account for each user in each department and assign object per-
missions for each user.

n Allow all users in the credit department to log on as one user, and allow all users in the
sales department to log on as a different user. You can then restrict the object permissions
for each of these two users.

TIPTIP

TIPTIP

925

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 925

n Create an individual user account for each user in each department and create a group
account for each department. You can then make the permissions assignments for each of
the two groups and place each user into his or her respective group to inherit the group’s
permissions.

Although creating a unique user account and assigning specific permissions to each user is a valid
scenario, it is an administrator’s nightmare. If policy dictates that one department needs permissions
added or revoked, the change has to be made to each of the users’ accounts in that department.

The second method is straightforward and simple but presents many problems. If a user transfers
from one department to another, he knows the usernames and passwords for both departments
and may be able to retrieve data that he is no longer authorized to view. In addition, if an employee
leaves, the username and password need to be changed, and each user of the workgroup has to be
made aware of the change. In a multiuser environment, creating a unique user account for each
user and grouping them accordingly is a much better solution.

With the third option, the change can be made to the department group once, and all users inherit
the new permission settings. It’s recommended you set the permissions at the group level, rather
than the individual user level.

Adding and deleting groups
Just as Access automatically creates an Admin user in all new workgroups, it also automatically cre-
ates two groups: Users and Admins. Every user account in the system belongs to the Users group;
you can’t remove a user from the Users group. The Admins group is the all-powerful, super-user
group. Users in Admins can add and delete user and group accounts, as well as to assign and
remove permissions for any object for any user or group in the workgroup. In addition, a member
of the Admins group has the ability to remove other user accounts from the Admins group. For
this reason, you need to carefully consider which users you allow to be a member of the Admins
group. The Admins group and the Users group are permanent groups; they can never be deleted.

Access doesn’t enable you to remove all users from the Admins group; one user must
belong to the Admins group at all times (the default is the user named Admin). If you

were allowed to remove all users from the Admins group, you could set security so tightly that you
would never be able to bypass it yourself! In general, when securing a database, you should place
only one user and one back-up user in the Admins group.

Unlike the Admin user’s SID, which is identical in every Access workgroup, the Admins
group’s SIDs are not identical from workgroup to workgroup, so unauthorized users

using a workgroup other than the one that you used to define security can’t access your database as a
member of the Admins group. The Users group’s SIDs are the same throughout all workgroups, how-
ever, so you need to remove all permissions for the Users group. If you don’t remove permissions
from the Users group, any user in any workgroup can open your database with the Users group’s
permissions.

NOTENOTE

TIPTIP

926

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 926

To create a new group named Sales, follow these steps:

1. Open Access and then open the Chapter29.mdb database and log in with the Admin
username and password. Then display the User and Group Accounts dialog box.

2. Select the Groups tab.

3. Click the New button to display the New User/Group dialog box (see Figure 29-11).

FIGURE 29-11

Jet uses the group name and personal identifier to create a unique SID for a group, just
as it does for user accounts.

4. Just as you do to create users, enter the group name Sales and a personal ID of
Dept405.

If you aren’t following along with this example, you can enter your own group name and
personal ID. Also, just as before, write down this information and put it in a safe place
because you will need it if you ever need to re-create the group.

5. Click OK to save the new group.

6. After this is complete, click OK in the User and Group Accounts dialog box to save
your work.

If, at a later time, you want to delete the Sales group that you just created, follow these steps:

1. Display the User and Group Accounts dialog box.

2. Select the Groups tab (refer to Figure 29-11).

3. From the drop-down list, select the Sales group.

4. Click the Delete button to delete the selected group.

927

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 927

Assigning and removing group members
Assigning users to and removing users from groups is a simple process. You use the Users tab on
the User and Group Accounts dialog box to add to and remove users from a group. You may place
any user in any group, and a user may belong to more than one group. You cannot remove a user
from the Users group nor can you remove all users from the Admins group; you must always have
at least one user in the Admins group.

To add the user Student1 to the new group Sales, follow these steps:

1. Open Chapter29 and display the User and Group Accounts dialog box.

2. From the User Name drop-down list, select the user Student1 to modify the group
assignments.

3. To assign the user Student1 to the group Sales, select the Sales group in the
Available Groups list and click the Add button (see Figure 29-12).

The Sales group displays in the Member Of list.

FIGURE 29-12

Assigning users to groups makes controlling object permissions much easier for the sys-
tem administrator.

4. Click OK to save the new group assignments.

To remove the user Student1 from the group Sales, follow these steps:

1. Display the User and Group Accounts dialog box.

Make sure that the username selected is Student1 (not Admin).CAUTION CAUTION

928

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 928

2. Select the group Sales in the Member Of list and click the Remove button.

The Sales group no longer displays in the Member Of list.

3. Click OK to save the new group assignments.

4. Because Jet uses the same SIDs for all Admin user accounts throughout all work-
groups, you always need to remove the Admin user from the Admins group when
securing a database.

Figure 29-12 shows that the user Student1 has been added to the Sales group. Notice that
Student1 is a member of two groups: Users and Sales. Before leaving this section, assign
Student1 to the Admins group so that you can use this example later in this chapter.

The only remaining task is to set the appropriate object permissions for the Users and Sales groups.

Securing objects by using permissions
After you define your users and groups, you must determine the appropriate object permissions for
each group. Permissions control who can view data, update data, add data, and work with objects
in Design View. Permissions are the heart of the Jet security system and can be set only by a mem-
ber of the Admins group, by the owner of the object (see the next section), or by any user who has
Administrator permission for an object.

Setting an object’s owner
Every object in the database has an owner. The owner is a user account in the workgroup that is des-
ignated to always have Administrator rights to the object. Administrator rights override the permis-
sions defined for the logged-on user or defined for any of the user’s groups. You can designate one
user to be the owner of all the objects in a database, or you can assign an owner to individual objects.

Access queries require special consideration when assigning owners to objects. When creating a
query, you can set the Run Permissions property of the query to either User’s or Owner’s (see
Figure 29-13). When a password is defined for a workgroup, Run Permissions is automatically
set to User’s. Setting Run Permissions to User’s limits the query users to viewing only the data
that their security permissions permit. If you want to enable users to view or modify data for which
they do not have permissions, you can set the Run Permissions property to Owner’s. When the
query is run with the Owner’s permissions (WITH OWNERACCESS OPTION in an SQL statement),
users inherit the permissions of the owner of the query. These permissions are applicable only to
the query and not to the entire database.

When a query’s Run Permissions property is set to Owner’s, only the owner can
make changes to the query. If this restriction poses a problem, you may want to set

the owner of the query to a group rather than to a user account. Note that only the owner of an
OwnerAccess query can change the query’s owner.

If you haven’t assigned passwords to Admin or other users, the user is automatically
assumed to be Admin and the query’s Run Permissions property is set to Owner’s.NOTENOTE

TIPTIP

929

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 929

FIGURE 29-13

Setting a query’s Run Permissions determines which users can run or modify the query.

To change the owner of any object in the database, follow these steps:

1. Select User and Group Permissions from the Users and Permissions command’s
drop-down list in the Administrator group on the Database Tools ribbon to display
the User and Group Permissions dialog box.

2. Select the Change Owner tab (see Figure 29-14).

FIGURE 29-14

Transferring ownership of one or more tables from the Admin user to the Sales group

3. Select the object (or objects) whose ownership you want to transfer.

You can select the type of objects to display by changing the Object Type drop-down list.

930

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 930

4. Select the user or group that you want to make the owner of the selected object. To
select a group name, first select the List: Groups radio button.

5. Click the Change Owner button to change the object’s owner to the selected user
or group.

Each object in a database has an owner. The database itself also has an owner. You can
view the owner of the database by selecting Database from the Object Type drop-down

list. You can’t change an object’s owner by using Access’s interface. The only way to change a data-
base’s owner is to log on as the user that you want to make the owner of the database, create a new
database, and then import the original database into the new database by using the External Data rib-
bon. When you import a database, the current user is assigned as the new owner of the database and
all of its database objects. This is essentially what the Security Wizard (discussed later in this chapter)
does for you.

Setting object permissions
Object permissions are the heart of Jet security. You can set one or more object permissions at a time
for a user or group. When assigning permissions, you must keep in mind that some permissions
automatically imply other permissions. For example, if you assign a user Read Data permission for a
table, the Read Design permission is also granted because a table’s design must be available to access
the data. A more complex example is assigning permission for Insert Data — this automatically grants
permission for Read Data and Read Design.

An object’s permission assignments are persistent until one of the following conditions occurs:

n A member of the Admins group changes the object’s permissions.

n The object is saved with a new name by using the Save As command from the File menu.

n The object is cut and pasted in the Database window.

n The object is imported or exported.

If any of the preceding actions occurs, all permissions for the manipulated object are lost and you
need to reassign them. When you perform any of these actions, you are actually creating a new
object. Access assigns default permissions for each object type.

There are two ways that permissions can be granted to a user:

n Explicit permissions are permissions granted directly to a user. When you manually
assign permissions to a user, no other user’s permissions are affected.

n Implicit permissions are permissions granted to a group. All users belonging to a group
inherit the permissions of that group.

Because permissions can be assigned implicitly and because some permissions grant
other permissions (Insert Data, Read Data, and Read Design permissions), users may be

able to grant themselves permissions that they do not currently have. Because of this possibility, you
must plan carefully when assigning permissions to groups of users and to individual users.

NOTENOTE

NOTENOTE

931

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 931

To assign or revoke a user’s permissions for an object, follow these steps:

1. Display the User and Group Permissions dialog box and select the Permissions tab.

2. In the Object Type drop-down list, select the type of object whose permissions you
want to change.

3. In the User/Group Name list box, select the user or group account that you want to
modify.

To see a list of all Groups, click the List Groups radio button under the User/Group Name
list box.

4. In the Object Name list box, select the object (or objects) that you want to modify.

5. In the Permissions grouping section, select or unselect the permissions check boxes
for the object(s).

6. Click Apply to save the permission assignments.

Remember that Admin user SIDs are identical throughout all workgroups. So after you assign
Administer permissions to a specific user, you need to remove all permissions for the Admin user
to secure your database. Figure 29-15 shows the Admin user’s permissions being revoked for all
tables in the database. Notice that all check boxes have been cleared for all tables. Clearing the
check boxes prevents an Admin user from doing anything with table objects. You must repeat the
process for each Object type until the Admin user has no permissions for any object.

FIGURE 29-15

Removing all permissions for the Admin user is critical to securing your database.

Setting default object permissions
You can create default permission assignments for each type of object in a database. These
default permissions are assigned when you create new objects in the database. You set the default

932

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 932

permissions just as you set them for any other object’s permissions. You select the user or group
to assign the default permissions, but you do not select a specific object name. Instead, select the
first item in the Object Name list that is enclosed in <> and begins with New. When you select the
Object Type Table, for example, you select <New Tables/Queries> in the Object Name list. When
you assign permissions for users and groups to these <New> items, the permissions are used as
defaults for all new objects of that type.

When removing default permissions for table objects, make sure that users have the
necessary permissions to create new tables. Otherwise, users will not be able to execute

make-table queries.

Setting database permissions
Just as objects in a database have permissions, the database itself also has its own permissions.
Selecting Database from the Object Type drop-down list displays the database permissions that can
be modified (see Figure 29-16). The database permissions enable you to control who has adminis-
trative rights to the entire database, who can open the database exclusively (locking out other
users), and who can open or run the database.

FIGURE 29-16

Assigning permissions for the entire database

Securing your database for distribution: A basic approach
If you are securing a database for distribution, setting up detailed security for multiple users for
all the objects in your database may not be important to you. Often, the only concern with ship-
ping a secured database is protecting your development investment by securing the design of the
application’s objects and code. If you need this type of protection, you can distribute your applica-
tion as an .mde or .accde file (see the section “Protecting Visual Basic Code”). Another method is
to follow these steps:

CAUTION CAUTION

933

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 933

1. Create a workgroup to distribute with your database.

2. Remove the Admin user from the Admins group.

3. Remove all permissions for the Users group.

4. Remove all design permissions for the Admin user for all objects in the database.

5. Do not supply a password for the Admin user.

Remember that if you do not specify a password for the Admin user, Access logs on all users as the
Admin user. Because the Admin user has no rights to the design of any object, users cannot access
objects or code in Design View.

Table 29-1 summarizes the permissions that you can assign.

TABLE 29-1

Summary of Assignable Permissions

Permission Permits a User To Applies To

Open/Run Open a database, form, or report, or run a macro. Databases, forms, reports,
and macros

Open Exclusive Open a database with exclusive access. Databases only

Read Design View objects in Design View. Tables, queries, forms, and
macros

Modify Design View and change the design of objects, or delete them. Tables, queries, forms, and
macros

Administer For databases, set database password, replicate a Databases, tables, queries,
database, and change start-up properties. For database forms, reports, and macros
objects, have full access to objects and data, including
the ability to assign permissions.

Read Data View data. Tables and queries

Update Data View and modify but not insert or delete data. Tables and queries

Insert Data View and insert but not modify or delete data. Tables and queries

Delete Data View and delete but not modify or insert data. Tables and queries

Using the Access Security Wizard
Access includes the Security Wizard tool to assist you in securing your database. The Security
Wizard makes it easy for you to select the objects to secure. It then creates a new database contain-
ing secured versions of the selected objects. The Security Wizard assigns the currently logged-in

934

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 934

user as the owner of the objects in the new database and removes all permissions from the Users
group for those objects. The original database is not modified in any way. Only members of the
Admins group and the user who ran the Security Wizard have access to the secured objects in the
new database.

When you use the Security Wizard, make sure that you are logged in as the user that you
want to become the new database’s owner. You must already belong to the Admins group

and you cannot log on as Admin. If you log on as Admin, Access reports an error when you attempt to
run the Security Wizard. If you receive this error, simply log on as another Admins group user.

To start the Security Wizard, log onto the database as a user who is a member of the Admins
group. Then select User-Level Security Wizard from the Users and Permissions command’s drop-
down in the Administrator group on the Database Tools ribbon.

Follow these steps to create and open the AAASecureWizard database.

These steps assume that you have created the user Student1 and assigned the user to the
Admins group.

1. Exit Access and open the folder that contains Chapter29.mdb. Copy this file and
name the new copy AAASecureWizard.mdb.

2. Start Access and open the AAASecureWizard database.

When Access attempts to open the database, the Logon dialog box displays. The Logon
dialog box displays automatically because the AAASecureWizard database inherited its
permissions from the original database (Chapter29).

3. Enter Student1 in the Name field and click OK.

The user Student1 has no assigned password. Access opens the AAASecureWizard database.

4. Select User-Level Security Wizard from the Users and Permissions command’s drop-
down in the Administrator group on the Database Tools ribbon to start the wizard.

The wizard’s first page displays a message advising you that you need to use the existing
workgroup information file, or it can create a new one for the current open database (see
Figure 29-17).

5. Select Create a new workgroup information file and click the Next button.

When you select Create a new workgroup information file, the next screen, shown in
Figure 29-18, asks you for the filename for the new file, a Workgroup ID number
(WID) — which you should write down and save — and, optionally, your name and
company.

6. When the new workgroup information file screen appears, it automatically assigns
a random 20-character string of numbers and letters to the WID (Workgroup ID)
field. You can change this WID to any value.

NOTENOTE

TIPTIP

935

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 935

FIGURE 29-17

The Security Wizard helps jump-start your security implementation.

FIGURE 29-18

Assigning a unique WID and name to new workgroup information file

7. As Figure 29-18 shows, you can choose to make this the new default workgroup file
for all databases (not recommended), or have Access create a shortcut to use this
file only for this database (default). Selecting the option to create a shortcut associ-
ates this file with only one database. Click the Next button to display the next
screen of the wizard.

936

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 936

8. The next screen of the wizard, shown in Figure 29-19, lets you select the objects to
secure. By default, the wizard secures all objects in the database. If you deselect an
object type (such as Tables or Forms), none of the objects of that type are exported
to the secured database. If you do not want to restrict security permissions for a set
of objects but still want those objects included in the new secured database, be sure
to select the objects in the wizard. Later on, modify the user and group permissions
for those objects in the new secured database. When you are satisfied with your
object selections, click the Next button to continue.

FIGURE 29-19

Selecting the objects to secure

9. The next screen of the wizard, shown in Figure 29-20, asks you to create an
optional security group account for a series of group actions.

These include

n Backup Operators: Can open the database exclusively for backing up and compacting

n Full Data Users: Can edit data, but not alter design

n Full Permissions: Has full permissions for all database objects, but can’t assign
permissions

n New Data Users: Can read and insert data only (no edits or deletions)

n Project Designers: Can edit data and objects, and alter tables or relationships

n Read-Only Users: Can read data only

n Update Data Users: Can read and update, but can’t insert or delete data or alter
design of objects

10. Check all the optional security groups displayed in the wizard screen. After you
select all groups, click the Next button to continue.

937

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 937

FIGURE 29-20

Additional optional security groups for the database

11. Notice that the next page of the wizard, shown in Figure 29-21, lets you choose to
grant permissions to the Users group (the default is no permissions). By selecting
Yes, you are able to assign rights to all object types in the database. Figure 29-21
shows this page with the Yes option selected. However, you should select the
default choice: No — the Users group should not have any permissions. Click the
Next button to continue to the next wizard screen.

FIGURE 29-21

Choosing whether to assign permissions to the Users group

938

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 938

If you decide to grant any permissions to the Users group, you should be aware that any-
one with a copy of Access will have the same permissions that you assign to this group.

Essentially, you are exposing the database to a security breach if you assign rights to this group.

12. The next page, shown in Figure 29-22, lets you add users to the workgroup infor-
mation file. To add a user, enter the name and password information in the appro-
priate fields and click the Add a New User button.

FIGURE 29-22

Adding users and passwords to the workgroup information file

As Figure 29-22 shows, you can also remove users from the list by simply selecting their
name from the list box on the left and selecting the Delete User from the List button.
Click the Next button to continue.

13. The next wizard screen to display, shown in Figure 29-23, enables you to assign
users to groups in your workgroup information file. If you added optional groups
from the previous page (as shown in Figure 29-20), you can assign a user to any
of these groups by checking the appropriate check box. To assign rights to a user,
simply select the user from the drop-down list and then assign that user to groups
using the check boxes. By default, all users, except the person creating the wizard,
are assigned to new groups. Click the Next button to continue on to the next screen.

14. The last page of the wizard displays, as shown in Figure 29-24. In this screen, the
Security Wizard asks you to provide a name for the old, and now unsecure, data-
base. The default name is the same name as the current database with the extension
.bak. Click the Finish button to finish creating the new secure database.

CAUTION CAUTION

939

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 939

FIGURE 29-23

Adding users to groups for group rights

FIGURE 29-24

In the final wizard screen, the Security Wizard asks you to assign a name to the old
database.

Technically, the Security Wizard doesn’t make any modifications to the current database; rather, it
makes a back-up copy by using the name that you specify and creates an entirely new database
with secured objects. However, the new database is given the name of the original database.

940

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 940

When you distribute your secured application, be sure to distribute the database that
the Security Wizard created for you.

When the Security Wizard has finished creating the new database, it generates a report called One-
Step Security Wizard Report, as shown in Figure 29-25. The report contains all of the settings used
to create the users and groups in the workgroup information file. You should keep this informa-
tion. You will need it if you ever have the need to re-create the workgroup file.

FIGURE 29-25

The One-step Security Wizard Report summarizes the choices made while running the Security Wizard.

If you click the Finish button and Access finds any problems, it won’t create the security
database or the backup that you requested. Generally, you get this error if you have cre-

ated the database and logged on as a user that secured the table and then relogged on as another user
to secure it. This wizard works best with databases that have not had any previously defined security.

Generally, making a copy of the original database and working with the secured database is a good
idea. If you make changes to the original database, you need to run the Security Wizard again to
create a secured version of the database. In addition, making a copy of the original database and
then removing it from development helps prevent accidentally distributing the unsecured database.

CAUTION CAUTION

CAUTION CAUTION

941

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 941

Encrypting/Encoding a Database
When security is of utmost importance, one final step that you need to take is to encrypt or encode
the database. Although it takes a great deal of skill (far more than the average computer user — or
developer — possesses), it is possible to view the structure of an unencrypted/decoded database.
A skilled hacker may use this information to gain full access to your secured database. Microsoft
improved the encryption for the .accdb file format but still uses the old technique for the .mdb
file format (and refers to it as encoding rather than encrypting.)

To encrypt an Access 2007 database (.accdb), follow these steps:

1. Open an existing .accdb database (for example, Chapter26.accdb) exclusively.

2. Select the Encrypt with Password command from the Database Tools group on the
Database Tools ribbon.

3. In the Password field, type the password that you want to use to secure the data-
base (see Figure 29-3). For this example, use the password bible.

Access does not display the password; rather, it shows an asterisk (*) for each letter.

4. Retype the same password in the Verify field and click OK.

Encoding an Access 2003 or earlier database makes using hacker tools to gain any useful informa-
tion about the database more difficult. Only the database owner or a member of the Admins group
can encode or decode an .mdb file.

To encode an .mdb file, follow these steps:

1. Open an existing .mdb database (for example, Chapter29.mdb) exclusively.

2. Select the Encode/Decode Database command from the Database Tools group on the
Database Tools ribbon.

3. Enter a new name for the encoded database (for example, Chapter29_Encoded.mdb)
in the Encode Database As dialog box (shown in Figure 29-26), and click Save.

Access doesn’t modify the original database when it encodes it. Rather, Access creates a copy of
the database and encodes the copy. Just like when using the Security Wizard, you should make a
backup copy of the original database and store it somewhere safe to prevent accidentally distribut-
ing the decoded database. Remember that in a world of rapidly changing data, your backup will
rapidly become out of date.

942

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 942

FIGURE 29-26

Encoding an .mdb file requires you to save it with a new name.

When encrypting a database, however, be aware of the following drawbacks:

n Encrypted/Encoded databases don’t compress from their original size when used with
compression programs, such as WinZip or sending it to a compressed (zipped) folder.
Encryption modifies the way that the data is stored on the hard drive so compression
utilities have little or no effect.

n Encrypted/Encoded databases suffer some performance degradation (up to 15 percent).
Depending on the size of your database and the speed of your computer, this degradation
may be imperceptible.

Encoding is performed in addition to securing an .mdb database. A secure database is
one that is secured using users, groups, and permissions. Simply encoding a database

does nothing to secure the database for general Access users.

Decrypting/Decoding a Database
You can decrypt a previously encrypted database. To decrypt an Access 2007 database (.accdb),
simply follow these steps (which are similar to the encrypting process):

1. Open an encrypted .accdb database (for example, Chapter26.accdb) exclusively.

2. Select the Remove Database Password and Encryption command from the Database
Tools group on the Database Tools ribbon.

3. Type the database password in the Unset Database Password dialog box and click OK.

NOTENOTE

943

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 943

To decode an .mdb file, follow these steps:

1. Open an encoded .mdb database (for example, Chapter29_Encoded.mdb)
exclusively.

2. Select the Encode/Decode Database command from the Database Tools group on the
Database Tools ribbon.

3. Enter a new name for the decoded database (for example, Chapter29.mdb) in the
Decode Database As dialog box and click Save.

Protecting Visual Basic Code
Although setting user-level security enables you to restrict access to tables, forms, and reports in
your database, it does not prevent access to the Visual Basic code stored in modules. You control
access to the Visual Basic code in your application by creating a password for the Visual Basic proj-
ect that you want to protect. When you set a database password for a project, users are prompted
to enter the password each time they attempt to view the Visual Basic code in the database.

A Visual Basic project refers to the set of standard and class modules (the code behind
forms and reports) that are part of your Access database.

1. Open any standard module in the database. For this example, open the
basSalesFunctions modules in Chapter29.mdb.

When you open the basSalesFunctions module, the Visual Basic Editor displays.

2. In the Visual Basic Editor, select Tools ➪ Access Auto Auctions Properties.

The Access Auto Auctions — Project Properties dialog box displays.

3. Select the Protection tab in the Project Properties dialog box. Check Lock project
for viewing option.

4. In the Password field, type the password that you want to use to secure the project
(see Figure 29-27). For this example, use the password bible.

Access does not display the password; rather, it shows an asterisk (*) for each letter.

5. In the Confirm Password field, type the password again.

This security measure ensures that you don’t mistype the password (because you can’t see
the characters that you type) and mistakenly prevent everyone, including you, from
accessing the database.

6. Click OK to save the password.

NOTENOTE

944

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 944

FIGURE 29-27

Creating a project password restricts users from viewing the application’s Visual Basic
code.

After you save and close the project, any user who attempts to view the application’s Visual Basic
code must enter the password. Access prompts for the project password only once per session.

A more secure method of securing your application’s code, forms, and reports is to distribute your
database as an .accde file. When you save your database as an .accde file, Access compiles all
code modules (including form modules), removes all editable source code, and compacts the data-
base. The new .accde file contains no source code but continues to work because it contains a
compiled copy of all of your code. Not only is this a great way to secure your source code, it also
enables you to distribute databases that are smaller (because they contain no source code) and
always keep their modules in a compiled state.

See Chapter 26 to learn how to create an .accde file. You can also distribute older
.mdb files as .mde files.

Preventing Virus Infections
Implementing a good user-level security scheme protects your database from unauthorized access
to the information or objects in your database. User-level security does not, however, protect the
physical database file from malicious macro virus attacks.

You probably have had experience at some point with a virus attack on your computer. Or most
likely, you know someone who has. It goes without saying that it is imperative to install and run a
virus scanning utility on your workstation. Even though you may be religious about keeping your

CROSS-REFCROSS-REF

945

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 945

virus scanner up to date, new viruses crop up all the time. Therefore, you have to be proactive
about protecting your applications and sensitive data from exposure to these kinds of attacks.

When you run forms, reports, queries, macros, data access pages, and Visual Basic code in your
application, Microsoft Office Access 2007 uses the Trust Center to determine which commands may
be unsafe and which unsafe commands you wish to run. Unsafe commands could allow a mali-
cious user to hack into your hard drive or other resource in your environment. A malicious user
could possibly delete files from your hard drive, alter the computer’s configuration, or generally
create all kinds of havoc in your workstation or even throughout your network environment.

Access 2007 checks its list of unsafe commands. When Access encounters one of the unsafe com-
mands, it can block the command from execution. By default, Access 2007 blocks unsafe commands.
To tell Access to block these potentially unsafe commands, you must enable sandbox mode.

Enabling sandbox mode
Sandbox mode allows Access to block any of the commands in the unsafe list it encounters when
running forms, reports, queries, macros, data access pages, and Visual Basic code. To enable sand-
box mode, follow these steps:

1. Open Access and click the Microsoft Office Button; then click Access Options.

2. Select Trust Settings in the left pane; then click Trust Center Settings.

3. Select Macro Settings in the left pane; then select either the Disable all macros
without notification or Disable all macros with notification options (shown in
Figure 29-28).

FIGURE 29-28

Enabling sandbox mode

4. Restart Access to apply the security change.

946

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 946

Macro Settings provides four levels of macro security:

n Disable all macros without notification: All macros are disabled and the user isn’t
prompted to enable them.

n Disable all macros with notification: All macros are disabled and the user is prompted
to enable them.

n Disable all macros except digitally signed macros: The status of the macro’s digital sig-
nature is validated for digitally signed macros. For unsigned macros, a prompt displays
advising the user to enable the macro or to cancel opening the database.

n Enable all macros (not recommended, potentially dangerous code can be run): Macros
are not checked for digital signatures and no warning displays for unsigned macros.

A digital signature is an encrypted secure file that accompanies a macro or document. It confirms
that the author is a trusted source for the macro or document. A digital signature is contained in a
digital certificate. You, or your organization’s IT department, can obtain a digital certificate through
a commercial certification authority, like VeriSign, Inc. Search www.msdn.com for “Microsoft Root
Certificate Program Members” to obtain information on how to obtain a digital certificate.

If you are sure of the integrity of your database, you can select the Enable all macros security set-
ting. Digital signatures are generally implemented within large organizations that are willing to
fund the added expense of purchasing and keeping digital signatures up to date. For most applica-
tions, however, you will probably use the Enable all macros setting.

If you or your organization has acquired a digital certificate, you can use it to digitally sign your
Access project. To digitally sign your Access project, follow these steps:

1. Open the Access database to digitally sign; then open any module to display the
Visual Basic Editor.

2. Select Tools ➪ Digital Signature from the Visual Basic Editor menu.

The Digital Signature dialog box displays, as shown in Figure 29-29.

FIGURE 29-29

Digitally signing an Access project

947

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 947

3. Click Choose to display the Select Certificate dialog box, as shown in Figure 29-30.

FIGURE 29-30

Choosing a digital certificate

4. Select the certificate to add to the Access project. Then click OK to close the Select
Certificate dialog box.

5. Click OK to close the Digital Signature dialog box and save the security setting.

Do not sign your Access project until the application has been thoroughly tested and
you do not expect to make any further changes to it. Modifying any of the code in the

project invalidates the digital signature.

To prevent users from making unauthorized changes to the code in your project, be sure
to lock the project and apply a project password.

The Trust Center
The Trust Center is where you can find security and privacy settings for Access 2007. The Trust
Center replaces the Security dialog box in previous versions of Access. To display the trust center,
click the Microsoft Office Button, click Access Options, click Trust Center; then click Trust Center
Settings. The following describes each section and what it controls:

n Trusted Publishers: Displays a list of trusted publishers — publishers where you clicked
Trust all documents from this publisher when encountering a potentially unsafe macro —
for Microsoft Office. To remove a publisher from this list, select the publisher; then click
Remove. Trusted publishers must have a valid digital signature that hasn’t expired.

n Trusted Locations: Displays the list of trusted locations on your computer or network.
From this section, you can add, remove, or modify folders on your computer that will
always contain trusted files. Any file in a trusted location can be opened without being
checked by the Trust Center. You can also choose not to allow network locations and to
disable all Trusted Locations and accept signed files.

TIPTIP

NOTENOTE

948

Professional Database DevelopmentPart IV

36_046732 ch29.qxp 11/21/06 9:02 AM Page 948

n Add-ins: Lets you to set up how Access handles add-ins. You can choose whether add-ins
need to be digitally signed from a trusted source and whether to display a notification
for unsigned add-ins. You can also choose to disable all add-ins, which may impair
functionality.

n Macro Settings: Lets you set the security setting for macros not in a trusted location. For
more information on Macro Settings, see the previous section on sandbox mode.

n Message Bar: Lets you set whether to display the message bar that warns you about
blocked content, or to never show information about blocked content.

n Privacy Options: Lets you choose how Microsoft Office Online communicates with your
computer. You can set options to use Microsoft Office Online for help, show featured
links at startup, download files to determine system problems, and sign up for the
Customer Experience Improvement Program.

Summary
In this chapter, you learned about securing both .accdb and .mdb files. You learned how to set a
database password and encrypt (or encode) these files. You learned how to run a database applica-
tion in runtime mode and how to distribute the database as an .accde (or .mde) file. You learned
how to create users and groups and how to set permissions for the different database objects in
.mdb files. User-level security has been removed from the Access 2007 file format.

You also learned about the new Trust Center, which replaces the Security dialog box in previous
versions of Access. You learned which settings enable sandbox mode and where to set up trusted
publishers and locations, how to manage add-ins and other items that may contain malicious code.
When securing a database — in any database version — the Trust Center gives you more flexibility.

949

Securing Access Applications 29

36_046732 ch29.qxp 11/21/06 9:02 AM Page 949

36_046732 ch29.qxp 11/21/06 9:02 AM Page 950

Access and Visual Basic for Applications (VBA) help you develop pow-
erful applications. Using the Windows application program interface
(API), you can take full advantage of the Windows graphical user

interface (GUI) to create your own windows (forms), dialog boxes (message
boxes), list boxes, combo boxes, command buttons, and so on. These objects
make your application a Windows application. And that’s what this chapter is
all about.

Although this chapter concentrates on the API included with Windows, the
concepts are applicable to other APIs as well, such as the Open Database
Connectivity (ODBC) API, the Messaging Application Programming Interface
(MAPI), and the Telephony Application Programming Interface (TAPI).

What Is the Windows API?
The Windows API is a set of built-in code libraries extending the Windows
interface. Access makes these code libraries available to you and simplifies
their use. The API libraries include functions that allow you to create windows,
check systems resources, work with communications ports, send messages to
applications, control .ini files, and access the Registry, among other things.

These functions hook directly into the internal workings of Windows.
Although Access and VBA let you reach a great many of these hooks trans-
parently, there are still some you can’t get to without writing your application
in the C programming language or referencing the Windows API directly.
Access and VBA give you everything you need to tap into this collection of
hundreds of functions. You only need to know how they work and what to
look for.

951

IN THIS CHAPTER
Understanding what the
Windows API is

Learning when you’ll use the
Windows API

Looking at API documentation
sources

Knowing the data types used in
API calls

Writing API function
declarations

Writing API wrapper procedures

Identifying useful API functions
for Access developers

Using the Windows API

37_046732 ch30.qxp 11/21/06 9:03 AM Page 951

The API functions are written in libraries that can be dynamically linked to Windows applications.
Typically, they are contained in dynamic link libraries (DLLs, or .dll files), but they can also be in
.exe, .drv, and .ocx files.

Dynamic linking
Dynamic linking is a method of making functions available to your applications without hard-coding
them into the executable. In many compiled languages, the code referenced by an application dur-
ing development is included in the final product when the executable (.exe) is produced. Binding
a library into an application’s executable file is called static linking (another common term is early
binding, because the libraries are bound into the executable early in the executable’s life). Static
linking makes for tightly integrated code, but it can also be difficult to manage. The same type of
function may be included in several applications, which can take up space on your user’s hard
drive. In addition, if you need to update or enhance your application, you have to replace the
entire .exe, making those enhancements more difficult to execute.

Dynamic linking, on the other hand, allows you to store a library of code in one place (a dynami-
cally linked library) and reference functions from that library only when they’re needed at runtime
(dynamic linking is sometimes called late binding, because the library routines are bound to the
executable “late” in the executable’s life).

Using DLLs has several advantages:

n It keeps unneeded code out of memory. When calling a function from a dynamic link
library, the code takes up memory only when it is being used. Afterward, the memory is
reclaimed when the called function is unloaded.

n As a developer, you may create a host of applications. Rather than include the same
code in each application, you can include only one copy of the DLL, and call the func-
tions from all your applications. This gives your applications a smaller footprint.

n It allows you to update or enhance just the DLL, without replacing all the applica-
tions that use its code.

As you’ll see in the “How to Use the Windows API” section, later in this chapter, calling functions
stored in the Windows DLLs involves following certain rules. Generally speaking you must declare
a Windows API call before using it in your code, and most API functions are rather fussy about
the parameters used in the VBA statements calling them. But overall, the benefits to be gained
from using the API functions greatly outweigh the relatively short learning curve necessary to
master them.

Why Use the Windows API?
There are many reasons why you should consider using the Windows API (and other application
programming interfaces). Here are a few, in addition to the ones listed in the preceding section.

952

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 952

Common codebase
Microsoft has done a lot for programmers. In establishing the Windows API, Microsoft has made a
common library of code available to your Access and Visual Basic applications. You can count on
the fact that if Windows is installed, the Windows API and its 500-plus functions are available. You
don’t have to distribute or check for these code modules because they exist on every Windows
machine. You also know that any time Microsoft adds functionality to one of its DLLs, that func-
tionality is available to all your applications.

Tested and proven code
If you develop applications professionally, then you know that time is everything. Getting your
application to market before a competitor or getting an application up and running in your own
installation can give your company the competitive edge. Every module of code you or your pro-
grammers produce takes time to develop and time to test. The functions included in the API
libraries are already tested and proven. They exist on hundreds of thousands, even millions, of
machines all over the world.

A good example is the GetPrivateProfileString function. This function retrieves an entry from
an application’s .ini file. Yes, Access VBA has tremendous string manipulation and file I/O capabili-
ties, but why waste time writing and testing a function to do what GetPrivateProfileString
already does? Let the API take some of the burden off of your programming staff and allow them to
concentrate on more important business issues. As you’ll see in the “GetPrivateProfileStringA” section,
later in this chapter, GetPrivateProfileString is easy to use — much easier than writing an
equivalent function in Access VBA.

Cross-platform compatibility
Microsoft’s strategy for the future of its operating systems includes the convergence of its code base.
All editions of Microsoft Windows use the Win32 API, which makes the applications you write for
one platform portable to others. Almost all Win32 API declarations are available across all plat-
forms, which gives you an extended user base and keeps you from rewriting much of your code to
fit each kind of installation.

Smaller application footprint
Making use of the dynamic link libraries included with Windows keeps you from distributing the
same code within your applications. This, in turn, keeps the size of your applications smaller.
Users appreciate the consideration you put into helping them manage their hardware resources.

DLL Documentation
Most DLLs are composed of C functions. Windows ships with a fairly large number of DLLs,
and most application vendors distribute their own DLLs with their applications. Microsoft has

953

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 953

documented its core DLLs so that developers can experience the advantages listed earlier in this
chapter. Of course, this strategy has benefited Microsoft as well. By making it easier for program-
mers to write applications for Windows, Microsoft has made Windows the most popular develop-
ment platform.

Not every vendor documents its DLLs, however. Many consider the DLLs distributed with their
applications as proprietary property and do not make the interfaces for those applications available
to the public. If a vendor does not formally release documentation for its libraries, it is usually not
good practice to use them, even if some outside documentation exists. A vendor could remove or
change functions within a library without notification, making any applications you have based on
them unreliable at best, unusable at worst.

Where to find documentation
Microsoft has released Software Development Kits (SDKs) for many of its products, including
ODBC, MAPI, and of course Win32. These kits contain not only general product information but
also documentation for the core DLLs included in the products. They comprise a wealth of
resources, documenting each function, argument, return value, data type, and so on. You can pur-
chase them directly from Microsoft, or if you’re a Microsoft Developer Network Member, you can
get them with the MSDN library, where they’re included.

Deciphering the documentation
The good news is, Microsoft releases documentation of its APIs. The bad news is, the Windows API
documentation is pretty cryptic and designed primarily to be used by C and C++ programmers.
Most of Microsoft’s high-level product documentation assumes you’re already an experienced
developer. The “official” API documentation from Microsoft is not for the faint of heart, but hope-
fully the following hints will help you understand what you find. The end of this chapter will also
document several useful functions and give you examples of how they’re used.

Data types
The hardest part of understanding API documentation is deciphering data types. Many books,
articles, and the Microsoft documentation have standards for referring to data types. When you
know what kind of data type is being referred to, and how that type translates to Access, the battle
is mostly over.

C contains several data types, most of which have Access VBA equivalents, and some of which do
not. Occasionally, the arguments included with API functions are structures composed of several
different data types. Table 30-1 shows each C data type, its size, and its Access VBA equivalent.

954

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 954

TABLE 30-1

Comparing C and VBA Data Types

C Type Size VBA Data Type

char 8 bits String * 1

short 16 bits Integer

int 32 bits Long

long 32 bits Long

float 32 bits Single

double 64 bits Double

UINT 32 bits Long

ULONG 32 bits Long

USHORT 16 bits Integer

UCHAR 8 bits String * 1

DWORD 32 bits Long

BOOL 32 bits Boolean

BYTE 8 bits Byte

WORD 16 bits Integer

HANDLE 32 bits Long

LPTSTR 32 bits No equivalent

LPCTSTR 32 bits No equivalent

These all become important when examining both the SDKs and other API references for Visual Basic.
You’ll have to know what kind of data type the function is expecting, and match it with a compatible
type in your Access applications. Listing 30-1 shows how the GetPrivateProfileString func-
tion is declared in the API reference of the Win32 SDK and how to decipher each argument declared.

LISTING 30-1

SDK Reference for GetPrivateProfileString

DWORD GetPrivateProfileString(
LPCTSTR lpszSection, // points to section name
LPCTSTR lpszKey, // points to key name
LPCTSTR lpszDefault, // points to default string

continued

955

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 955

LISTING 30-1 (continued)

LPTSTR lpszReturnBuffer, // points to destination buffer
DWORD cchReturnBuffer, // size of destination buffer
LPCTSTR lpszFile // initialization file name

);

Listing 30-2 shows the same declaration using Basic syntax instead of C syntax. Notice how the C
data types are converted to their VBA equivalents.

LISTING 30-2

Visual Basic Declaration for GetPrivateProfileString

Declare Function GetPrivateProfileStringA lib “Kernel32”(_
ByVal lpszSection as string, ByVal lpszKey as string, _
ByVal lpszDefault as string, _
ByVal dwReturnBuffer as long, _
ByVal cchReturnBuffer as long, _
ByVal lpszFile as string) as long

You must declare the correct data types in your applications. Failure to do so can result
in the dreaded General Protection Fault. If you don’t declare variables of the proper

size, your function calls might try to overwrite memory locations allocated by other applications.
Using inappropriate data types as parameters to API functions is the most common cause of problems
when using the Windows API.

In the previous example, notice the prefix attached to each argument passed to the functions.
These are standard prefixes used throughout most of the API documentation you’ll find. Some of
the more common prefixes are shown in Table 30-2.

TABLE 30-2

Common Windows API Argument Prefixes

Prefix C Data Type VBA Data Type

lpsz Long pointer to a null terminated string String

dw DWORD Long

w WORD Integer

hwnd HANDLE Long

b BOOL Long

l LONG Long

CAUTION CAUTION

956

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 956

Sometimes you’ll encounter situations where a function uses a data type you aren’t familiar with or
may not have even heard of. Most likely, the parameter being passed is a data structure, which is a
fancy term for “user-defined data type.” If that term sounds familiar, then you’re probably thinking
about the Access VBA Type statement. Data structures are usually a collection of fields allocated
contiguously (next to each other in memory). The Type statement in Access VBA is compatible
with its Struct counterpart from C, as long as the fields declared within the structure are com-
patible. Listing 30-3 shows the data structure passed in the GetVersionEx API and its Access
VBA equivalent.

LISTING 30-3

OSVERSIONINFO Structure

‘C-type OSVERSIONINFO structure syntax
typedef struct _OSVERSIONINFO{

DWORD dwOSVersionInfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformId;
TCHAR szCSDVersion[128];

} OSVERSIONINFO;

‘VBA-typedef for OSVERSIONINFO
Private Type OSVERSIONINFO

dwVersionInfo As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwplatformID As Long
szVersion As String * 128

End Type

What you can’t do with the API
We hesitate to place anything in this paragraph, because as soon as we do, someone will find a way
to prove us wrong. Programmers are an inventive bunch. But there are a few things that are diffi-
cult to do when converting APIs to VBA. One is converting APIs that make use of a Callback
function. Sometimes APIs make calls to other functions that process messages and then return val-
ues back to the calling API. To do this, you must be able to pass the address of the entry point of
the function. Access does not provide a way to handle this situation. However, some people have
developed their own DLLs that specifically handle these types of situations. Never say never.

957

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 957

How to Use the Windows API
If you’ve made it this far, congratulations! The concept of APIs can be a little intimidating. Once
you understand the concepts, however, using them is as easy as calling any other function or sub-
routine from Access VBA.

The Declare statement
In order to use an API in your Access application, you must first tell Access the name of the API
function and where to find it. You do this within the declarations section of a module using the
Declare statement. The Declare keyword notifies VBA that what follows is not part of VBA
but exists outside of the current application. A prototype Declare statement is shown here. The
Declare statement has several parts, all of which are discussed in the following sections.

Declare [Function|Sub] FunctionName Lib “LibraryName” _
Alias “AliasName” (ArgumentList) As DataType

The declaration statement is sometimes referred to as an API function prototype because it serves as
the prototype for all calls to the API function.

Function or Sub
APIs can be in the form of a function or a subroutine, just like Access VBA procedures. A function
returns a value back to the calling code; a subroutine does not. When an API function returns a
value, good programming practices require the calling procedure to check the return value to ver-
ify that the function completed as expected. The vast majority of Windows API calls are functions,
so you rarely have to deal with the distinction between functions and subs.

Function name
The function name you specify can be one of two things:

n The actual name of the API function you will be using as declared in the library: For
instance, if you were going to use GetPrivateProfileString, listed previously, you
would declare FunctionName as GetPrivateProfileStringA.

n The name of the function as you would like to use it within your code

GetPrivateProfileStringA is a long function name, especially if you’re going to
be using the function frequently within your code. You might want to shorten its name

to GetString instead. You can do this by using the Alias parameter discussed in the “Alias
‘AliasName’” section, later in this chapter.

Lib “LibraryName”
The library name is simply the name of the DLL that contains the API function or subroutine that
you’re declaring. This parameter tells Access where to find the function. If the DLL is not one of
the standard Win32 DLLs, or it has been moved to another location, then you’ll have to specify the

TIPTIP

958

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 958

complete path of the DLL. The LibraryName parameter must be enclosed in quotations, but it is
not case-sensitive.

Most Windows DLLs are located in the System32 folder within the main Windows folder (usually
C:\Windows or C:\WINNT). The VBA interpreter first looks for the DLL in the System32 folder,
then in the Windows folder. In the rare event that you’re using a DLL located anywhere else on
your computer, you should specify the path to the DLL as part of the LibraryName clause in the
API function’s declare statement.

Alias “AliasName”
If you wanted to call an API function by another name in your Access VBA program, you could. In
such a case, the FunctionName parameter would be the new name you assigned to the function.
However, you still have to tell Access the real name of the function as it exists within the library.
The GetPrivateProfileString example has been used several times in this chapter. In the
following examples, each of the Declare prototypes has been prefixed with api to indicate that
it is an API function call, and not the usual VBA function name.

Here is an example of using a prefix naming convention for API function prototypes:

Declare Function apiGetPrivateProfileString _
lib “Kernel32” Alias “GetPrivateProfileStringA”

In some situations, you must use an alias within your Access VBA modules. Occasionally, you’ll
encounter API functions that begin with an underscore, such as _lopen or _lread. Access VBA
procedures cannot begin with an underscore, so these functions must be aliased. Another reason to
alias your function names is to avoid the possibility of declaring a function using a name that already
exists in your Access application or in its libraries. If you try to declare a function with a name that
already exists, you’ll receive an error: Ambiguous Name Detected: FunctionName.

Like library names, the alias reference (GetPrivateProfileStringA, in this exam-
ple) must always be enclosed in quotations. The alias reference is always case-sensitive

and must be spelled exactly like the function name it references in the DLL.

ArgumentList
The ArgumentList is composed of the elements that the function expects to receive from you in
order to do its job. When you declare a function, you must declare the same number of arguments
in the function declaration that its documentation specifies. If you don’t, you’ll receive a runtime
error 49: Bad DLL calling convention. The same error will occur if you pass an API function
arguments that are incompatible with what it is expecting. That’s a best-case scenario — you could
end up with a General Protection Fault that crashes the application, crashes Access, and may even
crash Windows.

It’s important to realize that the arguments in the argument list are only placeholders. It doesn’t
matter what you name them, although most developers assign them the same name that the SDK
documentation does. The argument list simply tells Access what to expect when the function is

TIPTIP

959

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 959

called, so that it can type-check and argument-check. In other words, it’s for your own good.
Access does not, however, check the type declarations against the actual library, so it’s up to you to
assign the correct data types to your arguments.

ByVal or ByRef?
When you assign arguments to a declaration statement, you must decide how the API expects to
receive the arguments. By default, when Access passes an argument it does so by reference, or ByRef.
This means that Access passes the memory address of the variable to the function it is calling. When a
function receives the address of an argument, it can change the value stored at that address, which
may or may not be desirable. When you pass an argument by value, or ByVal, you’re telling Access
to pass only the value of what’s in the variable to the function. When a function receives only the
value of an argument, it can use only that value to do its job. Passing an argument by value is usually
desirable because it ensures that the variables used in your application keep a stable value.

Here is an example of using the ByVal keyword.

Declare Function apiGetTempPath Lib “Kernel32” _
Alias “GetTempPathA” (ByVal BufferSize As Long, _
ByVal lpszReturnBuffer As String) As Long

There is always an exception to the rule, and the exception in this case is string variables. Access
VBA and C handle strings differently. C expects to receive pointers to strings that are terminated
with a null value; Access VBA does not. In order to format a string in the method expected by most
API functions, you must pass the string by value (ByVal). As we said earlier, passing an argument
by value passes the data stored in the variable instead of the memory address — except when you
pass strings. When you pass a string using the ByVal option, you pass the address of the variable,
which means the function can change the value passed to it by manipulating what’s stored at the
memory address.

In the case of API calls, it’s a good thing that strings are always passed with the ByVal qualifier.
An API function can’t return a string value, so you must give the function permission to alter a
memory location in order to retrieve a string value from an API. You do this by specifying that the
argument is to be passed by value. Notice that lpszReturnBuffer is a pointer to a string that
GetTempPath uses to place the path that Windows uses for temp files. It is being passed as an
address. BufferSize, on the other hand, is only passing the value of a variable that contains the
length of the string being passed in lpszReturnBuffer.

A final note on passing strings: many API functions expect to receive addresses to string values.
Most of the time, these functions expect a minimum number of bytes to be allocated for the string
value. In order to fulfill these requirements, you must know in advance how many bytes the func-
tion expects the string to be, and you must expand your string variables to that length before pass-
ing the string. You can do this using the String$() function in Access VBA. The String
function fills a string variable with a fixed number of characters. In the following example, the
strMyString variable is filled with 20 spaces:

Dim strMyString As String
strMyString = String$(20,” “)

960

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 960

The preceding code fills the fixed-width string variable strMyString with 20 spaces. You can
achieve the same result by declaring the string with the number of characters already allocated:

Dim strMyString * 20

If you do not allocate enough space for an API function to write a string, it could end up writing
over another application’s data, causing a General Protection Fault (GPF). It’s very difficult to know
how many characters an API will accept, so a safe way to declare your string variables is to allocate
255 characters to them. Most functions will not pass a string any larger than 255 characters. It is,
however, inefficient to always pass 255 characters because you’re probably using more memory
than necessary. If you can, try to find the exact string length that your function expects.

As DataType
Any API call that is a function returns a value. A subroutine does not. Therefore, a subroutine does
not need a return value data type specified. The value returned by a function is usually a value you
expect to use in your application, or it is an error number. For instance, many functions return zero,
or ERROR_SUCCESS if the function completes successfully. If the value returned is a non-zero value
(indicating that the API call failed to execute properly), you should provide an error-handling rou-
tine to deal with the function’s failure.

Other functions, such as GetPrivateProfileString, return a numeric value indicating the
number of characters copied into a string buffer. Therefore, if GetPrivateProfileString
completes successfully, you use its return value and the Left$() function to extract the returned
string from a string buffer:

StringVar = Left$(StringBuffer, ReturnValue)

If the value returned by GetProfileString is 0, of course, it means that no string was found in
the .ini file.

The data type specified for the return value must be compatible with the data type specified in the
API function’s documentation.

Using wrapper functions
You rarely directly program API functions. As you’ll soon see, API calls frequently require compli-
cated arguments, and the values returned by API functions most often require interpretation before
they can be used.

Most developers use wrapper functions to resolve these issues. Generally speaking, a wrapper func-
tion is a simple VBA function that provides the API call with all the parameters it needs, as well as
converting the values returned by the API function to information that an application can use. Your
VBA code calls the wrapper function, which, in turn, calls the API function. The wrapper function
returns the transformed value provided by the API function.

961

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 961

The sections under the “API Examples” heading provide typical wrapper functions for the API calls
documented in this chapter. All that’s needed to utilize an API call is to include the API function’s
Declare statement, as well as the VBA wrapper function accompanying the API declaration. Then
call the VBA wrapper function as you would any function such as Format() or Now(). VBA
wrappers protect your application from the sometimes-ugly and tedious code needed to properly
process API calls.

What is this “hwnd” thing?
You’ll notice that many Windows API functions use a parameter named hwnd. Hwnd is a long inte-
ger value that Windows uses to keep track of graphical objects on the computer’s screen. Every
object on the screen (windows, buttons, text boxes, and so on) has an hwnd value, and many API
calls require this value before they can operate on the object.

Microsoft has made the hwnd very easy to get for most Access objects. Many Access objects include
hwnd among their properties. You won’t see hwnd in the property window, but it’s there just the
same. Use Me.hwnd to pass the hwnd of an Access form, or MyControl.hwnd (example:
txtLastName.hwnd) to pass the hwnd of a control to an API call requiring this important value.

API Examples
Here comes the fun part. At the beginning of the chapter, we reviewed several different uses for the
Windows API. From here to the end of the chapter, you’ll see some examples of different types of
APIs, how to declare them, what you would use them for, error messages you may encounter, and
so on.

All the examples are included on the companion CD-ROM in the Chapter30.accdb
example database. The code examples in Chapter30.accdb are contained in a mod-

ule named basAPIFunctions. This module contains all the raw declarations and working functions
you see described in this chapter.

The System Info dialog box (shown in Figure 30-1) that you open from the Access About box con-
tains useful information. The code in basAPIFunctions can be used to construct a form similar
to the API Demo form (frmAPIDemo) included in the Chapter30.accdb example database (see
Figure 30-2).

Whenever you’re working with API functions you should save your work frequently.
Because you’re working deep within the Windows system, application errors can occur,

especially when you’re first learning how to make these calls.

CAUTION CAUTION

ON the CD-ROMON the CD-ROM

962

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 962

FIGURE 30-1

The System Info form

FIGURE 30-2

The API Demo form from Chapter30.accdb on the Companion CD-ROM

963

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 963

Retrieving system information
The Windows API provides a number of functions you’ll find useful for retrieving information about
the Windows system, the hardware, and other software that may be running on the computer. This
information is often useful for avoiding problems like running out of disk space or trying to write
data to a CD-ROM drive. These functions also provide handy information, like the location of the
Windows and temporary directories.

GetCommandLineA
GetCommandLine returns the command line used to start up the current application. This may
be useful if you need to know whether the shortcut used to start an Access application included
references to a macro or VBA procedure:

Declare Function apiGetCommandLine _
Lib “Kernel32” _
Alias “GetCommandLineA” () As String

When run from the immediate window in Access VBA, the function returns the full path, including
the executable name, for Microsoft Access. The command line is returned in quotation marks.

The following function provides a wrapper around GetCommandLineA:

Function GetCommandLine() As String
Dim ReturnVal As String
ReturnVal = apiGetCommandLine()
GetCommandLine = Trim$(ReturnVal)

End Function

Although not entirely necessary, the GetCommandLine wrapper trims leading and trailing spaces
from the string returned by the apiGetCommandLine declaration. Very often API functions
return strings that are padded with extra characters, and the extra characters should be trimmed
off of the wrapper’s return value.

In Chapter30.accdb, GetCommandLine is used to retrieve the path for Access. The path is
then used when .ini files are created and read with other API calls. An application-specific .ini
file should be stored in the same directory as its application.

GetWindowsDirectoryA
GetWindowsDirectory retrieves the path to Windows and stores it in a string buffer.

Declare Function apiGetWindowsDirectory _
Lib “Kernel32” _
Alias “GetWindowsDirectoryA”(_
ByVal lpszReturnBuffer As String, _
ByVal lpszBuffSize As Long) As Long

964

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 964

The return value is the length of the string copied into the buffer. If the buffer isn’t long enough,
the return value is the length required. But if the function fails, the return value is zero.

Here is a function wrapper that uses the GetWindowsDirectoryA API function:

Function GetWindowsDirectory() As String
Dim WinDir As String * 255
Dim WinDirSize As Long
Dim ErrNumber As Long

WinDirSize = Len(WinDir)
ErrNumber = apiGetWindowsDirectory(WinDir, WinDirSize)
If ErrNumber > 0 Then
GetWindowsDirectory = Left$(WinDir, ErrNumber)

Else
GetWindowsDirectory = vbNullString

End If
End Function

In the GetWindowsDirectory wrapper, notice that the API function’s return value (ErrNumber)
is used as an argument to the Left$ function to extract the Windows folder name from the WinDir
string. If ErrNumber is zero, and empty string (vbNullString) is returned instead.

GetTempPathA
The GetTempPathA function retrieves the path to the directory where temp files are stored and
places it in a string buffer.

Declare Function apiGetTempPath _
Lib “Kernel32” _
Alias “GetTempPathA”(_
ByVal BufferSize As Long, _
ByVal lpszReturnBuffer As String) As Long

The return value is the length of the returned string. Like GetWindowsDirectory, if the buffer
isn’t long enough, the return value is the length required. But if the function fails, the return value
is zero.

The wrapper function for GetTempPathA properly interprets the return values when the API
function is called:

Function GetTempDir() As String
Dim Buffer As String * 255
Dim BufferSize As Long
Dim ErrNumber As Long

BufferSize = Len(Buffer)
ErrNumber = apiGetTempPath(BufferSize, Buffer)
If ErrNumber > 0 Then

965

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 965

GetTempDir = Left$(Buffer, ErrNumber)
Else
GetTempDir = vbNullString

End If
End Function

GetVersionExA
GetVersionEx returns the version number of the Windows installation on the user’s computer.

Declare Function apiGetVersion _
Lib “Kernel32” _
Alias “GetVersionExA”(_
ByRef osVer As OSVERSIONINFO) As Long

Notice that the GetVersionExA API function uses a data structure named OSVERSIONINFO as
one of its arguments. Notice that OSVERSIONINFO is passed by reference, which means that the
API function changes the contents of the data structure. GetVersionExA returns much of its data
by setting the members of OSVERSIONINFO to the values returned by Windows. Here is the defi-
nition of OSVERSIONINFO:

Private Type OSVERSIONINFO
dwVersionInfo As Long
dwMajorVersion As Long
dwMinorVersion As Long
dwBuildNumber As Long
dwplatformID As Long
szVersion As String * 128

End Type

The OSVERSIONINFO can be interpreted like this: dwVersionInfo is the length, in bytes, of the
data structure. dwMajorVersion would be 5 for Windows 2000 or XP, and 6 for Windows Vista.
The build number is a value that is mostly used by Microsoft internally.

dwPlatformID is a long integer representing the platform the application is running on.
Windows 2000 and XP are both 2, while Windows Me, 98, and 95 are 1. The dwPlatformID
constants are declared as follows:

Const VER_PLATFORM_WIN32S = 0
Const VER_PLATFORM_WIN32_Windows = 1
Const VER_PLATFORM_WIN32_NT = 2

Chapter30.accdb on the CD-ROM uses the GetVersionEx function to display the current
version of Windows in the system information using the following two functions. One retrieves the
platform number; the other, the major and minor versions:

Function GetVersion() As Long
Dim RetVal As Long
Dim VersionNo As OSVERSIONINFO

966

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 966

Dim lngVer As Long
Dim Version As String

VersionNo.dwVersionInfo = 148
RetVal = apiGetVersion(VersionNo)
Version = VersionNo.dwMajorVersion & “.” _

& VersionNo.dwMinorVersion
lngVer = CLng(Version)
GetVersion= lngVer

End Function

The GetPlatform wrapper function calls the same API declaration, but uses the values returned in
OSVERSIONINFO to compose a string indicating the Windows version installed on the computer:

Function GetPlatform()
Dim RetVal As Long
Dim VersionNo As OSVERSIONINFO
Dim Platform As String

VersionNo.dwVersionInfo = 148
RetVal = apiGetVersion(VersionNo)
Select Case VersionNo.dwPlatformID

Case VER_PLATFORM_WIN32S
Platform = “Windows 3.x”

Case VER_PLATFORM_WIN32_Windows
Platform = “Windows 98 or Lower”

Case VER_PLATFORM_WIN32_NT
Platform = “Windows NT or Higher”

Case Else
Platform = “Unknown”

End Select
GetPlatform = Platform

End Function

GetUserNameA
The GetUserNameA function retrieves the name of the user currently logged on to the system and
places it in a string buffer:

Declare Function apiGetUserName _
Lib “Advapi32” _
Alias “GetUserNameA”(_
ByVal Buffer As String, _
BufferSize As Long) As Long

If the function is successful, it returns a TRUE value, and the length of the returned string is placed
in the BufferSize variable.

The user name returned by the GetUserName API function has nothing to do with the user
logged into Access — Windows does not know anything about the Access users or groups and does

967

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 967

not monitor who’s logged into a database. The following wrapper function tells you exactly who
logged into the computer:

Function GetUserName() As String
Dim UserName As String * 255
Dim NameSize As Long
Dim ErrNumber As Long

NameSize = Len(UserName)
ErrNumber = apiGetUserName(UserName, NameSize)
GetUserName = Left$(UserName, NameSize - 1)

End Function

GetComputerNameA
The GetComputerNameA function is very similar to GetUserNameA. It returns the network
name of the local computer:

Declare Function apiGetComputerName _
Lib “Kernel32” _
Alias “GetComputerNameA”(_
ByVal Buffer As String, _
BufferSize As Long) As Long

GetComputerNameA retrieves the name of the current computer system. If the function fails, its
return value is zero; otherwise the return value is 1, and the BufferSize argument returns the
number of characters copied to its string variable. The GetComputerName function is a wrapper for
the GetComputerNameA, declaration and returns a string containing the name of the computer:

Function GetComputerName() As String
Dim ComputerName As String * 255
Dim NameSize As Long
Dim ErrNumber As Long

NameSize = Len(ComputerName)
ErrNumber = _

apiGetComputerName(ComputerName, NameSize)
If ErrNumber = True Then
GetComputerName = Left$(ComputerName, NameSize)

Else
GetComputerName = vbNullString

End IF
End Function

GetDriveTypeA
From time to time, you may need to know what types of drives are installed on a user’s computer.
You wouldn’t want to, for instance, try writing to an optical drive on the user’s computer unless
you knew it was capable of read/write operations. The GetDriveTypeA API function returns a
value indicating the type of drive specified by the lpszPath parameter:

968

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 968

Declare Function apiGetDriveType Lib “Kernel32” _
Alias “GetDriveTypeA”(_
ByVal lpszPath As String) As Long

You pass the function the path to the drive you want to test, and GetDriveType returns a long
integer value representing the drive type. The following constants can be used to determine the
drive type:

Const DRIVE_UNKNOWN = 0
Const DRIVE_NOT_AVAILABLE = 1
Const DRIVE_REMOVABLE = 2
Const DRIVE_FIXED = 3
Const DRIVE_REMOTE = 4
Const DRIVE_CDROM = 5
Const DRIVE_RAMDISK = 6

Read/write optical drives (such as a CD-RW or DVD-RW drive) and USB “thumb drives” are
reported as DRIVE_REMOVABLE.

The following function cycles through each drive possibility and prints its type in the debug win-
dow using the constants listed above and GetDriveType:

Sub GetAllDriveTypes() As String
Dim DriveInfo As String
Dim PathName As String
Dim intChar As Integer
Dim ErrNumber As Long
Dim DriveType As String

For intChar = 65 To 90
‘The backward slash is not required,
‘but does not interfere with this API call:
PathName = Chr$(intChar) & “:\”
ErrNumber = apiGetDriveType(PathName)
Select Case ErrNumber

Case DRIVE_UNKNOWN
DriveType = “DRIVE ‘“ & PathName & _

“‘ - UNKNOWN”
Case DRIVE_NOT_AVAILABLE

DriveType = “DRIVE ‘“ & PathName & _
“‘ - NOT AVAILABLE”

Case DRIVE_REMOVABLE
DriveType = “DRIVE ‘“ & PathName & _

“‘ - REMOVEABLE DRIVE”
Case DRIVE_FIXED

DriveType = “DRIVE ‘“ & PathName & _
“‘ - FIXED DRIVE”

Case DRIVE_REMOTE
DriveType = “DRIVE ‘“ & PathName & _

969

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 969

“‘ - NETWORK DRIVE”
Case DRIVE_CDROM

DriveType = “DRIVE ‘“ & PathName & _
“‘ - CDROM; DRIVE”

Case DRIVE_RAMDISK
DriveType = “DRIVE ‘“ & PathName & _

“‘ - RAM DRIVE”
Case Else

ErrNumber = 0
End Select
Debug.Print DriveType
ErrNumber = 1

Next intChar
End Sub

GetDiskFreeSpaceA
Many database errors occur because the computer simply runs out of disk space. GetDisk
FreeSpaceA tells you exactly how much space (in KB) is available on a particular drive:

Declare Function apiGetDiskFreeSpace _
Lib “Kernel32” _
Alias “GetDiskFreeSpaceA”(_
ByVal lpszPath As String, _
lpSectors As Long, _
lpBytes As Long, _
lpFreeClusters As Long, _
lpClusters As Long) As Long

GetDiskFreeSpace uses the lpszPath argument to determine the amount of disk space avail-
able. If the path argument is Null, the function returns the amount of free space remaining in
the current path. The number of sectors per cluster, bytes per sector, total clusters, and clusters
remaining are all returned, allowing you to determine free and used space for a particular drive.
The GetDiskFreeSpaceA API function returns 1 if successful, and 0 (zero) if it fails.

The function shown in Listing 30-4 accepts a valid path name as an argument and returns the
amount of free space (in KB) available for that path.

LISTING 30-4

Getting Free Disk Space with the GetDiskFreeSpaceA API Function

Function GetFreeSpace(PathName As String) As String
Dim ErrNumber As Integer
Dim Sectors As Long
Dim Bytes As Long
Dim FreeClusters As Long
Dim TotalClusters As Long

970

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 970

ErrNumber = apiGetDiskFreeSpace(PathName, Sectors, _
Bytes / 1024, FreeClusters, TotalClusters)

GetFreeSpace = “Free space (kilobytes): “ _
& Format(((Bytes * Sectors) / 1024) _

* FreeClusters, “#,###,##0”)
End Function

GetVolumeInformationA
The GetVolumeInformationA function returns information about the file system and volume
information for a valid path.

Declare Function apiGetVolumeInformation _
Lib “Kernel32” _
Alias “GetVolumeInformationA”(_
ByVal lpszPath As String, _
ByVal lpVolNameBuffer As String, _
ByVal lpVolumeNameSize As Long, _
lpVolSerialNo As Long, _
lpMaxFileLen As Long, _
lpSystemFlags As Long, _
ByVal lpSysNamebuffer As String, _
ByVal lpSysNameBufSize As Long) As Long

lpMaxFileLen is the maximum number of characters allowed for a filename on the particular
file system. lpSystemFlags indicates whether the volume is compressed, whether filenames are
case-sensitive, and whether the volume supports file-based compression. The return value is 1 if
successful, 0 if not.

The GetVolumeInformation wrapper function accepts a valid path name and a 1 or 2 indicat-
ing whether to return the volume name or file system information, respectively:

Function GetVolumeInformation(PathName As String, _
Selection As Integer) As String
Dim VolName As String * 255
Dim BufferSize As Long
Dim VolSerNo As Long
Dim MaxFileLen As Long
Dim SysFlags As Long
Dim SysName As String * 255
Dim SysBufSize As Long
Dim ErrNumber As Long
Const Get_Volume_Name = 1
Const Get_File_System = 2
BufferSize = Len(VolName)
SysBufSize = Len(SysName)
ErrNumber = apiGetVolumeInformation(PathName, _

971

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 971

VolName, BufferSize, VolSerNo, MaxFileLen, _
SysFlags, SysName, SysBufSize)

If Selection = 1 Then
GetVolumeInfo = “Volume Name: “ & Trim(VolName)

Else
If Selection = 2 Then

GetVolumeInfo = “File System: “ & Trim(SysName)
End If

End If
End Function

GetSystemDirectoryA
GetSystemDirectoryA returns the Windows system directory for the current machine:

Declare Function apiGetSystemDirectory _
Lib “Kernel32” _
Alias “GetSystemDirectoryA”(_
ByVal ReturnBuffer As String, _
uiBufferSize As Long) As Long

Upon success, the function returns the number of characters contained in the ReturnBuffer
argument. GetSystemDirectoryA returns zero if unsuccessful. Here is a wrapper utilizing
GetSystemDirectory to return the Windows installation folder:

Function GetSystemDirectory() As String
Dim ReturnBuffer As String * 255
Dim BufferSize As Long
BufferSize = Len(ReturnBuffer)
Dim ErrNumber As Long
ErrNumber = _

apiGetSystemDirectory(ReturnBuffer, BufferSize)
GetSystemDirectory = _

Left$(ReturnBuffer, ErrNumber)
End Function

General-purpose Windows API functions
Win32 has many functions to manipulate individual windows within applications like Access. A
few of these functions are discussed in the following section. The DisplayTitle() function sec-
tion under Listings 30-5 and 30-6 use several of the API functions as an example.

GetParent
The GetParent function returns a handle to a window’s parent. You might use this call to get a
handle on an Access application’s parent window:

Declare Function apiGetParent _
Lib “User32” Alias GetParent(_
ByVal hWnd As Long) As Long

972

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 972

When passed a valid window handle, GetParent retrieves the handle of the child window’s par-
ent. The function returns a Null value if it is unsuccessful.

GetWindowTextA
GetWindowText returns the title bar text of a window, given its hwnd property:

Declare Function apiGetWindowText _
Lib “User32” _
Alias “GetWindowTextA”(_
ByVal hwnd As Long, _
ByVal lpszCaption As String, _
ByVal CaptionSize As Long) As Long

Occasionally, you may want to capture the text that appears in the title bar of a particular window
or the text displayed on a control. GetWindowText captures the text of the handle of the window
or control that has been passed and places it in the lpszCaption argument.

GetClassNameA
GetClassName returns the class of the specified window:

Declare Function apiGetClassName _
Lib “User32” _
Alias “GetClassNameA”(_
ByVal hwnd As Long, _
ByVal lpClassName As String, _
ByVal ClassSize As Long) As Long

The window’s handle is passed as an argument, and the function places the window’s class name in
the string lpClassName. The function returns the number of characters copied to the string
buffer if it is successful, zero if not.

The DisplayTitle wrapper function (see Listing 30-5) uses GetParent and
GetClassNameA to cycle through the windows and controls of an open Access form until the
Access application form (class Omain) is located. It then captures the text displayed in the title bar
using GetWindowTextA and displays the text in a message box.

LISTING 30-5

Returning the Caption Bar Text for a Window

Function DisplayTitle()
Dim ErrNumber As Long
Dim Parent As Long
Dim lngRet As Long
Dim Caption As String * 128

continued

973

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 973

LISTING 30-5 (continued)

Dim CaptionSize As Long
Dim WinHwnd As Long
Dim Class As String * 6
Dim ClassSize As Long

CaptionSize = Len(caption)
ClassSize = Len(class)
WinHwnd = Me.hwnd
Do Until Trim(class) = “OMain”

Parent = apiGetParent(WinHwnd)
lngRet = apiGetClassName(Parent, Class, ClassSize)
WinHwnd = Parent

Loop
ErrNumber = apiGetWindowText(_

Parent, Caption, CaptionSize)
MsgBox Left$(Caption, ErrNumber)

End Function

Notice that the Do...Loop in the middle of DisplayTitle searches for a window with a class
name of OMain. The very first version of Microsoft’s desktop database project was named Omega.
This very early precursor to Microsoft Access lives on to this day in the class name applied to the
Access main window.

SetWindowTextA
Use SetWindowTextA to change the caption displayed in a window’s title bar.

Declare Function apiSetWindowText _
Lib “User32” _
Alias “SetWindowTextA”(_
ByVal hwnd As Long, _
ByVal lpszCaption As String) As Long

SetWindowTextA is much like altering the Caption property of a form. Many people find they
want to change the caption of the Access main window to make their applications look more pro-
fessional. The following function cycles through the windows and controls of an Access application
until it finds the Access application form (class Omain), and then it changes the title bar caption.

LISTING 30-6

Changing the Caption Bar Text for a Window

Function ChangeTitle()
Dim ErrNumber As Long
Dim Parent As Long

974

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 974

Dim lngRet As Long
Dim Caption As String * 128
Dim CaptionSize As Long
Dim NewCaption As String
Dim WinHwnd As Long
Dim Class As String * 6
Dim ClassSize As Long

NewCaption = “My New Application Title”
CaptionSize = Len(caption)
ClassSize = Len(class)
WinHwnd = Me.hwnd
Do Until Trim(class) = “OMain”

Parent = GetParent(WinHwnd)
lngRet = apiGetClassName(Parent, Class, ClassSize)
WinHwnd = Parent

Loop
ErrNumber = apiSetWindowText(Parent, NewCaption)

End Function

SetWindowTextA returns 1 when successful, 0 when it fails.

Manipulating application settings
with the Windows API
In the past, software vendors and Microsoft alike have used .ini files to control the settings of
their applications. The system.ini and win.ini files controlled almost everything in older ver-
sions of Windows. Back then, each application had an .ini file, containing sections, string values,
key names, and integer values that related to everything from screen color to network protocols.

Although many vendors still use application-specific .ini files for their applications, more recent
versions of Windows use the System Registry for most settings. The Win32 API comes with all you
need to control System Registry settings.

However, you may find it much simpler to use .ini files for storing persistent information needed
by your applications. One huge advantage that .ini files have over the System Registry is that a
user can use Notepad or Word to change the contents of an .ini file, and changing an applica-
tion’s .ini file will not affect any other application on the computer.

This section demonstrates the use of .ini functions for Win32. After reviewing these functions,
the chapter ends with a demonstration and overview of how to achieve the same results using the
Registry.

975

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 975

GetPrivateProfileStringA
GetPrivateProfileStringA function retrieves a value from a private (application-specific)
.ini file.

Declare Function apiGetPrivateProfileString _
Lib “Kernel32” _
Alias “GetPrivateProfileStringA”(_
ByVal lpszSection As String, _
ByVal lpszKey As String, _
ByVal lpszDefault As String, _
ByVal lpszReturnString As String, _
ByVal dwReturnSize As Long, _
ByVal lpszFilename As String) As Long

It is passed the section, key, and .ini filename and retrieves the value for the key. If a Null value
is passed as a key, all the entries for the section are retrieved. If a specified key is not found, the
value passed as lpszDefault is returned. If the function is successful, it returns the number of
characters copied into the string buffer lpszReturnString. Sections, keys, and values are illus-
trated below.

[section]
key=string

The next example uses the GetCommandLine wrapper function to retrieve the path for Access,
and uses it as the path for the test.ini file. It then uses the GetPrivateProfileStringA
API function to retrieve a string value for the AppTitle key.

Function GetPrivateProfileString() As String
Dim Section As String
Dim KeyName As String
Dim default As String
Dim ReturnBuffer As String
Dim filename As String
Dim BufferSize As Long
Dim ErrNumber As Long
Dim PathName As String
Dim lenPath As Integer
Dim IniPath As String

‘Call the GetCommandLine wrapper function:
PathName = GetCommandLine()
lenPath = Len(PathName)
lenPath = lenPath - 15
IniPath = Left$(PathName, lenPath)
IniPath = Right$(IniPath, Len(IniPath) - 1)
filename = IniPath & “TEST.INI”
Section = “Settings”
KeyName = “AppTitle”

976

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 976

default = “Not Found”
ReturnBuffer = String$(128, 0)
BufferSize = Len(ReturnBuffer)
ErrNumber = apiGetPrivateProfileString(Section, _

KeyName, default, ReturnBuffer, _
BufferSize, filename)

GetPrivateProfileString = ReturnBuffer
End Function

GetPrivateProfileIntA
The GetPrivateProfileIntA function returns an integer value from an application-specific
.ini file:

Declare Function apiGetPrivateProfileInt _
Lib “Kernel32” _
Alias “GetPrivateProfileIntA”(_
ByVal lpSection As String, _
ByVal lpszKey As String, _
ByVal dwDefault As Long, _
ByVal lpszFilename As String) As Long

GetPrivateProfileInt accepts a Section, KeyName, default, and filename like
GetPrivateProfileString but does not accept a string buffer. If the function is successful, it
returns the integer value. GetTitleSetting shows how to use GetPrivateProfileIntA:

Function GetTitleSetting() As Long
Dim Section As String
Dim KeyName As String
Dim default As Long
Dim filename As String
Dim ErrNumber As Long
Dim PathName As String
Dim lenPath As Integer
Dim IniPath As String

‘Call the GetCommandLine wrapper function:
PathName = GetCommandLine()
‘The next line extracts “msaccess.exe”
‘from the command line.
lenPath = Len(PathName)
lenPath = lenPath - 15
IniPath = Left$(PathName, lenPath)
‘The next line extracts the quotations
‘from the command line.
IniPath = Right$(IniPath, Len(IniPath) - 1)
filename = IniPath & “TEST.INI”
Section = “Settings”
KeyName = “TitleBar”

977

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 977

default = 1
ErrNumber = apiGetPrivateProfileInt(_

Section, KeyName, default, filename)
GetTitleSetting = ErrNumber

End Function

GetProfileStringA
GetProfileStringA is very much like GetPrivateProfileString:

Declare Function apiGetProfileString _
Lib “Kernel32” _
Alias “GetProfileStringA”(_
ByVal lpszSection As String, _
ByVal lpszKey As String, _
ByVal lpszDefault As String, _
ByVal lpszReturnString As String, _
ByVal dwReturnSize As Long) As Long

This function behaves like GetPrivateProfileString, except it does not accept a filename as
an argument. GetProfileString only works with the win.ini file, located in the Windows
installation folder. Notice that you do not have to tell GetProfileStringA where Windows is
installed. Apparently, GetProfileStringA is able to find the Windows installation folder with-
out any help.

WritePrivateProfileStringA
WritePrivateProfileStringA writes information to a private (application-specific .ini file):

Declare Function apiWritePrivateProfileString _
Lib “Kernel32” _
Alias “WritePrivateProfileStringA”(_
ByVal lpszSection As String, _
ByVal lpszKey As String, _
ByVal lpszSetting As String, _
ByVal lpszFilename As String) As Long

Like GetPrivateProfileStringA, this function receives a section, key, default, and filename as
arguments. But it also accepts the value you want to place in the .ini file in the lpszSetting
argument. If the function is successful, it returns a True value; otherwise, it returns a False value.

The WritePrivateString() function writes a new title bar caption to a specified .ini file by
using the GetCommandLine wrapper function and using the returned command line, plus the
filename, as the full path to the .ini file:

Function WritePrivateString()
Dim Section As String
Dim KeyName As String
Dim Value As String

978

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 978

Dim FileName As String
Dim ErrNumber As Long
Dim Setting As Long
Dim PathName As String
Dim lenPath As Integer
Dim IniPath As String

‘Call the GetCommandLine wrapper function:
PathName = GetCommandLine()
lenPath = Len(PathName)
lenPath = lenPath - 15
IniPath = Left$(PathName, lenPath)
IniPath = Right$(IniPath, Len(IniPath) - 1)
filename = IniPath & “TEST.INI”
Section = “Settings”
Setting = GetTitleSetting()
Select Case Setting

Case 1
KeyName = “AppTitle”
Value = “Microsoft Access - “ & GetUser()
ErrNumber = apiWritePrivateProfileString(_

Section, KeyName, Value, FileName)
Value = “2”
KeyName = “TitleBar”
ErrNumber = apiWritePrivateProfileString(_

Section, KeyName, Value, FileName)

Case 2
KeyName = “AppTitle”
Value = “My Access Application”
ErrNumber = apiWritePrivateProfileString(_

Section, KeyName, Value, FileName)
KeyName = “TitleBar”
Value = “1”
ErrNumber = apiWritePrivateProfileString(_

Section, KeyName, Value, FileName)
Case Else

End Select
End Function

WriteProfileStringA
WriteProfileStringA behaves much like WritePrivateProfileStringA, except it does
not accept a filename as a parameter:

Declare Function apiWriteProfileString _
Lib “Kernel32” _
Alias “WriteProfileStringA”(_

979

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 979

ByVal lpszSection As String, _
ByVal lpszKey As String, _
ByVal lpszSetting As String) As Long

Like GetProfileStringA, this function only works on the win.ini file. If the function com-
pletes successfully, the return value is True; if not, it returns False.

Controlling applications with the Registry
All 32-bit versions of Windows store just about everything about your PC in the System Registry.
Your hardware settings — user preferences (color, desktop, background), the software you have
installed on your PC — all have entries in the Registry. If you open the Windows Registry with
Regedit.exe, you’ll see that it looks a lot like the Windows Explorer. There are folders repre-
senting top-level keys like HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER, and then folders
representing subkeys, like SOFTWARE, and then even more subkeys to represent specific informa-
tion. Finally, there are values that contain settings important to your applications and hardware.

When you’re manipulating the Registry, there are some standards you should follow:

n Your application’s entry should follow a pattern. It’s a hierarchy that starts with the
HKEY_LOCAL_MACHINE key, then moves to SOFTWARE, then to the software vendor’s
name, then the application name, followed by the current version entry, and then any set-
ting you wish to make. HKEY_LOCAL_MACHINE is the key that tracks what software is
installed on the machine. If you wanted to make any user-specific settings, you would
also add an entry to the HKEY_CURRENT_USER key.

n If you place a key in the Registry, make plans to remove it. In other words, plan an
“uninstall” program that removes any traces of your software from the Registry. The
System Registry is just a database of information about a computer. It doesn’t need to be
cluttered with information that isn’t relevant anymore.

The next section details all the API calls you need to make to create a Registry entry, set the value
of a subkey, query the subkey, and then remove it from the Registry. The basAPIFunctions
module contains all the examples.

RegCreateKeyEx
RegCreateKeyEx creates a key in the Registry:

Declare Function apiRegCreateKeyEx _
Lib “Advapi32” _
Alias “RegCreateKeyExA”(_
ByVal hKey As Long, _
ByVal lpszSubKey As String, _
ByVal dwReserved As Long, _
ByVal lpszClass As String, _
ByVal dwOptions As Long, _
ByVal samDesired As Long, _

980

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 980

lpSecurityAttributes As Long, _
phkResult As Long, _
lpdwDisposition As Long) As Long

If the key already exists, then RegCreateKeyEx opens it. This allows you to use only one function
to produce both results. You can use RegOpenKeyEx if you merely want to open an existing key.
However, if you use only RegOpenKeyEx, you must do error-checking to see if the key doesn’t exist.

hKey is a top-level key, such as HKEY_LOCAL_MACHINE, and can be represented using one of the
following constants:

Const HKEY_CLASSES_ROOT = &H80000000
Const HKEY_CURRENT_USER = &H80000001
Const HKEY_LOCAL_MACHINE = &H80000002
Const HKEY_USERS = &H80000003
Const HKEY_CURRENT_CONFIG = &H80000005
Const HKEY_DYN_DATA = &H80000006

lpszSubKey is a string containing the complete path of the subkey below the top-level key.
dwReserved is reserved, so it is set to zero. lpszClass is a string value that contains a class name
(if you are using one). dwOptions can be used to specify whether the key is volatile (kept in between
sessions) or nonvolatile (the key is not saved in the Registry between sessions). samDesired pertains
to security access for the key. Security access can be represented using the following constants:

Const KEY_QUERY_VALUE = &H1&

Const KEY_SET_VALUE = &H2&

Const KEY_CREATE_SUB_KEY = &H4&

Const KEY_ENUMERATE_SUB_KEYS = &H8&

Const KEY_NOTIFY = &H10&

Const KEY_CREATE_LINK = &H20&

Const READ_CONTROL = &H20000

Const KEY_READ = READ_CONTROL Or KEY_QUERY_VALUE Or _
KEY_ENUMERATE_SUB_KEYS Or KEY_NOTIFY

Const KEY_WRITE = READ_CONTROL Or KEY_SET_VALUE Or _
KEY_CREATE_SUB_KEY

Const KEY_EXECUTE = KEY_READ

Const KEY_ALL_ACCESS = KEY_QUERY_VALUE And _
KEY_ENUMERATE_SUB_KEYS And KEY_NOTIFY And _
KEY_CREATE_SUB_KEY And KEY_CREATE_LINK And _
KEY_SET_VALUE

981

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 981

lpSecurityAttributes is the address of a security structure, which is an optional parameter.
If you aren’t using the structure, pass this argument a zero. phkResult is a long integer buffer
that contains the handle of the new or opened key if the function is successful.
lpdwDisposition is a long value that receives the disposition of the value buffer.

RegCreateKeyEx returns zero if successful.

The OpenKey API wrapper creates (or opens) a key in which an application’s title setting is stored.

Function OpenKey() As Long
Dim SubKey As String
Dim Class As String
Dim Options As Long
Dim RegSam As Long
Dim Sec_Attrib As Long
Dim Result As Long
Dim Disposition As Long
Dim RetVal As Long
SubKey = _

“SOFTWARE\MyCompany\MyApp\MySection\SomeValue”
Options = 1
RegSam = KEY_ALL_ACCESS
Sec_Attrib = 0
RetVal = apiRegCreateKeyEx(HKEY_LOCAL_MACHINE, _

SubKey, 0, 0, Options, RegSam, Sec_Attrib, _
Result, Disposition)

OpenKey = Result
End Function

RegSetValueExA
RegSetValueExA sets the value of a registry key:

Declare Function apiRegSetValueEx _
Lib “Advapi32” _
Alias “RegSetValueExA”(_
ByVal hKey As Long, _
ByVal lpszValueName As String, _
ByVal dwReserved As Long, _
ByVal dwType As Long, _
ByVal lpbData As String, _
ByVal cbdata As Long) As Long

hKey is the address of an open key. lpszValueName is a string containing the name of the value
you want to set. In an .ini file, this would be the key name. dwReserved should be set to zero.
dwType is a flag telling the Registry what type of data value to create. The following constants can
be used as symbolic constants for dwType:

Const REG_NONE = 0&
Const REG_SZ = 1&

982

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 982

Const REG_EXPAND_SZ = 2&
Const REG_BINARY = 3&
Const REG_DWORD = 4&
Const REG_DWORD_LITTLE_ENDIAN = 4&
Const REG_DWORD_BIG_ENDIAN = 5&
Const REG_LINK = 6&
Const REG_MULTI_SZ = 7&
Const REG_RESOURCE_LIST = 8&
Const REG_FULL_RESOURCE_DESCRIPTOR = 9&
Const REG_RESOURCE_REQUIREMENTS_LIST = 10&

lpbData is the value for the key you are setting, and cbData is the length (Len(lpbData))
of the value. The SetAppTitleReg function below sets the value for the application title
(AppTitle) and the title bar (TitleBar) for the System Information form.

RegSetValueEx returns zero if successful.

The SetAppTitleReg wrapper function shows you how to use the different Registry API calls to
write a value into the System Registry:

Function SetAppTitleReg() As Long
Dim Value As String
Dim Data As String
Dim DataSize As Long
Dim ErrNumber As Long
Dim Setting As Long
Dim hKey As Long
hKey = OpenKey()
Setting = GetTitleSettingReg(hKey)
Select Case Setting

Case 1
Value = “AppTitle”
Data = “Microsoft Access - “ & GetUser()
DataSize = Len(Data)
ErrNumber = apiRegSetValueEx(hKey, Value, 0, _

REG_SZ, Data, DataSize)
Value = “TitleBar”
Data = “2”
DataSize = Len(Data)
ErrNumber = apiRegSetValueEx(hKey, Value, 0, _

REG_SZ, Data, DataSize)
Case 2

Value = “AppTitle”
Data = “Access Auto Auctions”
DataSize = Len(Data)
ErrNumber = apiRegSetValueEx(hKey, Value, 0, _

REG_SZ, Data, DataSize)
Value = “TitleBar”
Data = “1”

983

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 983

DataSize = Len(Data)
ErrNumber = apiRegSetValueEx(hKey, Value, 0, _

REG_SZ, Data, DataSize)
Case Else

End Select
ErrNumber = RegFlushKey(hKey)
ErrNumber = RegCloseKey(hKey)

End Function

RegFlushKey
When a Registry key is created or altered, the changes can be cached in memory. To force the
changes to be written immediately to the Registry, flush the key using RegFlushKey:

Declare Function apiRegFlushKey _
Lib “Advapi32” _
Alias RegFlushKey(_
ByVal hKey As Long) As Long

RegFlushKey accepts the handle of an open key as an argument and returns zero if successful.
SetAppTitleReg() from the previous section uses RegFlushKey to commit changes made to
the title bar settings it has made.

RegQueryValueEx
The RegQueryValueEx function returns the value of a registry key opened with the
RegCreateKeyEx API call.

Declare Function apiRegQueryValueEx _
Lib “Advapi32” _
Alias “RegQueryValueExA”(_
ByVal hKey As Long, _
ByVal lpszValueName As String, _
ByVal lpdwReserved As Long, _
lpdwType As Long, _
ByVal lpbData As String, _
lpcbSize As Long) As Long

hKey is the handle of an opened key. lpszValueName is a string containing the key of the value
you want to retrieve. lpdwReserved should be set to zero. lpdwType is a buffer containing one
of the symbolic constants listed earlier, which tells the function what kind of data it should expect
to receive. lpbData is a buffer to receive the data, and lpcbSize is a buffer to receive the size of
the returned value.

RegQueryValueEx returns zero if successful.

The GetTitleSettingReg wrapper function accepts the handle of an open key and returns the
value for the TitleBar key in our System Information form:

984

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 984

Function GetTitleSettingReg(hKey As Long) As Long
Dim Value As String
Dim Reserved As Long
Dim Data As String * 128
Dim DataSize As Long
Dim DataType As Long
Dim RetVal As Long
Value = “TitleBar”
Reserved = 0
DataSize = Len(Data)
RetVal = apiRegQueryValueEx(_

hKey, Value, Reserved, DataType, Data, DataSize)
If DataType = 0 Then

Data = 1
RetVal = apiRegSetValueEx(_

hKey, Value, 0, REG_SZ, Data, DataSize)
End If
GetTitleSettingReg = Left$(Data, DataSize - 1)

End Function

RegCloseKey
RegCloseKey closes an open Registry key:

Declare Function apiRegCloseKey _
Lib “Advapi32” _
Alias RegCloseKey(_
ByVal hKey As Long) As Long

Whenever you access a Registry key — whether you open it, query it, set the value, or remove it —
you must close the handle of the key when you’re finished with it. RegCloseKey accepts the
handle of an open key as an argument and returns zero if successful.

RegDeleteKey
RegDeleteKeyA removes a key from the registry:

Declare Function apiRegDeleteKey _
Lib “Advapi32” _
Alias “RegDeleteKeyA”(_
ByVal hKey As Long, _
ByVal lpszValue As String) As Long

Whenever you alter the Registry, you should provide a way to remove the changes you’ve made.
For instance, you should provide a plan for “uninstalling” your application should the user choose
to do so (perish the thought!). RegDeleteKey removes a subkey from the specified parent key. It
accepts a pointer to the top-level key (such as HKEY_CURRENT_USER) and the path of the subkey.
It returns zero value if it is successful.

985

Using the Windows API 30

37_046732 ch30.qxp 11/21/06 9:03 AM Page 985

The sample form in Chapter30.accdb creates a Registry key and assigns two values to the key.
Figure 30-3 shows the structure of the keys created in the application as viewed through
regedit.exe. The On Close event of the form calls RegDeleteKey to remove the keys. If you
check the Registry while the form is up and after the form has been closed, you will see that the
structure changes.

FIGURE 30-3

Keys created by the System Information form

Summary
In this chapter, you’ve gotten a look at how you can go beyond Access’s limits by digging into the
interior of Windows. The Windows API is a great way to add extra functionality to your applica-
tions. There are close to 1,000 different functions built into Windows that allow you to control
your application settings, communications, Registry settings, and network functions.

In this chapter, you learned:

n What the API is and how you use it

n How to write Windows function Declare prototypes

n How to write function wrappers to make using the API functions easier

n A number of practical API calls that work well for Access applications

The next chapter sheds light on the complex subject of using Access’s replication features. There,
you’ll see how replication can help your data be more secure while helping you distribute applica-
tion updates to users, no matter where they’re located.

986

Professional Database DevelopmentPart IV

37_046732 ch30.qxp 11/21/06 9:03 AM Page 986

In most up-to-date offices, Access database users are working on a num-
ber of different computer systems, but their computers are connected in
a local area network (LAN). Because of the network users can share a

single copy of an Access .mdb file located on a file server. In this kind of
setup, problems arising from out-of-date data and simultaneous changing of
data by multiple users are rare. As long as the appropriate locking scheme
has been implemented by the developer and all users are trained in what to
do in the event of locked records, little can go wrong.

However, the situation is not so simple in companies where some people
need to run Access applications on portable computers, or in company
offices so geographically distributed that it’s impossible to link all copies of
an Access database with a LAN. In these situations, synchronizing the data
managed by the “roving” Access applications with the “stationary” copies in
the main office can be a daunting task. A laptop user virtually always has a
complete copy of the database on their computer and makes changes directly
to the mobile database. Later on, these changes have to be synchronized with
the stationary database located on the company’s network.

A frequently requested feature in Microsoft Access is an easy way to synchro-
nize data changes among multiple copies of the same database. Many devel-
opers have implemented complex — and often inefficient — schemes
whereby data are exchanged between Access database files. With very few
exceptions, these schemes fail to take into account all the issues involved
with data synchronization, such as resolving the conflict that occurs when
multiple users change the same record between synchronization events.
Which record (roving or stationary) should win and be updated on the net-
work? There is no easy way to establish rules that accommodate all contin-
gencies in a home-grown replication scheme.

987

IN THIS CHAPTER
Understanding database
replication

Creating a replication Design
Master

Creating replica databases

Synchronizing data between
replicas

Synchronizing design changes
between replicas

Studying VBA code to perform
replication operations

Using the Access
Replication Features

38_046732 ch31.qxp 11/21/06 9:03 AM Page 987

There are many other problems with such schemes. Most often the newest record is selected as the
winner and updated in the network copy of the database. Time zone differences and other time
dependencies quickly ruin such a plan.

Access 2007 provides a solution: database replication, a feature designed to permit flawless updates
and synchronization of changes to data performed at any number of remote sites. As a developer,
you have a number of techniques at your disposal when it comes to implementing database repli-
cation. In this chapter you see how the replication engine in Access 2007 accommodates all but the
most stringent requirements for data coordination between local and remote sites.

The companion CD-ROM contains two sample databases for this chapter. MyDM.mdb is
a fully replicable design master, and Chapter31.mdb is a typical Access database

before being converted to a design master. Feel free to experiment with these databases as you
explore Access 2007 replication, and be sure you understand the principles involved (including the
need to backup the database) before converting your production applications to a replica set.

It is important to note that the .accdb file format does not support replication. The example
database on this books CD is actually an Access 2000 database file. Access 2007 does support
replication when working with .mdb format files. The discussions in this chapter are applicable to
all 32-bit versions of Access except for the .accdb file format.

Understanding Replication
Replication is the process of copying and sharing information between copies of the same database,
so that the data and designs of the copies remain consistent. Properly implemented replication
ensures that no copy of a database will have data that is inconsistent with the same records in any
other existing copy of that database.

In the Microsoft Access replication scheme, the original copy of the database is called the Design
Master; each copy of the Design Master is called a replica. The Design Master and its replicas com-
prise a replica set and share many elements in common. The Design Master and each replica may
contain other elements that are not shared with the other members of the replica set, however.

Data changes can be made to any member of the replica set (Design Master or replicas). New data
can be added, and existing data can be changed in any member of the replica set. Periodically the
members of the replica set are synchronized to ensure that the data are consistent across all mem-
bers of the set. Synchronization does not have to happen to all members simultaneously. Any
replica set member can synchronize with any other replica set member at any time.

Only the Design Master, however, supports changes to the existing database’s structure (table,
query, and form design, for instance). If changes to the database structure are needed, the changes
are made to the Design Master and are propagated to the other members of the replica set during
synchronization. For the purposes of data replication, the Design Master behaves just as any other
replica in the replica set.

In addition to the replicable objects in a database, a member of a replica set can contain a number
of local objects that are not replicable. Local tables, for instance, might protect private or sensitive

ON the CD-ROMON the CD-ROM

988

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 988

information that should not be shared with other replicas in the set. As you’ll soon see, database
objects have a number of properties that either make them part of the replication scheme or keep
them local to the database in which they reside.

Database replication almost (but not quite) eliminates the problems that arise when multiple users
are making changes to different copies of the same database. On rare occasions, users working with
different replicas from a replica set still make changes to the same record in the same table, but the
Access 2007 replication engine catches these synchronization conflicts and permits manual resolu-
tion of these instances.

The normal sequence of events in a replication scheme is as follows (Figure 31-1 diagrams the
process step by step):

1. Administrator builds and tests an Access database.

2. When the database development is complete, the database is converted to a replica-
tion Design Master.

3. Multiple replica copies of the Design Master are made and sent to multiple loca-
tions. Each copy initially contains an identical set of data.

4. Data updates are made at each location.

5. Periodically, each replica is synchronized with some other replica in the replica set.
For instance, each replica may be synchronized with the Design Master copy, or
with another “designated” replica.

6. As changes to the database structure are needed, the Design Master is modified and
synchronized with each member of the replica set.

FIGURE 31-1

Replication is a multistep process that ensures consistent databases.

MyDB

Database

Conversion

1

Synchronize
Data and
Design
Consistency

MyDM

Replica of
MyDM

Design
Master

Replica

Design and
Data Changes

Data Changes

2 3

6

4
5

989

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 989

It is important to note that the Access replication feature applies to record-level data changes. Changes
to individual fields within records are not tracked. A change to any field within a record is tracked as a
change to the record, and the entire record will be exchanged at the next synchronization.

A Replication Demonstration
Perhaps the best way to demonstrate how replication works is to build a simple Access database,
convert it to its replicable form (by default, a Design Master replica), create a replica from the
Design Master, and make a few changes to the Design Master’s data and structure. You then syn-
chronize the replica with the Design Master’s new data and structure.

Creating the database
Follow these steps to create the database to use in this example:

1. To begin, create a new, empty Access database and call it MyDM.mdb (for “My
Design Master”). Be sure to select either the Access 2000 or Access 2002–2003 for-
mat. Next, import the Employees and Categories tables from the Northwind Traders
sample database. Then select the Replication Options button in the Administrator
group in the Database Tools ribbon tab (see Figure 31-2) to access the Create
Replica command.

FIGURE 31-2

The Administrator ➪ Replication Options menu showing the Create Replica command.

2. When you select the Create Replica command, a dialog box appears asking whether
to proceed with the process of creating a Design Master replica. Click Yes to com-
plete the conversion.

3. Before the conversion occurs, Access asks whether you want a backup of the origi-
nal .mdb file (Figure 31-3). In most cases (disk space permitting, of course) you
want to keep a backup of the database on hand in case the conversion to Design

990

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 990

Master fails or is incomplete. As you’ll see later in this chapter, converting a replica
back to nonreplicable form can be a tedious and time-consuming process.

FIGURE 31-3

In most cases, you want to let Access make a backup of the original .mdb file.

Be watchful of disk space when you request a backup, however. The backup produced
by Access during the conversion process is a complete copy of the existing database,

including all tables, forms, and other bulky database objects. And the dialog in Figure 31-4 does not
permit you to put the backup copy on another disk on your system. So be sure you have adequate
disk space to accommodate the copy and the converted .mdb file. If you’re working with a large
.mdb file, you may want to compact it before converting to Design Master to reduce the file to the
smallest possible size.

Just in case you’re wondering, you can certainly make a replica of the front-end database of a split
database system, but there’s probably no reason to do so. One of the major advantages of replica-
tion is that each user works with a complete copy of the Access application. Replication enables
users to synchronize their data changes periodically. Also, replication allows database developers to
replicate database design changes, including tables, queries, forms, reports, and code, and make
those changes available to users working with replica databases.

On such a small database as our example, the conversion to Design Master takes only a few sec-
onds. As part of the conversion process, Access builds the first replica of the Design Master. Just as
the conversion finishes, the dialog you see in Figure 31-5 pops up to ask where you want the
replica put on your system. The path you specify for the replica is recorded in the Design Master,
so put it where you need it on your system. For our demonstration we’ll drop the replica in the My
Documents folder along with the MyDM Design Master.

At the conclusion of the process, the new Design Master opens and a message box tells you the
conversion is complete. In Figure 31-5, notice that the title bar of the Access window shows that
MyDM is now a Design Master. The message box tells you that only MyDM can accept design
changes for the new replica set. Also notice the replication icons next to the Categories and
Employees tables, which indicate that these tables are involved in the database’s replication events.

TIPTIP

991

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 991

FIGURE 31-4

Access builds the first Design Master replica as part of the conversion process.

FIGURE 31-5

The conversion is complete. Notice the title bar in the MyDM Database window.

992

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 992

Changing the replica
Close MyDM and open Replica of MyDM.mdb. Figure 31-6 shows the Database window for
Replica of MyDM.mdb. Notice the title bar text in the Database window. The table objects you
see in Figure 31-6 are identical to the table objects in Figure 31-5, with the exception that all tables
and other database objects in a replica are read-only, because you cannot make changes to the
design of database objects in a replica. You can, of course, make changes to the data contained in a
replica’s tables; follow these steps to see how that works:

FIGURE 31-6

A replica looks a lot like a Design Master. Notice the text in the Access title bar.

1. In Replica of MyDM, open the Employees table and change Nancy Davolio’s name
to Betty Merrill.

2. Close the Employees table and select Tools ➪ Replication ➪ Synchronize Now to
initiate data synchronization with MyDM. Notice also that you now have a full com-
plement of replication tasks available to you.

As soon as you select the Synchronize Now command, the confirmation dialog in Figure
31-7 opens. As you learn later in this chapter, the location of the replica’s Design Master
is stored in a hidden system table within the replica. If you move either the Design Master
or a replica, you have to use the Browse button in the Synchronize Database dialog to
locate the moved file.

993

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 993

FIGURE 31-7

Jet remembers where the replica’s Design Master is located.

Synchronization is straightforward and should take just a few seconds to complete. It is important
to note that the replication direction demonstrated here (replica-to-Design Master) is unimportant.
A replica can synchronize with any other replica in its replica set.

In this small example you are exchanging only a little data with the Design Master replica. In a
real-world situation you may exchange many other objects, including tables, forms, and other
items. The best way to ensure that you’re seeing all of the structural changes wrought by the syn-
chronization is to close and reopen the database.

Close the Replica of MyDM database; then open MyDM and view the Employees table. Notice
that Nancy Davolio has been replaced with Betty Merrill. Close the Employees table when you’re
done admiring your work.

Now, change the database design by deleting the Categories table. If Access refuses to delete the
Categories table, make sure you’re in the Design Master (MyDM.mdb). (Remember, you cannot
make design changes in any replica other than the Design Master.) Then click Tools ➪ Replication
➪ Synchronize Now to synchronize the design change with Replica of MyDM.mdb. When you
close MyDM and open Replica of MyDM, the Categories table should be gone.

The principles illustrated by this demonstration apply to all Jet replication installations. The major
difference between our demonstration and replication in practice is that most real-world situations
involve more than a Design Master and one replica, and, of course, most databases contain more
than a single table.

To summarize the important principles illustrated by this demonstration:

n Converting a database with the Access menus results in a Design Master and one replica.
Additional replicas can be made from the Design Master or any replica by selecting Tools ➪

Replication ➪ Create Replica.

n Information about the replica set (for instance, the location of the Design Master) is
stored in hidden system tables. You can view these tables by selecting Tools ➪ Options ➪

View ➪ System Objects. Each of the replication system tables is described later in this
chapter.

994

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 994

n Synchronization proceeds in any direction (replica-to-Design Master, Design Master-to-
replica, or replica-to-replica). The only stipulation is that the databases being synchro-
nized must not be involved in another synchronization event at the same time.

n The changes exchanged by the synchronization event include data and design. Only the
Design Master supports design changes. All objects in a replica are read-only.

As you read this chapter, keep in mind that it’s actually the Jet engine that implements replication
and synchronization. The Access menus simply provide an interface to the Jet replication features.
Later in this chapter you learn how to create your own replication interface with Access VBA and
DAO code.

Replication Pros and Cons
Replication has many benefits for Access database users:

n Simplifies sharing of data with traveling users. As in the scenario described in the pre-
vious section, roving copies of a database can be synchronized with a stationary copy. The
synchronization is not done in real time, but is a good fit where “real-time enough” is
adequate.

n Facilitates data-sharing with remote offices. Replicas of the Design Master can be pro-
duced and sent to geographically distant satellite offices. Periodically, each office synchro-
nizes with the central office or a replica in the replica set at another satellite office. Each
office can maintain a number of local tables to maintain sensitive information.

n Prevents database demand overload. The Microsoft Jet engine does not support true
client-server database access. Instead, each user in a shared environment places demands
on the Jet engine to process queries, sometimes resulting in overloaded systems when a
large number of simultaneous users are hitting the same .mdb file. In situations where
immediate updates to the data are not critical, the shared .mdb file can be broken into a
number of replicas, even though they exist on the same network system. Each copy serv-
ices a number of different users at high-demand times, reducing the number of users on
any one copy of the database. Periodically the replicas are synchronized to bring the data
contained in each up to date with the other members of the replica set.

n Distributes updates to the application. Because Jet replication involves more than just
the data contained in the database, you can use replication to distribute updates to forms,
reports, and other database components. You may want to reserve the Design Master
just for producing application updates, rather than using it as a normal member of the
replica set.

n Serves as a backup for data. Because the data in a recently synchronized replica is guar-
anteed to be up to date, you have a robust back-up system built into every replica set.
Microsoft has made it easy to designate any replica as the Design Master for the replica set
in the event that the current Design Master is lost due to equipment failure, so it is not
necessary to maintain the Design Master on back-up media. In fact, as you read later in

995

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 995

this chapter, certain problems are associated with performing traditional backups of repli-
cated databases — in particular, it’s easy for data to be lost if you restore a backed-up
copy of a replica that has missed one or more synchronization events and therefore con-
tains out-of-date data.

In each of these cases, it isn’t necessary for the remote copy of the Access database to be connected
permanently to the central copy by a local area network (LAN). Windows offers a several connectiv-
ity solutions, including the built-in Windows peer-to-peer network, dial-up networking (in which a
remote computer obtains network services through a modem), and direct-connect networking (the
remote computer is connected through a serial or parallel cable to a desktop computer). Each of
these networking solutions offers a convenient way to synchronize large amounts of data across
connections between the desktop computers.

Another solution is to use a CD-ROM to transfer the replica database to the desktop computer for
synchronization. If the remote computer can’t be physically connected to the desktop machine,
sometimes this is your best approach to synchronization.

Jet replication is not appropriate in several situations. For example, the unavoidable delay between
data acquisition and synchronization may be too long to provide a good solution to the user’s
needs. Replication is not an ideal solution under the following circumstances:

n When data consistency is critical: Many industries (banking, airline reservations, point-
of-sale inventory management, and so on) demand instant updates to the data managed
by the database. Because of the unavoidable delays in communicating data changes to the
other users in a Jet replica set, real-time data updates are often impossible when using
replication. Traditional transaction processing is a better approach when real-time data
updates are necessary.

n When large numbers of updates to many different records are required: Replication
works best when the usual database update is simply a matter of adding new records to
the underlying tables or making relatively few changes to existing records. In these cases,
replication is mostly a question of distributing the new records to each member of the
replica set. In situations where large numbers of existing records are being changed at
several different sites, the same records may be simultaneously changed by a number of
users, resulting in an unacceptably high number of record conflicts which must be
manually resolved.

Introducing the Access Replication Tools
Access 2007 provides a number of tools for working with replication. These tools let you convert
existing Access 2007 databases into replica Design Masters as well as synchronize replicas with
other replicas and the Design Master in a replica set.

996

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 996

Using Access menus
The Access 2007 menu system includes all commands necessary to convert existing databases to
Design Masters or produce individual replicas. These menu options work only when replication
was selected during the Access 2007 installation process. If you have trouble getting the replication
menu commands to work, you may have to run the Access 2007 installation again, making sure
replication is selected as an option.

The demonstration earlier in this chapter showed you how the Access menu interface to Jet replica-
tion works. The Replication menu you saw in Figure 31-2 contains all actions required to create
and maintain a replica set.

You can’t go too far with the Access replication menus, however. For instance, there’s no easy way
to verify that the synchronization has been successful (other than the error messages that might
occur in the event of a failure), nor is there any way to schedule synchronization for low-demand
times. For these features you have to use VBA to program the feature yourself.

Replicating through VBA and DAO
The Access 2007 data access objects (DAO) contain a number of new replication-specific proper-
ties and methods. As you’ll see in the section titled “Programming Replication,” it’s possible to
build a complete interface to replication through these properties and methods, including creating
Design Masters and replicas, synchronizing replicas, and changing the replica status of members of
replica sets. The programmatic replication interface is ideal for relatively untrained or unskilled
users and provides the developer with a way to protect a replicable database from tampering.

The DAO replication extensions in the Jet database engine are sufficient to convert existing Access
.mdb files to replicable form (by default, the conversion results in a Design Master replica, but any
replica in a replica set can be designated as the Design master for the set). They also allow you to
create replicas from the Design Master and synchronize replicas in a replica set.

There are also a number of properties available at runtime to help you programmatically identify
the Design Master and replicas in a replica set. Each object within a replicable database also has a
number of properties that enable you to identify the replicable objects in the database.

Creating a Replica Set
The process of creating a replica set is straightforward and includes the following steps:

1. Make a database replicable: Convert an existing database to Design Master status.

2. Create replicas: Copy the Design Master to a number of replicas.

3. Make data changes: Roll the replica set out to users and let them make changes to
the data.

997

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 997

4. Synchronize: Periodically synchronize replicas with one another. Design changes
made to the Design Master will be propagated to each replica during synchronization.

5. Resolve conflicts and replication errors.

The following sections describe each of these steps (although not necessarily in this exact
sequence) using the Access menus, and VBA programming.

Using Access replication menus
Using the Access replication menus was thoroughly discussed in the section “A Replication
Demonstration” earlier in this chapter. The Access menu interface is well suited for users with suffi-
cient training and understanding of the replication process. If your application hides the Access
menus, you can use the DoMenuItem method of the DoCmd object to provide some access to the
menu commands. Otherwise, you should plan on using the replication DAO alternative.

Programmatic replication
Controlling replication through VBA code and DAO requires a thorough understanding of the
objects, properties, and methods employed during replication. Using VBA programming to control
replication has many advantages:

n You can provide replication services to users with minimal training. If you properly con-
struct your VBA code, you can effectively hide all the nastiness of synchronizing changes
with other replicas yet still provide robust synchronization services to each replica. Users
do not have to learn the intricacies of the Access menu system nor do they have to under-
stand replication principles.

n Your VBA code can use the information in the replication system tables to prepare reports
or inform users that replication has occurred and that their data are up to date.

n A custom replication interface can provide a lot more scheduling flexibility. Users can
choose which replicas to synchronize with and when to perform the synchronization.

Using VBA and DAO to implement replication is described in the section titled “Programming
Replication” later in this chapter.

Understanding Database Security
in Replication Sets
Jet preserves the current security settings when it converts a database to replicable form. Any per-
missions a user had before conversion are in place in the new replica or Design Master. This means

998

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 998

that the System.mdw file, which contains the user and group security information for your Access
installation, must be distributed along with each copy of a database replica. New users and groups
can be added at any replica, but permission changes can be made only to the Design Master
(because they are design changes).

The System.mdw file is not part of a replica set and must be manually copied around the system.

Certain permissions are required to perform some replication activities. For instance, a user must
have administrator permission to perform the following actions:

n Convert a database to replicable form.

n Make a local object replicable or make a replicable object local.

n Designate a replica as the Design Master for the replica set. (Be sure not to have multiple
Design Masters in the replica set!)

Be sure you fully understand the Access security system before distributing replicable databases
containing sensitive information to its users. By default, all members of the users group (which
means all users) have administrative permissions. If security is an issue, modify the default permis-
sions at design time.

At least one user at each replica site should have administration privileges. In the event that a cata-
strophic failure wipes out the Design Master and its associated System.mdw file, you need to be
able to designate another replica as Design Master. This can only be done if the System.mdw file
at the replica site recognizes a valid administrative user.

The Importance of Local Objects
Not every database object needs to be included in a replication scheme. Each replica in a replica set
(including the Design Master) can contain any number of objects that are not exchanged with
other members of the replica set. By default, when you convert an Access database to replicable
format, all objects in the .mdb file are marked for replication.

If, after the Design Master is created, you wish to reserve some objects to be used only within the
Design Master, you must set the Replicable property of each one to F (or False). The easiest way to
do this is to right-click the object’s name in the Design Master’s Database window to open the
object’s Property Sheet (see Figure 31-8).

Simply uncheck the Replicated check box in the lower-right corner of the Property Sheet, and Jet
keeps the object local during future synchronizations.

999

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 999

FIGURE 31-8

It’s easy to make an object local in the Design Master by unchecking the Replicated check box in the
object’s Property Sheet.

Resolving Replication Conflicts
Replication can generate a number of different types of conflicts and errors. These problems may
cause the data in replicas to become unsynchronized, depending on the root cause of the error.

Design errors
True design errors are relatively rare. Because the structure of tables and other database objects can
be changed only in the Design Master, opportunities for design problems are greatly reduced.

Design changes made to the Design Master can cause design errors at synchronization, however.
For instance, assume that the structure of a table is modified to make a particular field a primary
key. At the next synchronization a primary key violation will occur if a user has entered a duplicate
value in the field that is now designated as the primary key. Jet detects this conflict as a design
error because a structural change has been made to the table.

Another example: You create a new replicable table in the Design Master that just happens to have
the same name as a local table maintained in a replica in the set. Jet will be unable to add the new
replicable table to that replica because of the name conflict.

Design errors are reported in the MSysSchemaProb table in each replica. This table is local to
each replica and contains the following information:

n The design change that failed (Create Index, Create Table, and so on)

n The text of the design change error message

1000

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1000

n The Design Master design version that triggered the error

n Other information such as the name of the local table with the conflict, the names of
fields involved in the conflict, and so on

MSysSchemaProb is present only when a design conflict has occurred. Its presence indicates
there has been a problem synchronizing design changes between replicas.

Resolving design errors is straightforward. Review the MSysSchemaProb table for the nature of
the problem; then rename the table, field, or other object generating the error or resolve the
primary key conflict. Most often you end up removing or renaming some object in the replica
database.

Synchronization conflicts
A synchronization conflict occurs when two or more users make changes to the same record in dif-
ferent replicas between synchronizations. There is no way for Jet to know which record change
takes precedence over another. Because changes are tracked only at the record level, a change in
almost any field causes the entire record to be exchanged. (The exceptions are OLE and memo
fields — changes in these fields are tracked separately and they are exchanged only when the OLE
or memo data has changed.)

True synchronization errors may occur with relative frequency, depending on many factors:

n The number of replicas in the replica set

n The number of changes to existing records made by each user

n How often synchronization events occur

Very often you can minimize future conflicts by modifying the parameters (synchronization fre-
quency, for instance) that lead to these conflicts).

When a synchronization conflict occurs, Jet determines a winner by looking at the version num-
bers of the records. You’ll recall that the s_Generation field is incremented each time there is a
change to the record. Given two conflicting fields with differing s_Generation values, Jet
chooses the record with the most changes (and therefore the highest version number) since the last
synchronization, on the assumption that the data in that record is the most recent.

In the case where both version numbers are the same (for instance, each record has been changed
only once), Jet chooses a winner based on the replica’s ID number. Admittedly, this is an entirely
arbitrary way to choose a conflict winner, but it does provide for a consistent selection between
conflict pairs.

In any case, Jet records the synchronization conflict in a conflict table (sometimes called a side table)
that is local to the replica that lost the conflict resolution. The conflict table is named
TableName_Conflict, where TableName is the name of the table with the conflicting records.
Conflict tables are not replicated.

1001

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1001

At the conclusion of the conflict resolution, the tables in the replicas with the conflicting records
are consistent because Jet exchanges the winning record with both replicas.

Manual conflict resolution
You should look for conflict tables after synchronizing two replicas. The presence of a conflict table
indicates that Jet encountered a synchronization conflict that it resolved by declaring a winner and
placing the loser in the conflict table. Examine the conflict table to identify the record(s) that
caused the conflict. Very often there’s nothing more to do than simply delete the losing record from
the conflict table. Other times you need to dig down deeper to find out what happened.

You could, for instance, run a routine that looks at each table’s ConflictTable property to see if
a conflict occurred. This property contains the name of the conflict table containing the conflicting
records. If ConflictTable is a null string, no conflict occurred.

Microsoft suggests using the following subroutine (Listing 31-1) to test for the presence of conflicts
and display the conflict records stored in the conflict table:

LISTING 31-1

Programmatic Conflict Resolution

Sub Resolve (db As Database)
Dim tdfTest As DAO.TableDef
Dim rsConflict As DAO.Recordset

‘The For Each...Next loop looks at each
‘ConflictTable property for each table in the
‘replica. If the ConflictTable is not a null
‘string, run through the records in the conflict
‘table and perform some action on them:
For Each tdfTest In db.TableDefs

If (tdfTest.ConflictTable <> “”) Then
‘Conflict occurred:
Set rsConflict = _
db.OpenRecordset(tdfTest.ConflictTable)

‘Process each record:
rsConflict.MoveFirst

Do While Not rsConflict.EOF

‘<<<
‘Perform conflict resolution in this loop.
‘Perhaps display or report each record,
‘or email a message to the replica’s owner.

1002

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1002

‘>>>

rsConflict.Delete

‘Remove conflicting record when finished:
rsConflict.MoveNext

Loop

rsConflict.Close

End If

‘Move to next table in replica:
Next tdfTest

End Sub

Short-term conflict resolutions include the following:

n Manually entering the data from the conflict table into the database

n Accepting the conflict resolution proposed by Jet and deleting the conflict record from
the conflict table

If you notice an unacceptable number of conflicts, possible long-term resolutions include develop-
ing a custom conflict resolution into the VBA routines implementing your synchronization activity.
The routine may incorporate business rules such as “Marketing always wins” or “The changes input
by order entry have lowest priority.” You can even store such business rules in a replicable table
within the database and keep it updated as business objectives change.

You may also encounter a high level of conflicts for simple procedural reasons. For instance, maybe
due to poor planning the same customer records are being entered by more than one department
or clerk. Perhaps the inventory figures are being updated in the field as well as at the home office.
If you find situations such as these, do your best to make the necessary procedural changes
required to eliminate the redundancy.

Synchronization errors
Synchronization errors occur when the data are incorrectly replicated or the wrong data are repli-
cated. For instance, a table-level validation rule causes Jet to reject an otherwise valid entry into a
table — or two users insert different records using the same primary key value. Jet isn’t able to
insert both records into the same table at synchronization time, causing a primary key violation.

1003

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1003

Synchronization errors are records in the MSysErrors replication system table. MSysErrors is
exchanged with all replicas, so the same errors are available to all replicas. MSysErrors contains
the following information:

n The name of the table involved

n The incoming record that generated the error

n The replica(s) where the error was detected (One reason MSysErrors is replicated is so
that all replicas can report the same error, if it occurs in multiple locations.)

n The replica that most recently changed the record

n The operation (insert, append, change) that failed

n The reason the operation failed (duplicate primary key, and so on)

You should rectify replication errors as soon as possible. They normally don’t simply go away, and
they indicate situations (such as inappropriate table design or restrictive validation rules) that are
much more serious than simple synchronization conflicts.

A few types of errors that do self-correct, however. A simple record lock prevents a record update,
generating an error that is not present at the next synchronization event.

Replication Topologies
A number of different arrangements can be used to synchronize the members of a replica set.
Because each member of a replica set can synchronize with any other member of the same set at
any time, chaos can ensue if synchronizations don’t follow an organized pattern. Synchronization
should proceed in an orderly fashion to ensure that all members of the replica set receive updates
in a timely fashion.

The order in which replicas are synchronized is called the replication topology. As you schedule syn-
chronization between replicas, keep in mind how the update exchanges flow from one replica to
another. You should choose the topology that is best suited to your users and how they are work-
ing with their Access applications.

Make sure you are actually synchronizing with all members of a replica set. Use the information in
the replication system tables to verify synchronization events and that the synchronizations
occurred when expected. You can use this information to notify users that synchronization con-
flicts have occurred or when it’s time to manually initiate synchronizations.

At first glance, it may appear there is one and only one valid replication topology (the star arrange-
ment) for all replication environments. In this scenario, each replica connects to a single replica
and synchronizes with it. But, as you’ll soon see, there are equally valid arrangements that are even
better suited in some situations.

1004

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1004

Although this section describes three different topologies, other arrangements are possible. As you
build your replication scheme, be sure to consider alternatives if it appears the chosen design is too
inefficient or adds too much traffic to the network.

Replication from the
Developer’s Perspective
Replication presents many interesting and intriguing challenges for you as an Access developer. Not
only do you have to understand how replication works; you have to design a replication scheme
that is best suited for your users and their work flow. Then you have to decide whether to train
users how to use the Access menus, or whether it is better to build a custom routine using VBA and
DAO. No matter which system you design, you have to test and debug it after you build it.

A properly implemented replication scheme can save users thousands of hours a year merging and
updating changes in multiple databases. Because replication eliminates the possibility of transcrip-
tion errors, the accuracy of the data contained in multiple databases is ensured. And, a great deal of
time backing up individual databases is saved because replicas represent a built-in redundant
backup system.

The following sections discuss some global issues that you should be aware of as you begin work-
ing with replication. These topics round out your initial exposure to this fascinating technology.

Understanding the Changes
to Database Objects
A number of structural changes are made to a database as it is converted to a Design Master or
replica. These changes enable the replica engine to track changes to the data and synchronize data
between replicas. Specifically, new tables are added to the .mdb file, new fields are added to each
record in replicable tables, and new properties are added to all database objects (tables, queries,
forms, and so on).

In addition, the behavior of AutoNumber fields changes, and the overall size of the .mdb file
increases because of the new objects added to the database.

Globally unique ID
Many changes to a replica database involve the addition of globally unique IDs (GUID) to tables and
other parts of the database. The Jet engine creates GUIDs to ensure that each object tracked by the
replication mechanism has a unique handle the replicator can recognize. The GUID fields are special
system fields in the replicable tables and cannot be seen unless you select Tools ➪ Options ➪ View ➪

System Objects.

1005

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1005

A GUID is a combination of bits of information Jet gathers from the computer that was used to cre-
ate the Design Master. This information includes the network node ID, the time on the computer’s
system clock, a sequence identifier, and a version number for the replica. If the computer does not
have a network card installed, a 47-bit random number is generated and used instead. The random
number itself is a combination of bits of information, including the node name, the amount of free
space on the computer’s hard drive, and the system’s free memory status.

The combination of values used to produce GUIDs is almost guaranteed to be unique on every
computer. It is highly unlikely that any other computer exactly duplicates the conditions used to
produce the GUIDs on a given machine.

New system tables
Jet adds a fairly large number of tables to a database as it converts the database to replicable for-
mat. Figures 31-9 and 31-10 show the same database before and after conversion. In both these
figures the View System Objects option has been selected in the Tools ➪ Options dialog.

FIGURE 31-9

Every Access database contains these system tables.

1006

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1006

FIGURE 31-10

Not all of these system tables are present in every replicable database.

The following list describes each of the new system tables created during a database’s conversion to
replicable format. Unlike the usual system tables in an Access database, each of these tables con-
tains relatively straightforward information that is easy to read and understand.

To help you manage your installation, you could, as part of your replication design, build forms
and reports into your applications to display the information contained in these tables. You might
want to make these forms and reports local to the Design Master replica or another replica that you
designate as the administration replica.

Several of these tables grow every time a synchronization occurs. As the replica set administrator,
you should monitor the size of these system tables. When it appears that the information stored in
a shared table is no longer useful, you can delete old records from the table. The deletions are
replicated to other members of the replica set at the next synchronization. Keep in mind that sim-
ply deleting records doesn’t reduce the size of the .mdb on each member of a replica set. You may
also have to compact each .mdb to free up the space made available by the deletion.

n MSysRepInfo: This table stores information pertaining to the entire replica set, includ-
ing things like the GUID that identifies the Design Master. This table contains only one
record and is found in every member of a replica set.

1007

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1007

n MSysReplicas: This table contains information about each replica in the replica set,
such as the path of each replica, the GUID that identifies each replica, and so on. Every
member of the replica set has a copy of MSysReplicas.

n MSysTableGuids: Each original table in a replica (including system tables) is assigned
a GUID. This table contains the GUID information for each original table. During replica-
tion, tables are processed efficiently so that referential integrity and design features are
maintained. This table is maintained by the Design Master and is changed each time the
database design is modified.

n MSysSchemaProb: The MSysSchemaProb table stores design synchronization errors.
You’ll see this table only when there was a problem synchronizing changes to the data-
base structure between replicas in the replica set. In a well-managed replica set, this error
should never occur because design changes occur only at the Design Master and are
exchanged with the other replicas only during synchronization.

n MSysErrors: The MSysErrors table records synchronization errors; it is included in
every member of the replica set. Use MSysErrors to help identify problems that have
occurred. This table includes plain text fields, object GUIDs, and other information to
help you resolve synchronization conflicts.

n MSysExchangeLog: The MSysExchangeLog (included in every replica in the replica
set) contains 26 fields that report everything you need to know about every synchroniza-
tion event the replica has performed, such as the synchronization date, the number of
rows inserted, deleted, or modified, and other information concerning the synchroniza-
tion events. This table can grow rapidly when replications frequently occur. This is a local
table and is not exchanged with other replicas.

n MSysSidetables: This table appears only when a synchronization conflict has occurred
between records in a replica set. It shows the name of the conflict table containing the con-
flict details. View the data in the referenced conflict table for details about the conflict.

n MSysSchChange: The MSysSchChange table is a local table that records schema
changes seen by the replica. Compare this table with the same table in other replicas if it
appears that a replica is not properly synchronizing database design changes with the
Design Master.

n MSysTombstone: This table (included in all replicas in a replica set) tracks records that
have been deleted during synchronizations. A deleted record’s s_GUID and s_Generation
fields are recorded here, as well as the deleted record’s table GUID. Obviously, this table will
continue to grow as records are deleted in any replica.

n MSysTranspAddress: This table appears in every member of a replica set and contains
information about all synchronizers known by the replica. You’ll find things like the syn-
chronizer description and ID, and other information you can use to make sure each
replica is using the appropriate synchronizer.

n MSysSchedule: MSysSchedule contains scheduling information used by the syn-
chronizers for implementing synchronization events. This table is replicated with every
synchronization.

1008

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1008

n MSysGenHistory: This table stores the generation history for the replica. Each replica
may have a somewhat different version of MSysGenHistory because not all replicas
take part in every synchronization. The information in MSysGenHistory is useful when
you need to track the generation information for a single replica and compare it with
another replica. This information is useful if it appears replicas are out of sync. This is
one of the tables that continues to grow as replication proceeds.

n MSysOthersHistory: This table contains generation information from other replicas in
the replica set. The generation information in this table should correspond to the infor-
mation given in MSysGenHistory. You may see entries on replicas that the replica
doesn’t synchronize with very often. This table also continues to grow with each
synchronization.

Although none of these system tables are very large to begin with, several grow as the data in the
replica changes and the replica is synchronized with other replicas. Be sure that all host computers
have sufficient room for future growth.

New fields
Three new fields are added to each record in a replicable table: The Gen_Notes and Gen_Photo
fields are used to track a memo field named Notes and an OLE field named Photo, respectively (see
Figure 31-11). Jet first looks at a table to see if any field contains an AutoNumber field with the
ReplicationID field size (the FieldSize property of AutoNumber fields can be set to either Long
Integer or ReplicationID). If no field in the replicable table matches these characteristics, Jet
adds a new field, s_GUID, that holds the ReplicationID AutoNumber (a 31-byte GUID) that
uniquely identifies each record in the table. Jet uses the s_GUID field to track changes to each
record so that data updates can be synchronized with the same record in other members of a
replica set.

FIGURE 31-11

Jet adds a number of hidden system fields to replicable tables.

The Gen_Notes and Gen_Photo fields keep track of large data types (memo fields and OLE data
types, for instance) that may be included in the replicated table. Because these fields can be very
large, the replication process transfers data in these fields only if the data has actually been changed.

1009

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1009

The new fields added to tables reduce the space available for data. Jet permits only 2,048 bytes per
record in tables, not including Memo or OLE fields. Adding the three fields, plus other overhead,
adds at least 54 bytes to each record in a replicable table. Each memo and OLE field, for instance,
requires an additional 4 bytes to replicate. In a table with many thousands of fields, the additional
space demands can be considerable.

The new fields also take away from the total number of fields available to Jet tables. Jet supports a
maximum of 255 columns in any table. The three additional system fields can be a problem in rare
cases. Properly designed Access databases rarely approach the 255-column limit imposed by Jet. If
it appears that the number of tables in your database may exceed the 255-column limit, consider
overhauling the database’s basic structure.

The other system fields added to each replicable table are s_Generation and s_Lineage.

s_Generation
Each record in the replicable table contains an s_Generation field. This field is set to 0 when
any data contained in the record is modified. At synchronization, all records containing 0 in the
s_Generation field are exchanged with other replicas and the s_Generation field is incre-
mented by 1. Because only records with s_Generation values equal to 0 are exchanged,
unchanged records are not involved in synchronization exchanges, reducing the amount of traffic.

During synchronization Jet checks the generation number of the sending and receiving replicas
and makes sure that data are not exchanged out of sequence.

An extra generation field is added for each memo and OLE field in a record. This generation field
specifically records changes to its associated memo or OLE field to prevent these large fields from
being exchanged if some other field has been changed in the record while the OLE or memo field
has remained consistent.

The extra memo or OLE field is named Gen_xxx where xxx is the name of the associated memo
or OLE field. In all other respects, these extra fields are identical to s_Generation.

s_Lineage
Each record also contains an s_Lineage field. This field contains the “nicknames” of replicas that
have updated that particular record and the version number produced by that replica. Jet uses
s_Lineage to monitor which replicas are responsible for changes to the record and the version
number of each change.

Changes to AutoNumber fields
Many developers use AutoNumber fields as primary keys in tables. AutoNumber fields are automati-
cally generated as new records are added to tables, and they are guaranteed to be unique within a
table. The problem with AutoNumber fields in replication schemes is that if they are incremental,
they are incremented in the same sequence in each replica that adds records to the table. Therefore,
many primary key conflicts develop as the tables are updated during synchronization.

1010

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1010

During conversion to replicable form, Jet modifies incremental AutoNumber fields to random
AutoNumbers. The values of existing AutoNumber fields are not changed, so that primary and
foreign keys that rely on the AutoNumber values are not disturbed; but all new records contain
random AutoNumber values.

Primary key conflicts still are possible with random AutoNumber fields. If you determine that
using random Autonumber primary keys introduces too many conflicts and errors, consider
changing the primary key fields to the s_GUID field in each replicable table. Jet goes to a great
deal of trouble to ensure that the s_GUID field value is unique in every record.

Because the random AutoNumber fields result in randomly arranged records in the tables (by
default, of course, the records in an Access table are ordered in ascending order by the primary key
value), an application that relies on the sequential nature of an incremental AutoNumber field may
fail. In this situation, Microsoft recommends that you add a Date/Time field to provide the
sequence information needed by your application.

Changes to the Design Master Structure
As described elsewhere in this chapter, the design changes you make to the Design Master propa-
gate throughout the replica set. Each change you make to the Design Master is recorded and
tracked in MSysSchChange, enabling you to “back out” of bad design decisions.

When changes are made to the Design Master’s structure, those changes are exchanged before data
exchange during synchronization. This sequence ensures that important structural changes that
affect the way data are stored and used in the database occur before new data are added.

Always limit access to the Design Master. You shouldn’t permit users to make their own design
changes to the Design Master — one silly mistake could be disastrous as the change is exchanged
throughout the replica set.

Changes to data
Changes to the data managed by the replica set can occur at any replica. Any replica can synchro-
nize with any other replica, making the replica set’s topography important in some situations.

Remember that replication always exchanges entire rows of data (except for memo and OLE fields,
which are exchanged only when necessary). The Jet database engine cannot detect or exchange
field-level changes in Access tables.

Controlling replica creation
Any user who has permission to open a database can use the Access menus to create replicas from
any member of a replica set. In most cases you won’t want users making personal replica copies or
experimenting with the replication options in the Access menus. This is especially true if you are

1011

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1011

using DAO to manage replication. Because the names of the members of a replica set are usually
hard-coded into the subroutines and functions, the copies created by unauthorized users aren’t
included in synchronization events and will quickly contain invalid data.

Your best bet for controlling replication is simply to grant Open permissions only when a user has
invoked the database application, and revoke the permission when the user exits the application.
This scheme gives users access to the application as if they had full permissions but prevents them
from opening the database file when they’re not using the application.

The following function (Listing 31-2) grants permission on the database as the application starts.

LISTING 31-2

Temporarily Assigning Open Permissions to a Database

Function SetDBAccess (db As Database, _
intGrantAccess As Integer) As Integer

Dim MyCon As Container
Dim MyDoc As Document

On Error GoTo HandleError

Set MyCon = db.Containers(“Databases”)

‘Documents(0) is the document
‘representing the entire database:
Set MyDoc = MyCon.Documents(0)
‘
‘Get the current user’s name:
MyDoc.Username = CurrentUser()

If intGrantAccess = True then
‘Grant full access permissions:
MyDoc.Permissions = dbSecFullAccess

Else
‘Revoke all permissions:
MyDoc.Permissions = dbSecNoAccess

End If

‘Refresh the Containers collection to make
‘sure the new permissions are seen by Access:
db.Containers.Refresh

ExitHere:
Exit Function

1012

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1012

HandleError:
‘Return the error value as this function’s value:
SetDBAccess = Err
Resume ExitHere

End Function ‘SetDBAccess()

Invoke SetDBAccess() with the name of the database and either True or False as arguments.
If you insert this function in the Open event of the application’s startup form, you can effectively
control permissions on the application’s database file.

Things to avoid
There are a number of situations you should avoid as you plan and implement a replication
scheme. Because replication fundamentally alters the way people use their databases and data,
carefully consider the impact that replication will have on the way your users work and your prac-
tices as a database professional.

Avoid making backups of replicas
It is a mistake to back up replica databases. Even though we’ve all been taught that backups are an
important part of managing a database installation, backing up a replica removes the backup from
the data and design synchronization cycle.

Keep in mind that each replica in a replica set contains a complete copy of the replicable data from
each of the other replicas in the set. The only unique information managed by a replica consists of
the local tables and other database objects that may be present in each replica. You may want to
create some scheme for providing backups of those particular objects (perhaps an import/export
utility that copies the local objects to an offline database that is backed up in a traditional fashion),
leaving the replicable data alone.

If the backup is restored at a later date, the backup’s out-of-date data and design may be propa-
gated through the replica set, and that could cause a great deal of consternation and confusion as
the out-of-date information is exchanged.

Avoid high-volume updates
As you learned when reading about replication topology, several replication designs lead to a large
number of synchronization events. If your users are changing or adding large amounts of data to
their replicas between synchronizations (particularly when computers are connected through
dialup solutions), consider a ring or linear topology that minimizes the number of exchanges
between replicas.

1013

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1013

Replication housekeeping tasks
Keep in mind that several of the replication system tables continue to grow as replicas synchronize.
Keep watch on the size of the replicable database on users’ computers. Particularly when working
with laptops and other small computers, the space requirements added by the system tables can
overwhelm the available disk space.

You may need to purge records periodically from the replication system tables. Although you can’t
alter the design of these tables, you can delete records as needed. Your deletions will be propagated
through the replica set at the next synchronization.

Simply deleting records will not reduce the size of databases on the users’ desktops. You
must also compact the .mdb files to free up the unused space.

Programming Replication
All replication tasks can be handled with VBA code. Making a database into a Design Master or cre-
ating a replica from a Design Master is mostly a question of setting certain properties or running
certain methods on the database and its tables.

The major advantages of programming replication into your Access applications are as follows:

n Hiding the replication user interface

n Providing a simplified user interface for unskilled or untrained users

n Controlling permissions and access to data and replication commands

As with manually implemented techniques, the steps required to build replication into applications
with VBA code are as follows:

n Convert a database to replicable Design Master form

n Create replicas from the Design Master

n Synchronize replicas as data and design updates occur

The DAO required to implement replication programmatically is built into the Jet data-
base engine. Therefore, the same code is shared among Access, Word, Excel, and Visual

Basic 6.0 (not Visual Basic.NET).

The following sections describe the VBA code required to perform each step of the replication
process.

Keeping objects local
Earlier in this chapter (in the section titled “The Importance of Local Objects”), several reasons
were given for not replicating every object in a database. For instance, you may have specific
tables, forms, or reports that you’d rather not share with every user of a replica in the replica set.

TIPTIP

TIPTIP

1014

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1014

Before you convert the database to a Design Master replica, you may want to set the KeepLocal
property of these objects to “T” to keep them from becoming part of the replicable objects in the
Design Master. Listing 31-3 shows how to check on this.

LISTING 31-3

Checking to See if KeepLocal Is Set on a Table

Function IsLocal(_
TableName As String, _
DatabaseName As String) As Boolean

Dim MyTable As DAO.TableDef
Dim MyDB As DAO.Database
Dim ws as DAO.Workspace

Dim intMatch As Integer
Dim i As Integer

On Error GoTo HandleError

Set ws = DBEngine(0)
Set MyDB = ws.OpenDatabase(DatabaseName, False)
Set MyTable = MyDB.TableDefs(TableName)

‘Check to see if the KeepLocal
‘property exists on the table:
For i = 0 To MyTable.Properties.Count - 1
If MyTable.Properties(i).Name = “KeepLocal” Then
intMatch = True

End If
Next i

‘If KeepLocal property wasn’t found,
‘set the function’s value and exit:
If intMatch = False Then
IsLocal = False
Exit Function

End If

‘If KeepLocal is found and its value is “T”,
‘set the function’s value to True and exit.
‘Otherwise, set function’s value to False and exit.
If MyTable.Properties(“KeepLocal”) = “T” Then
IsLocal = True
Exit Function

continued

1015

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1015

LISTING 31.3 (continued)

Else
IsLocal = False
Exit Function

End If

ExitHere:

Exit Function

HandleError:

Select Case Err

Case 0
IsLocal = False
Resume ExitHere

Case Else
IsLocal = False
MsgBox “ERROR “ & Err & “: “ & Error
Resume ExitHere

End Select

End Function

The IsLocal() function returns False if the KeepLocal property isn’t found or if its value is
set to anything other than T. IsLocal() will be True only if KeepLocal is found and its value
is T. When the KeepLocal property is set to T, the object will not be made replicable when the
database is converted to a Design Master.

You’ll recall from earlier chapters that not all objects in a database are managed by Jet. Only
Database, TableDef, and QueryDef objects are managed by Jet — everything else (forms,
reports, macros, and modules) are owned by the Access application. You can append the
KeepLocal property directly to Jet objects and set its value. You must append the KeepLocal
property to the documents collection holding Access objects. The code in Listing 31-4 shows how
to create and append the KeepLocal property to the forms document collection in an Access
database.

1016

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1016

LISTING 31-4

Setting the KeepLocal Property on an Object

Sub SetKeepLocal(db as Database)
Dim MyDoc as Document
Dim pKeepLocal as property
set MyDoc = db.Containers!Forms.Documents![frmMyForm]
set pKeepLocal = _

MyDoc.CreateProperty(“KeepLocal”, dbText, “T”)
MyDoc.Properties.Append pKeepLocal

End Sub

As with the other replication properties, you must create and append the KeepLocal property
to the database object (table, form, report, and so on) before setting its value. Once the
KeepLocal property is appended and set, Jet considers its value when converting the database
to a replicable format.

You cannot apply the KeepLocal property to objects after the database has been made
replicable. If you already converted the database and made its objects replicable, you can set
the object’s Replicable property to False to prevent it from being included in future
synchronization events.

To complicate things even further, if two tables are involved in a relationship, you must set the
KeepLocal property the same way in both tables. Jet replicates related tables only in pairs. You
cannot have one table with KeepLocal set to True and the other table’s KeepLocal set to
False.

Also, you cannot set KeepLocal on related tables while the relationship is in effect. You must
remove the relationship, set KeepLocal on both tables, and then reestablish the relationship
between the tables. If your attempt to set KeepLocal on a table fails, check to see if the table is
involved in a relationship with another table before proceeding.

Converting a database to a Design Master
Converting an existing database file to replicable format is actually quite easy. The conversion itself
occurs when you set the database’s Replicable property to T, and Jet does the rest.

Before setting the Replicable property, however, you should probably check to make sure the
database is not already replicable. The function in Listing 31-5 shows how to conduct this check:

1017

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1017

LISTING 31-5

Checking to See if an Object Is Replicable

Public Function IsReplicable(_
MyDBName As String) As Boolean

Dim intMatch As Integer
Dim i As Integer
Dim MyDB As DAO.Database
Dim ws as DAO.Workspace

On Error GoTo HandleError

Set ws = DBEngine(0)
‘No need to open the database exclusively,
‘so second argument is False:
Set MyDB = ws.OpenDatabase(MyDBName, False)

‘First, check to see if Replicable property has
‘been added to this database’s Properties collection:
For i = 0 To MyDB.Properties.Count - 1
If MyDB.Properties(i).Name = “Replicable” Then
intMatch = True

End If
Next i

‘We didn’t find the Replicable property,
‘so we’re sure this database is not replicable:
‘Therefore, set the function’s value and exit.
If intMatch = False Then
IsReplicable = False
Exit Function

End If

‘We found the Replicable property,
‘so check its value:
If MyDB.Properties(“Replicable”) = “T” Then
IsReplicable = True
Exit Function

Else
IsReplicable = False
Exit Function

End If

ExitHere:

Exit Function

HandleError:

1018

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1018

Select Case Err

Case 0
IsReplicable = False
Resume ExitHere

Case Else
IsReplicable = False
MsgBox “ERROR “ & Err & “: “ & Error
Resume ExitHere

End Select

End Function

If you determine that the database is not currently replicable, you can create and append the
Replicable property, then set its value to T, as shown in Listing 31-6.

LISTING 31-6

Setting the Replicable Property on an Object

Public Function SetReplicable(MyDBName As String) As Boolean

Dim pRep As DAO.Property
Dim MyDB As DAO.Database
Dim ws as DAO.Workspace

On Error GoTo HandleError

Set ws = DBEngine(0)

‘The database must be opened exclusively to change
‘Replicable property, so second argument is True.
Set MyDB = ws.OpenDatabase(MyDBName, True)

‘If the Replicable property doesn’t exist, create it.
‘Turn off error handling in case the property already
‘exists:

On Error Resume Next

Set pRep = MyDB.CreateProperty(“Replicable”, dbText, “T”)
MyDB.Properties.Append pRep

continued

1019

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1019

LISTING 31-6 (continued)

MyDB.Properties(“Replicable”) = “T”

SetReplicable = True

ExitHere:

Exit Function

HandleError:

Select Case Err

Case 0
SetReplicable= False
Resume ExitHere

Case Else
SetReplicable= False
MsgBox “ERROR “ & Err & “: “ & Error
Resume ExitHere

End Select

End Function

This very simple function forces the Replicable property into the database’s Properties collec-
tion. The On Error GoTo Next jumps over the error that is generated if the Replicable
property already exists.

As mentioned elsewhere in this chapter, once the Replicable property has been set
to T, you can’t return the database to nonreplicable status by setting the Replicable

property to F. If you try to do this, an error is raised.

When using VBA to convert a database to replicable format, all you get is the Design Master.
Unlike the equivalent Access menu commands, this method does not produce a replica at the same
time. You must explicitly create a replica using the replicable database object’s MakeReplica
method.

By default, a replica set Design Master is created when you set the Replicable property to T. All
of other database properties that existed at conversion time are preserved in the new Design
Master. Jet automatically adds all hidden system tables, system fields, and other properties and
objects required to support replication on the new Design Master.

TIPTIP

1020

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1020

Making new replicas
Replicas can be made from any member of the replica set. Immediately after conversion, however,
the only member of the replica set is the Design Master. All future members of a replica set are cre-
ated from existing members of the replica set. There is no way to add another database to a replica
set — for instance, you can’t add a new member to a replica set by running the conversion routine
on the copy of the original database.

New replicas are created by running the MakeReplica method of a replicable database. The fol-
lowing subroutine (Listing 31-7) shows how to use the MakeReplica method.

LISTING 31-7

Creating a New Replica Database

Sub MakeAdditionalReplica(ReplicaDB As String, _
NewReplica As String)

Dim db As DAO.Database
Dim ws as DAO.Workspace

Set ws = DBEngine(0)

‘Open the existing replica database as db.
‘The database must be opened in exclusive mode
‘(2nd argument is True):
Set db = ws.OpenDatabase(ReplicaDB, True)

‘Run the MakeReplica method to create the new replica:
db.MakeReplica strNewReplica, “First Replica of” & _

ReplicaDB, dbRepMakeReadOnly

db.Close

End Sub

As the replica is created, all properties of the existing replicable database are applied to the new
replica, including all table relationships, indexes, and permissions.

If the source database includes attached tables, you should verify that the attachment path is cor-
rect in the new replica. It’s possible the path will be invalid, particularly if the new replica is placed
on another computer in the network.

1021

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1021

Synchronizing replicas
Perhaps the easiest task to implement in VBA is actually synchronizing two databases. The
Synchronize method of the database object invokes the replication facility in Jet and processes
the entire synchronization event. The syntax of Synchronize is:

db.Exchange TagetDBPathName, intExchType

Where db is one of the database objects involved in the exchange, TargetDBPathName is the
path to the target database, and intExchType specifies what type of exchange to perform
between the databases.

The permissible values of intExchType are the following:

n dbRepImpExpChanges: Performs a bidirectional change between the replicas

n dbRepExportChanges: Changes only the flow from the current database to the target

If you leave out the intExchType argument, Jet assumes a bidirectional exchange and performs a
complete synchronization.

The following subroutine (Listing 31-8) demonstrates the Synchronize method.

LISTING 31-8

Using the Synchronize Method

Sub SynchronizeDB(db1Name, db2Name)
Dim db As DAO.Database
Dim ws as DAO.Workspace
Set ws = DBEngine(0)
Set db = ws.OpenDatabase(dbName1)
‘Perform a bidirectional synchronization:
db.Synchronize db2Name, dbRepImpExpChanges
db.Close

End Sub

As the synchronization proceeds, Jet always updates design changes before exchanging data.
Because changes to table structures alter the way the data are used in the tables, it makes sense that
the design changes must occur first. The intExchType argument affects only data synchroniza-
tion. If the structure of the Design Master has changed, those design changes are propagated to
the replica.

1022

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1022

Replication properties
The Jet database engine adds several new properties to a database as it is converted to a replicable
format (by default, this conversion results in a replication Design Master). These properties are the
following:

n Replicable: (Boolean) Indicates that the database is replicable (value = “T” or
True). Once set to T, this value cannot be changed to make the database nonreplicable.

n ReplicaID: The ReplicaID is a GUID that uniquely identifies the Design Master.
Each replica made from the Design Master will use this GUID to identify the Design
Master, and each replica in a replica set is assigned its own ReplicaID.

n DesignMasterID: The DesignMasterID property is stored in the MSysReplicas
system table and contains the ReplicaID of the Design Master in the replica set. Change
this property only when you want to change the replica that is designated as the Design
Master for the replica set. When you change this property on one of the replicas, you must
set the DesignMasterID in the original Design Master to point at the new Design Master.

The only time you might change the DesignMasterID in a replica without resetting the
DesignMasterID in the original Design Master replica is when the original Design
Master has been lost due to disk or other hardware failure. Under most circumstances you
won’t need to change this property at all. See the following section, “Moving the Design
Master,” to see the VBA code associated with changing the DesignMasterID property.

Never designate two different replicas as Design Masters within the same replica set.
Doing so may split the design set into two separate replica sets that can no longer

replicate with each other.

Moving the Design Master
If the Design Master of a replica set is lost because of a hardware failure or user error, you may
need to designate another replica as the set’s Design Master. Switching the DesignMasterID
between the old Design Master and the new Design Master is sufficient to reassign the Design
Master status. The changes will be propagated at the next synchronization.

The following code (Listing 31-9) performs such an action.

LISTING 31-9

Transferring the Design Master Status to Another Database in the Replica Set

Sub SetNewDesignMaster(OldDMName As String, _
NewDMName As String)

‘Points to existing Design Master:

continued

CAUTION CAUTION

1023

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1023

LISTING 31-9 (continued)

Dim OldDM as DAO.Database

‘The replica to become new DM:
Dim NewDM as DAO.Database

Dim ws as DAO.Workspace

Set ws = DBEngine(0)

‘Open old Design Master in exclusive mode:
Set OldDM = ws.OpenDatabase(OldDMName, True)

‘Open database that will become the new Design Master.
‘Because we’re changing the ReplicaID of the new Design
‘Master, it must be opened exclusively as well:
Set NewDM = ws.OpenDatabase(NewDMName, True)

‘Change the DesignMasterID in the old Design Master
‘to point to the ReplicaID in the new Design Master:
OldDM.DesignMasterID = NewDM.ReplicaID

‘Now synchronize the changes with the new Design Master:
OldDM.Synchronize NewDM, dbRepImpExpChanges

OldDM.Close
NewDM.Close

End Sub

The current Design Master (if there is one!) must be open before you can change the designated
Design Master. (If the Design Master has been lost through a system failure — perhaps a hard drive
has gone bad — the soon-to-be Design Master must be opened in read/write mode so that its status
can be changed.) The Design Master must be read/write to accept design changes. As the database
DesignMasterID is changed, the old Design Master becomes read-only and the new Design
Master becomes read/write.

Scheduling synchronization events
When using DAO to conduct replica synchronization events, you have to program synchronization
schedules and topology into your VBA code explicitly. In many cases, you use a single replica (the
controlling replica) to initiate and control replication with the other replicas in the set.

1024

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1024

For instance, in a star topology, the controlling replica might be the star’s hub replica. This replica
synchronizes with each satellite replica in turn and then resynchronizes with each to ensure that all
data are up to date on all replicas.

Whatever design you implement for your synchronization scheme, make sure you provided
enough protection against synchronization failure. In many situations, failure to update all records
from all replicas is a serious issue. Your code should be able to handle situations when a particular
replica is not available or when synchronization conflicts occur. Use the information provided in
the replication system tables to determine the success or failure of synchronization events.

In fact, your replication design should respond to the situation in which the controlling replica is
not available. For instance, if you normally run synchronization at midnight, you might have each
replica in a replica set check the synchronization log tables to see if synchronization is complete by
3:00 a.m. If synchronization has not occurred, a second replica should assume the role of control-
ling replica and initiate replication with the other replica set members. Obviously, these compli-
cated designs are easiest to implement when all replicas in the replica set exist on the same
network and only a few replicas are involved in synchronization.

Keep in mind that there is no problem with running redundant synchronizations. Even if two
replicas have already had their updates, no error occurs if the replicas rerun the synchronization. If
time permits, you may decide to run all synchronizations twice, once from each of two controlling
replicas, to increase the probability that synchronization was successful.

If you decide to use multiple controlling replicas in your design, be sure not to simultaneously run
the synchronizations on each controlling replica. Not only can a replica not service synchronization
demands with two other replicas, but you defeat the purpose of redundant synchronization events.
You really want them to proceed sequentially.

Partial Replicas
So far, all of the replication examples we’ve looked at have exchanged entire sets of data. All of the
changed data in the tables in a replica member are exchanged with other members of the replica
set. However, some times you would rather exchange only part of the data contained within a
replica member. For instance, assume the data includes sales figures for different regions. You may
not want to exchange all the sales data with all regions. Instead, you may want to exchange only
data relevant for each sales region, and need some way to filter the data appropriately.

It is possible to replicate only a select portion of the records in a replica set. This process is called
partial replication, and is implemented as the Partial Replica Wizard, described in the next section.
Partial replication is very useful when large sets of data are included in the replica members. When
thousands (or even millions) of records have to be considered, the replication process can consume
considerable amounts of time, even if only a small number of records are actually updated.

1025

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1025

The partial replication implemented in Access 2007 does not replicate individual fields within
records. Instead, you construct a WHERE clause that tells the replica master which records to con-
sider during the replication process. Each member of a replica set can have its own WHERE clause,
which means that the records exchanged during replication can be site-specific. Furthermore, a
member of a partial replica set can replicate only with the set’s Design Master and not another
member of the partial replica set.

A partial replica can be produced only with the Partial Replica Wizard or through VBA code.

Using the Partial Replica Wizard
You invoke the Partial Replica Wizard by selecting Partial Replica from the Replication Options
button in the Administrator group on the Database Tools ribbon tab.

The Partial Replica Wizard works against an existing replicable database, so use the procedures
described earlier in this chapter to establish a replica set. Open any replica set member (other than
the Design Master), and follow these steps to set up partial replication on this replica:

1. Select the Partial Replica Wizard command from the Replication Options menu on
the Database Tools ribbon tab.

2. The next dialog (Figure 31-12) asks for the location of the partial replica. Normally
this location is a folder on the local computer.

FIGURE 31-12

Specifying the location of the partial replica

3. The second dialog of the Partial Replica Wizard (Figure 31-13) asks which specific
type of partial replica you wish to create. The three options are Global, Local, and
Anonymous. These options are explained in detail later in this section.

1026

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1026

FIGURE 31-13

Specifying the type to apply to the new partial replica

4. The Partial Replica Wizard needs to know how to select records for the replication
event. You specify the selection criteria on the next wizard dialog (Figure 31-14).
First select the table from the drop-down list at the top; then select the field for the
selection expression from the list below the table drop-down list. Click the Paste
button to paste the field name into the Filter Expression text box. If necessary, use
the comparison operators on the left side of the dialog to build the selection expres-
sion. Alternatively, of course, you might simply type an expression into the Filter
Expression text box instead of using the operator controls.

FIGURE 31-14

Create the filter expression the wizard will use to select records.

1027

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1027

The selection criteria can include more than one field, if necessary. For instance, valid
selection criteria include the following:

[BranchID] = “NY” And [Location] = “Albany”
[Location] = “Syracuse” Or [ManagerID] = 12

5. The next dialog (Figure 31-15) shows which tables in the database are related to the
table you have used for the replica’s selection expression. Use this dialog to specify
which tables should be entirely or partially included in the replica. If it’s important
that the replica include all records from certain tables, make sure these tables are
checked in this dialog. Only the records directly related to the selection criteria are
selected from the unchecked tables in Figure 31-24. In this particular example, all
the customer, product, and inventory data are included in each replication event,
while only the order and order details information directly related to the New York
regional office will be replicated.

FIGURE 31-15

Tell the wizard which tables should be entirely included in replication events.

6. The last dialog of the Partial Replica Wizard asks you if you want a report of the
wizard’s configuration. Normally, a report isn’t necessary, unless you’ll be working
with dozens of partial replicas. (Remember that each partial replica is independent
of all other replicas in the replica set.)

After you set up a partial replica, the tables in the replica will contain only the records you speci-
fied. If you have successfully filtered the data available in the Design Master to a smaller subset,
replication events occur much more quickly than when working with full sets of data.

1028

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1028

Choosing the type of replica
The second dialog of the Partial Replica Wizard asks which type of partial replica you wish to cre-
ate. The three options are:

n Global: The changes in a global partial replica are fully tracked and are available for syn-
chronization with any other global replica in the replica set. A global partial replica is also
able to synchronize with local and anonymous replicas, as long as the global replica is
that the center of the replica set.

n Local: A local replica member is able to exchange data with a global replica member that
serves as the hub of a replica set, but cannot arbitrarily exchange data with other mem-
bers of the replica set.

n Anonymous: An anonymous replica member does not track the names or locations of
replica members during synchronization operations. This means that an anonymous
replica is able to exchange data with virtually any other replica set member, without gen-
erating a lot of conflict errors. Anonymous members are particularly useful in situations
where many, many different users are synchronizing data and there is a significant chance
of conflict errors.

Programming partial replication with VBA
Earlier in this chapter you read about using VBA and DAO syntax to control replication. The bene-
fits of using VBA are clear: more control over replication events, ability to modify replication
parameters at runtime, ability to create a customized user interface to replication information, and
so on. The same benefits apply to using VBA to establish and conduct partial replication events.

Creating the partial replica
Earlier in this chapter (in Listing 31-7) you saw how to use the MakeReplica method to create a
new replica from an existing replica master. Use the dbRepMakePartial parameter to specify
that the new replica is a partial replica of a full replica database. The code in Listing 31-10 illus-
trates this process.

LISTING 31-10

Using the dbRepMakePartial Parameter to Create a Partial Replica

Public Function CreatePartial() As Boolean

Dim db As DAO.Database

On Error GoTo HandleError

‘In the following statement, MyDM.mdb has already

continued

1029

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1029

LISTING 31-10 (continued)

‘been designated as a Design Master database:
Set db = OpenDatabase (“C:\My Documents\MyDM.mdb”)

‘Use the MakeReplica method to create the
‘partial replica. Notice the use of the
‘dbRepMakePartial parameter:
db.MakeReplica “C:\My Documents\MyDMP.mdb”, _

“Partial Replica of MyDM”, dbRepMakePartial

CreatePartial = True

ExitHere:

db.Close
Exit Function

HandleError:

CreatePartial = False
MsgBox Err.Number & “: “ & Err.Description
Resume ExitHere

End Function

As you can see in this function, the code is not very involved. Access knows to create the partial
replica when you pass dbRepMakePartial to the CreateReplica method. The other state-
ments in this function open the replica master and handle errors that might occur as the partial
replica is created.

The ReplicaFilter property of the new partial replica is set to False by the MakeReplica
method, indicating the replica contains no data (ReplicaFilter is described in the next sec-
tion). You can use the ReplicaFilter property to test whether data has been added to the
partial replica.

Setting the partial replica’s filter criteria
So far all you’ve created is an empty replicable database with no tables, queries, forms, or other
data. The next step is to specify the filter criteria Jet will use to populate the partial replica with
data. You apply the filter by setting the ReplicaFilter property of relevant tables in the partial
replica. Use a WHERE-type expression to specify the filter criteria. Listing 31-11 sets the expression
“[BranchID]=’NY’” on the tblBranchOffices table:

1030

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1030

LISTING 31-11

Setting the Filter Criteria on tblBranchOffices

Public Function CreateFilter() As Boolean

Dim db As DAO.Database
Dim td As DAO.TableDef

On Error GoTo HandleError

‘MyDMP.mdb must be opened in exclusive mode so
‘that we can manipulate its tables. Use the True
‘parameter to tell Jet to open the table exclusively:
Set db = _

OpenDatabase(“C:\My Documents\MyDMP.mdb”, True)

‘Set the filter on tblBranchOffices
Set td = db.TableDefs(“tblBranchOffices”)
td.ReplicaFilter = “BranchID = ‘NY’”

CreateFilter = True

ExitHere:

db.Close
Exit Function

HandleError:

CreateFilter = False
MsgBox Err.Number & “: “ & Err.Description
Resume ExitHere

End Function

Again, the code is quite simple. Most of the statements in this function involve opening the data-
base and handling errors. The ReplicaFilter property can be set only on an open tabledef
object, so you must trap the error that occurs if the tabledef is not available. Also, the On
Error statement at the top of the CreateFilter() function traps the error that will occur if
the database cannot be opened exclusively.

You cannot use aggregate expressions, user-defined functions, or subqueries as part of the filter
expression. You should keep the filter expression as simple as possible to avoid possible errors dur-
ing the replication events.

1031

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1031

Creating table relationships in the partial replica
Next you need to establish the relationship between the primary table and its related tables in the par-
tial replica. Jet uses this relationship to find records related to the partially replicated records in the pri-
mary table. The function in Listing 31-12 creates a relationship between the tblBranchOffices
and tblOrders tables so that only the orders taken by the specified branch office will be included in
replication events.

LISTING 31-12

Setting the Relationship between Tables in the Partial Replica

Public Function SetRelationship() As Boolean
Dim db As Database
Dim Rel As Relation

On Error GoTo HandleError

Set db = _
OpenDatabase(“C:\My Documents\MyDMP.mdb”, True)

‘Walk through Relations collection in MyDMP.mdb and
‘set the PartialReplica property to True for the
‘relation between tblBranchOffices and tblOrders:
For Each Rel In db.Relations
If Rel.Table = “tblBranchOffices” _

And Rel.ForeignTable = “tblOrders” Then
Rel.PartialReplica = True
Exit For

End If
Next Rel

SetPartialRelationship = True

ExitHere:

db.Close
Exit Function

SetPartial_Err:

SetPartialRelationship = False
MsgBox Err.Number & “: “ & Err.Description
Resume ExitHere

End Function

1032

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1032

Each relation object in a replicable Access 2007 database has a PartialReplica property. This
property tells Jet that the tables on either end of the relation are involved in the partial replica.

Filling the partial replica with data
The last step is to actually add data to the partial replica. PopulatePartial, a new method of
the Access 2007 Database object, fills the partial replica with data from a full replica in the replica
set (the full replica does not have to be the replica set’s Design Master). The PopulatePartial
method requires the name of the full replica to be used. (See Listing 31-13.)

LISTING 31-13

Filling the Partial Replica with Data from MyDM.mdb

Public Function FillPartial() As Boolean
Dim db As Database
Dim sReplica As String

On Error GoTo HandleError

‘Set sReplica to MyDM.mdb (the parent database):
sReplica = (“C:\My Documents\MyDM.mdb”)

‘Open MyDMP.mdb (the partial replica) in exclusive mode:
Set db = _

OpenDatabase(“C:\My Documents\MyDMP.mdb”, True)

‘Fill the partial replica with data from MyDM.mdb.
‘The data source does not have to be
‘the Design Master of the replica set:
db.PopulatePartial sReplica

FillPartial = True

ExitHere:

db.Close
Exit Function

HandleError:

FillPartial = False
MsgBox Err.Number & “: “ & Err.Description
Resume ExitHere

End Function

1033

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1033

Although the PopulatePartial method conducts a one-way synchronization between the
Design Master and partial replica, you should not routinely use PopulatePartial to trigger
synchronization events. Because PopulatePartial does not perform a full two-way synchro-
nization, you should continue to use the Synchronize method for routine replication events.
PopulatePartial is meant to be run only to establish the initial data set in the partial replica
and then run anytime the filter criteria changes. Furthermore, PopulatePartial cannot be run
from within the partial replica.

The PopulatePartial method removes any “orphaned” records in the partial replica. For
instance, if the filter criteria for a partial replica is changed, the PopulatePartial method
(which must be run anytime the filter is modified) removes records left over from the previous fil-
ter criteria. Or if a synchronize event has been run on the partial replica before the filter criteria is
established, the partial replica contains all records in the full replica. Running PopulatePartial
removes unneeded records from the partial replica.

Replicating partial replicas
A partial replica can be replicated only against a full replica in its replica set, not against another
partial replica in the set. For obvious reasons, another partial replica won’t contain all the records
that may be required for synchronization.

Also, compound filters are unioned instead of OR’ed together. This means the data returned by a
compound filter contains all records returned by either part of the expression, instead of the inter-
section of the filters. For instance, if you filter for “BranchID = ‘NY’” and “OrderDate >
6/1/2007” you get all records where BranchID = ‘NY’ and all records with order dates after
6/1/2007.

Also, the PopulateReplica method can be run only as part of a direct replication event.
Indirect replication is possible only when both replicas are available on a network and no drop box
is used. Once the partial replica has been established, replication events proceed normally.

Maintaining referential integrity in partial replicas
It’s easy to produce a partial replica that violates the referential integrity rules established in its par-
ent replica. For instance, assume that tblOrders must contain only records with valid Customer
ID numbers. In other words, you do not want orders to appear in tblOrders that are not
matched with corresponding records in tblCustomers. Unless you include both
tblCustomers and tblOrders in the partial replica, Jet won’t let you add records to
tblOrders in the partial replica.

As a general rule, always include all tables involved in referential integrity in the partial replica.
Also, make sure the filter criteria will return all records required to maintain referential integrity.

The Partial Replica Wizard automatically includes all dependent tables in the partial replica. Make
sure you include all records necessary to avoid violations of the referential integrity rules. In the
example described earlier in this chapter, the entire customers and products tables were included
in the partial replica to ensure that dependent records in tblOrders, tblOrderDetails, and
tblInventory could be updated without error.

1034

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1034

Advanced Replication Considerations
As you plan a replication design, there are several considerations to keep in mind as you create the
Design Master and its replicas. Although none of these suggestions are mandatory, you may avoid
some problems if you always follow these guidelines:

n Compact before synchronizing. It only makes sense to compact replicas before synchro-
nizing, particularly after making design changes that will propagate through the replica
set. Compacting the replicas ensures that all unwanted objects have been removed from
each replica, including the old versions of structural objects, and that they won’t be
involved in the replica exchange.

n Synchronize before making design changes. Jet always updates design changes before
synchronizing the data in a replica set. If you synchronize before making design changes,
you reduce the amount of time and data exchanged during the synchronization because
the data elements will be up to date before the design changes are exchanged.

n Remove the database password before making a database replicable. Because the
database password blocks synchronization attempts by other replicas, always remove an
existing database password before you convert the database to a Design Master. You
should also enforce a prohibition against assigning a database password to any replica in
a replica set. User permissions do not interfere with synchronization.

n Do not put a Synchronize Now button on an open form. An interesting Catch-22
occurs if you include a Synchronize Now button on a form that is part of the replication
user interface you build using VBA and DAO. This button, of course, would initiate syn-
chronization between the currently open local replica and some other replica within the
replica set.

Because the database being synchronized must be opened exclusively by Jet, the first syn-
chronization will fail: Jet won’t be able to exclusively open the current database because
it’s already in use. The best that can be done is that the Synchronize Now button will
actually trigger synchronization between some other replicas in the set, or it will simply
open a new database that initiates the dialogue between the current database and another.
A bit confusing, perhaps, but easy enough to work around.

n Keep View System Objects turned off. As you’ve already learned, the Jet replication
engine adds several system fields to replicable tables. If you allow users to turn on the
View System Objects option, the system fields may become visible in list boxes, combo
boxes, and other controls that display data in the replicable tables. Obviously, this infor-
mation will be confusing to your users.

You may find it necessary to make a replica nonreplicable. Perhaps the needs of its users have
changed making it unnecessary to exchange data with other replicas, or a project or activity that
formerly required a distributed replica set is no longer under way.

Unfortunately, you cannot simply convert a replicable database by resetting its Replicable prop-
erty. As you learned earlier in this chapter, once the Replicable property is set to T or True, an
error occurs if you try to reset it to F or False.

1035

Using the Access Replication Features 31

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1035

The only way to revert a replicable database to nonreplicable status is by building an entirely new
database containing the same data elements as the replicable version. Follow these steps:

1. Create a new, empty database and open it.

2. Import the queries, forms, reports, macros, and modules from the replicable
database.

Keep in mind that you’ll need Administrator permission on the replica before you can
import objects from it.

3. Create a make-table query for each table in the replicable database.

Include all of the original table’s fields except for the system fields (s_Generation,
s_GUID, and s_Lineage). Run the query to build the same tables in the new database.
Obviously, you should not import the replication system tables from the replica.

4. Re-create the indexes and relationships that exist in the original database.

Each replica in a replica set is read-only. You cannot make design changes to a replica,
so you can’t simply remove the system fields from a replica to convert it back to a non-

replicable database. Furthermore, you can’t open the Design Master and delete the system fields from
each replicable table and then import the tables into your new database. Jet protects the replication
system fields and will not allow you to remove them, even from the Design Master.

Summary
This rather lengthy chapter focused on the fascinating topic of database replication with the Jet
database and Access 2007. Replication is a significant feature for many organizations using Access
as a workgroup or enterprise database system. Although this chapter did not explore replicating
changes to database objects in detail, a replication operation sends updates to forms, reports, and
other database objects to replica members just as it does data.

Although the .accdb file format does not support replication, you may be able to design a hybrid
system in which the user interface (the front-end database) is an Access 2007 .accdb file, and the
replicated back-end is an Access 2000 .mdb file with tables linked to the .accdb. The Jet data-
base engine does not care how data are consumed in an Access application as long as the replicated
database is of the proper type.

TIPTIP

1036

Professional Database DevelopmentPart IV

38_046732 ch31.qxp 11/21/06 9:03 AM Page 1036

Amajor incentive in all modern application development is to produce
robust, reusable code. Microsoft Access provides a number of ways
to make code more reusable, beginning with simple import or export

of code modules on through building runtime code libraries.

This chapter covers one approach to creating code modules you can reuse
from any Access database. The code modules we describe in this chapter
define new types of objects for your Access applications. These objects
include properties and methods, and you can copy the objects into other
Access applications or add them to Access code libraries.

The objects you create enforce modular, object-based programming. You’ve
likely noticed how Access is based on objects. Microsoft defines just about
everything in an Access application as some kind of object. All the forms, the
controls on the forms, the reports, and other visible parts of your programs
are objects.

In addition, there are any number of hidden objects (such as table relation-
ships) lurking in your program. These objects are one of the ways Access is
modular in nature. Each built-in Access object (such as a table, query, or
form) performs some task in the application.

In this chapter, we dive into the important topic of object-oriented program-
ming (OOP) in Access. Here you’ll learn what objects are and how to use
them in your programs. You’ll also learn how to build your own objects
using Access VBA code. Although this chapter discusses objects such as
forms and controls as examples, the emphasis is on the technology of creat-
ing and using custom objects in your Access applications.

1037

IN THIS CHAPTER
Learning object-oriented
programming techniques

Understanding the benefits of
object-oriented programming
techniques

Creating class modules

Adding properties to class
modules

Creating and using methods

Declaring, raising, and sinking
events

Using class modules in unbound
forms

Object-Oriented
Programming with VBA

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1037

You create the custom objects in your applications by adding code to a special class module. In the
lexicon of object-oriented programming, a class is a code element that defines an object. A good
analogy for a class module is the engineering specification that defines a car or airplane. You create
an object using the class as its specification. You add code to the class module to define the object’s
properties and methods. Modifying the code in a class module modifies how the object defined by
the class module behaves.

This chapter uses the database named Chapter32.accdb. If you haven’t already
copied it onto your machine from the CD, you’ll need to do so now.

Benefits of Object-Oriented Programming
You might be wondering why it’s important to bother with objects. What are the advantages of
Access object-oriented programming? Why complicate things by introducing the complexity of
building and maintaining custom objects when traditional procedural programming techniques
have worked so well in your Access applications?

You’ve already seen how Access’s object-based programming benefits database developers. You do
all the Access data access through Data Access Objects (DAO) or ActiveX Data Objects (ADO) rec-
ognized by the Jet database engine. Other built-in Access objects such as forms and controls
include properties you can easily manipulate at design time. As the application runs, these proper-
ties determine the object’s behavior. Creating a form or report requires nothing more than drop-
ping control objects on the form or report’s surface and setting properties to bind the control to
data and establish the control’s appearance.

The greatest benefit from using objects is encapsulation, which is the ability to wrap all aspects of
the object’s functionality into an entity. For example, dropping a text box onto an Access form adds
several new properties, methods, and events to the form. The text box control encapsulates all the
relevant properties (for example, ForeColor, BackColor, and so on), methods (for example,
SetFocus), and events (for example, BeforeUpdate, LostFocus, and so on) required to sup-
port a text box type of object. Although you add these new items to the form, you can access the
new properties, methods, and events through the new text box control.

The textbox control encapsulates everything a text data-entry control requires to do its job. In
addition, Access text box controls incorporate a lot of hidden capabilities, such as binding to a data
source, applying validation rules, and so on. In other words, there’s a lot going on in the humble
text box control that you probably seldom recognize or appreciate.

A custom Access object lets you encapsulate complex activities and tasks as a simple, compact
entity you can use in any other Access database. An encapsulated object is often much easier to
maintain than a traditional module or VBA procedure. Because the object contains all its function-
ality as a single entity, there’s just one module for you to modify or maintain as you make improve-
ments to the program.

ON the CD-ROMON the CD-ROM

1038

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1038

Although you can’t create new form controls using the Access object-oriented development tools,
you can add many capabilities to your applications through class modules alone.

For instance, most applications include extensive data-validation routines. Depending on the type of
data the user enters, data validation ranges from one line of code to extensive modules containing
dozens or hundreds of lines of code. Using Access’s OOP features, you can wrap all data-validation
routines into a single object you can use by setting its properties and invoking its methods.

Custom objects, therefore, provide a simplified interface to complex operations. When properly
designed and implemented, you can use the custom objects you create in Access in virtually any
compatible VBA programming system, exposing the same properties and methods you work with
when incorporating the objects in your Access databases.

Object basics
Our world is filled with objects. The car you drive, the computer you use, and the radio you listen
to are all examples of objects. Some objects, such as a desk lamp, are relatively simple, while other
objects, such as a stealth bomber, are considerably more complex.

In addition to physical objects, our world is filled with objects you can’t feel or touch. Electricity,
sound, and light are all examples of objects people can produce, measure, and use, but you can’t
sense them as physical entities. An object’s visible characteristics have little to do with its value to
people. The electricity coursing through your computer’s circuitry can be as valuable as the car you
drive, under the right conditions.

You’ll find any number of visible and invisible objects in most Access databases. And, just as with
the objects that make up our environment, the invisible objects in an Access database can be as
valuable as the forms, menus, and ribbons the user sees.

An Access object is a programmable entity of one sort or another. The Err object is an example of
an invisible, but valuable, object built into Access. You use the Err object’s properties (Number,
Description, and so on) to determine which error has occurred. The Clear method resets the
Err object, preparing it for the next error to occur. Even though the Err object never appears on
an Access form or report, it has an important role in every professional Access application.

What’s an object?
Although there’s an endless variety of objects, all objects have a number of features in common. An
object is a programmable entity; most objects contain a number of properties you can read or set at
runtime. In addition, most objects include methods you can execute to perform tasks. An object’s
properties and methods define the object’s interface to the rest of the program.

You can write custom objects to adapt to changing environments and user requirements. Most
often you can exploit an object’s programmable nature by changing its properties and invoking its
methods. But you can engineer a custom object in such a way that the object automatically adapts
to differing conditions by running different internal routines.

1039

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1039

You can create most object types multiple times in an application. Each time you create the object,
Access assigns it a unique name to distinguish it from other instances of the object. In other words,
a single Access program can host more than one instance of the object, each object operating inde-
pendently of the others (possibly even cooperating with the other objects), and maintaining its
own set of properties and other data.

For example, say the Northwind Traders database (included with Microsoft Access) contains a
Product object. The class module supporting the Product object defines the Name, Supplier,
UnitPrice, and other properties of the product. There are any number of Product objects in
the Northwind Traders database, each with its own name, price, and supplier.

To carry the analogy further, another class module might define a ProductInventory collection
object that contains a number of Product objects. The ProductInventory class would
feature a Count property that tells you how many Product objects are in the collection. The
ProductInventory class module might contain a Sell method that deducts a certain
Product item from the ProductInventory.

Using objects in applications
Every time you’ve written code setting a label’s Caption property or returning the contents of a
text box’s Value, you’ve worked with objects. Although a label or text box control is a simple type
of object, the principles behind these objects are the same as using more complex and intelligent
objects you create yourself.

The following Access VBA code shows a series of statements that are typical of how you’d use
objects in Access applications.

Dim ObjectName As ObjectClass
Set ObjectName = New ObjectClass
‘Setting a property of the object:
ObjectName.SomeProperty = SomeValue
‘Invoking a method of the object:
ObjectName.SomeMethod

In this code, the name of the object is ObjectName and its object class (described in the next sec-
tion) is ObjectClass. You declare the object in the Dim statement and the New keyword instan-
tiates (creates) it. SomeProperty is a property of the object, and SomeMethod is a method of
the object.

Class module basics
You define an object by the code in a class module. You must add a class module to your Access
application, and then add the property and method code to the module before using the object the
class module defines. The name of the class module is the name of the object’s class.

1040

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1040

A class module is a special type of code module. Access recognizes the module as an object’s defini-
tion and lets you create new instances of the object from the code in the module. Any of the
object’s special features — including properties, methods, and events — are exposed as procedures
tagged with the Public keyword in the class module. You should declare any code in the class
module you intend for only the object to use, and won’t expose to the outside world, with the
Private keyword.

Each object you create from the class module is an instance of an object class. For example, the
Nissan Sentra is a particular class of automobile. The Nissan Sentra that your Uncle Joe owns is a
particular instance of the Nissan Sentra class of automobile. Even though Uncle Joe’s car looks
pretty much like every other Nissan Sentra, certain attributes of his car set it apart from all the
other Nissan Sentras on the road.

Carrying the car analogy a bit further, consider the properties and methods of the automobile
object class. A car has a color property that defines the color of the car’s exterior. It’s likely that
the color of any car matches the color applied to other cars produced by the car’s manufacturer. A
car also has a vehicle identification number (VIN) that isn’t shared with any other car anywhere in
the world.

An object’s property values, therefore, are a combination of values shared with other objects of the
same class and values unique to the particular instance of the class. In fact, there must be a prop-
erty or some other attribute of the object that sets it apart from all other instances of the same type
of object in the application. Otherwise, Access can’t know which instance you’re referring to in
your code.

If you were to construct a Product class module, you’d include properties such as Name (a string),
UnitPrice (a currency data type), UnitsInStock (an integer or long integer), ReorderLevel
(also an integer or long integer), and Discontinued (a Boolean value). Depending on how you’ll
use the product object in the application, you may add properties to contain the quantity per unit,
the category ID, and other information relevant to the application. You’ll also want to add the
ProductID property to uniquely identify each instance of the product object.

You may have noticed that all the properties we mention in the preceding paragraph correspond to
the fields in the Products table in the Northwind Traders database. In fact, often each instance of
the object represents a record contained in a database table.

Because you’re constructing the class in VBA code, you can add any properties necessary to sup-
port the application and the data you’re constructing. When you build Access classes, you have
access to all the power and utility available through the Access data types and features. Adding new
public procedures to the class module extends the properties and methods available to the object.
You can, therefore, define new data types to accommodate whatever peculiarities your application
requires.

1041

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1041

In the class module, private variables handle property values. As you can see in the “Persisting
property values” section, later in this chapter, the mechanism for implementing properties is part of
the special attributes of class modules. You must follow certain rules and coding conventions to
successfully implement properties in Access class modules.

In addition to properties, most objects support a number of methods, which are the actions that
the class performs. An airplane has a number of rather obvious methods: ascend, descend, and
land, among others. The classes you construct in Access implement whatever functionality you
want the class’s objects to support. The Product object we describe earlier might have Sell or
Discount methods not shared with a Customer object in the same database.

The methods of a custom object exist as public procedures (functions and subroutines) in the class
module. And, just as with properties, you have the full power and flexibility of VBA at your dis-
posal as you write the methods of your custom classes.

A simple class module
Most often, the classes in your applications will model some real-world object, such as customers,
contacts, employees, and products. Your knowledge and understanding of the physical object
translate directly into Access VBA code and become the properties and methods of the Access
objects you create from the class module’s code.

This chapter’s database (Chapter32.accdb) implements a Product class similar to the one
we describe in the previous sections. The product class module (clsProduct1) in
Chapter32.accdb includes the properties and methods in Table 32-1 and Table 32-2,
respectively.

TABLE 32-1

Example Properties in the Chapter32.accdb Database

Name Data Type Description

ProductID Long integer The product’s ID

Name String The name of the product

Supplier String Name of company supplying the product

UnitPrice Currency Customary selling price of product

UnitsInStock Integer Current stocking level of product

ReorderLevel Integer Minimum stocking level before reordering

Discontinued Boolean True if product has been discontinued

1042

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1042

TABLE 32-2

Product Class Methods Used in the Example Database

Name Purpose

Sell Sells a quantity of the product

Discount Reduces the selling price of the product instance

The Product class object in Chapter32.accdb doesn’t completely model a real product. You
can add many other properties and methods to this class to more effectively model a real product,
but this simple class does show you how to approach modeling a physical object in Access.

You can describe the product you’d create from the class like this: A product Name and
ProductID identify the product. A certain manufacturer (the Supplier) produces the product,
and it is intended to be sold for a certain UnitPrice. Northwind Traders keeps track of the num-
ber of units in stock (UnitsInStock) and has determined the minimum number of units to keep
in stock (ReorderLevel). The manufacturer may discontinue a product, in which case its
ReorderLevel is set to zero and the UnitsInStock is allowed to decrease to zero as items are
sold. Periodically, a product may be sold (the Sell method) and may also be discounted through
the Discount method.

Adding a class module to a database
Choose Insert ➪ Class Module to open a new class module in the editor window, or select the
Macro drop-down list in the Other group of the Access Create ribbon tab, and choose Class Module.

It’s a good idea to click on the Save button on the Code Editor toolbar and assign a name to the class
module early in its development cycle. The name you provide for the class module becomes the
name of the object’s class when creating objects from the class module (see Figure 32-1). The name
you provide for class module is similar to the names you’ve given other objects in your databases.

FIGURE 32-1

You’ll use the name you provide for the class module as the object’s class name.

1043

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1043

The class name should be descriptive but not excessively long. Furthermore, the name should be
meaningful to you. Users never see the name of the class, so use a name that means something to
you or another developer.

The class module is in the code editor window in Figure 32-1. Notice the class module looks just
like any other module in the editor window. Your only indication that it isn’t a normal module is
the tiny icon in the left corner of the module as it appears in the code editor. It’s a little box icon,
rather than the “tinkertoy” icon you see in standard modules.

Creating simple product properties
The easiest way to establish the properties of a class, and the technique you’ll use in your first class
example, is to simply declare each of the properties as a public variable in the clsProduct1
class module. Adding a public variable to a class module creates a new property for the class. The
variable’s public scope makes it accessible to other routines in the database. Later in this chapter, in
the “Using Property Procedures” section, you’ll see an alternate way to create properties for your
class modules.

Public ProductID As Long
Public Name As String
Public Supplier As String
Public UnitPrice As Currency
Public UnitsInStock As Integer
Public ReorderLevel As Integer
Public Discontinued As Boolean

Figure 32-2 shows the class module after you’ve added the public variables.

FIGURE 32-2

Public variables in a class module become properties.

Access treats each public variable in a class module as a property of the objects created from the
class. Because you declare the public variables in a class module, Access uses the variables as
properties of the class’s objects without further work on your part. Figure 32-3 shows how
IntelliSense displays the properties in the Auto List Members drop-down list in a module using an
object created from the class.

1044

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1044

FIGURE 32-3

IntelliSense shows you the properties and methods created for the new object class.

The names you provide for an object’s properties and methods should be descriptive and easy to
recognize. Because the class’s properties are variables in the class module, the names you assign to
these items must conform to VBA’s variable naming requirements. That is, property names should
be 64 or fewer characters and contain only alphanumeric characters and the underscore character.
Property names must begin with an alphabetic character and should never begin with the under-
score character or a number.

Creating methods
The clsProduct1 class includes two methods. These methods, like all object methods, define
actions supported by the objects created from the class. Each method is nothing more than a pub-
lic procedure in the object’s class module.

The following code example shows the procedure implementing the Sell method. Because all
procedures in a class module are public by default, the Public keyword is optional and you add
it to the Sell method to clarify the status of the procedure.

Public Sub Sell(UnitsSold As Integer)
Me.UnitsInStock = Me.UnitsInStock - UnitsSold

End Sub

Notice there’s nothing special about the Sell method. There’s no special declaration for this pro-
cedure, nor is there reference to its status as a method of the class. Methods are an example of how
Access treats class modules differently from simple code modules. As long as you haven’t declared
the procedure (sub or function) with the Private keyword (remember the Public is the
default!), Access treats the procedure as a method of the objects created from the class module.

Because it’s a subroutine, the Sell method doesn’t return a value. If you had declared it as a func-
tion, it could return any valid Access data type. The Sell procedure requires an argument specify-
ing how many items were sold.

1045

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1045

Notice the use of the Me keyword in the previous code example. In this context, Me refers to the
object instance created from the class module.

You may have noticed an obvious bug in the Sell method. If the UnitsSold is larger than the
UnitsInStock, the UnitsInStock value will be a negative number after the method runs. To
fix this bug, you must add a couple of lines of code to the method:

Public Sub Sell(UnitsSold As Integer)
If UnitsSold > Me.UnitsInStock Then
Exit Sub

End If
Me.UnitsInStock = Me.UnitsInStock - UnitsSold

End Sub

This change causes the Sell method to simply exit and not deduct any units when the
UnitsSold value would result in a negative value for the UnitsInStock.

Obviously, there’s much more you could add to the product class. I’ve included the complete class
module in the Chapter32.accdb example database as the clsProduct1 module in the
Modules tab of this database.

The Discount method is similar to Sell (see the following code example). In this case, the
method ends immediately if the Percent is less than 1 or larger than 99. Otherwise, the object’s
UnitPrice property is discounted by an expression derived from the Percent and current
UnitPrice.

Public Sub Discount(Percent As Integer)
If Percent < 1 _
Or Percent > 99 Then
Exit Sub

End If
Me.UnitPrice = _
Me.UnitPrice - ((Percent / 100) * Me.UnitPrice)

End Sub

Eventually, with enough work and attention to detail, you can refine the product class to the point
where it would support all the features and requirements of a real product sold by Northwind
Traders. Other classes could model other data in the Northwind database such as customers,
employees, and orders. Later in this chapter, you’ll see some of the advantages of using class
modules in your Access applications.

Using the product object
After you’ve assembled the class module from properties and methods, you can create new objects
from the class. Figure 32-4 shows frmProductUnbound, a form included in Chapter32.accdb,
the database accompanying this chapter. The text boxes along the left side of this form display the
object’s properties. The buttons to the right side of this form invoke the object’s methods.

1046

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1046

FIGURE 32-4

frmProductUnbound creates an object from clsProduct1 and provides an interface to its properties
and methods.

The code behind frmProductUnbound is quite simple.

Creating a new product object requires you to use the New keyword. This statement is one way to
create a new instance of a product object from the clsProduct1 class module:

Private Product As New clsProduct1

Alternatively, you can first declare the Product object, then instantiate as separate statements. For
instance, place this statement in the module’s Declarations section to establish the
clsProduct1 object:

Private Product As clsProduct1

The object instantiates in the form’s Load event procedure:

Set Product = New clsProduct1

We prefer using separate statements for declaration and instantiation. It isn’t possible to trap errors
when declaration and instantiation are processed as a single statement, which means your applica-
tion may exhibit instability in some situations.

In either case, the code creates the new Product object instance at the instant the New keyword
executes. The code behind frmProductUnbound uses the two-statement approach to creating
the Product object: In frmProductUnbound, you declare the product in the form’s
Declarations section as a module-level variable, and then the object instantiates during the
form’s Load event. Therefore, the Product object is available as soon as the form opens on the
screen, and it’s accessible to all the code behind the form.

1047

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1047

The code in the form’s Load event procedure also fills a recordset object with records from
tblProducts. You then use this recordset to set the Product object’s properties. A private sub-
routine named SetObjectProperties retrieves values from the recordset and sets the
object’s properties to those values:

Private Sub SetObjectProperties()
‘Set the product object’s properties:
With Product
.ProductID = rs.Fields(“ProductID”).Value
.Name = rsFields(“ProductName”).Value
.Supplier = rsFields(“Supplier”).Value
.UnitPrice = rsFields(“UnitPrice”).Value
.UnitsInStock = rsFields(“UnitsInStock”).Value
.ReorderLevel = rsFields(“ReorderLevel”).Value
.Discontinued = rsFields(“Discontinued”).Value

End With
End Sub

After you create the product, you can reference its properties and methods. References to the prod-
uct object’s properties are similar to property references anywhere else in VBA. This statement
retrieves the current value of the product’s UnitPrice property and assigns it to the text box
named txtUnitPrice on frmProductUnbound:

txtUnitPrice.Value = Product.UnitPrice

You can find a number of similar statements in the form’s FillForm procedure:

Private Sub FillForm()
‘Fill the form with the product’s properties:
txtID.Value = Product.ProductID
txtName.Value = Product.Name
txtSupplier.Value = Product.Supplier
txtUnitPrice.Value = Product.UnitPrice
txtUnitsInStock.Value = Product.UnitsInStock
txtReorderLevel.Value = Product.ReorderLevel
txtDiscontinued.Value = Product.Discontinued

End Sub

frmProductUnbound makes several property assignments from the form’s Load event procedure.
The following code listing shows the entire Form_Load sub from frmProductUnbound. Notice
how the code builds the recordset, makes the property assignments, and fills the text boxes on the
form through the SetObjectProperties and FillForm procedures.

Private Sub Form_Load()
Set Product = New clsProduct1
Set rs = CurrentDb.OpenRecordset(“tblProducts”)
If rs.RecordCount > 0 Then
Call SetObjectProperties
Call FillForm

1048

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1048

End If
End Sub

Similarly, selling a product involves using the object’s Sell method. The code below shows how a
form might use the Sell method. Notice the code passes a parameter (txtNumberToSell). The
user has entered the number of items to sell into a text box named “txtNumberToSell. That
value becomes the UnitsSold argument for the Sell method we discuss earlier in this chapter.

Private Sub cmdSell_Click()
Product.Sell txtNumberToSell
Call FllForm

End Sub ‘cmdSell_Click

The FillForm procedure is called to refresh the form’s contents after the Sell method executes.

Create bulletproof property procedures
In many cases, assigning an invalid value to a property results in a runtime error or other bug. If
you’re lucky, the invalid value causes the application to halt and display an error message to the
user. It’s much worse to have the application continue operating as if nothing is wrong when, in
fact, the class module is working with invalid data. The best situation is when the class module
itself validates property values as they’re assigned, instead of waiting until the properties are used
by forms, reports, and code in the application.

For instance, consider a banking application that calculates exchange rates for foreign currency
deposited in the bank’s vault. A class module is the ideal vehicle for handling foreign currency
exchange calculations. Keeping these calculations in a class module isolates these complicated
routines from the rest of the application and makes it easy to maintain the calculations as currency
values fluctuate. And, because class modules support IntelliSense, it’s much easier to work with
objects defined by class modules than public procedures stored in standard modules.

Ideally, the exchange rate class module wouldn’t accept invalid exchange ratios or would check the
exchange ratios that the user inputs at runtime. Perhaps the class module could check online
sources such as The Wall Street Journal or other financial publications to verify that the data the user
input is correct.

Property errors might occur if the code passes a string when a numeric value is required or when a
property value is less than zero. The following methods help bulletproof properties and avoid run-
time errors:

n Set default property values if the code passes an inappropriate data type. Use a conver-
sion routine to correct the value, if possible.

n Use private procedures in the class module to validate data types. These data-validation
routines are often class-specific.

n Use error trapping everywhere in the class module, especially on the class’s properties and
methods. The property procedures and methods (the public procedures in the class) are
where most unexpected behaviors occur.

1049

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1049

Keep in mind that a basic principle of using object-oriented programming is encapsulating func-
tionality. Whenever possible, you should include anything that affects how the class operates in the
class module. Keeping the property validation, method error handling, and other features in the
class module makes the class more portable and reusable.

Encapsulation isn’t well implemented in the clsProduct1 example presented in this section. For
instance, the form’s code retrieves the data, and assigns values to the product object’s properties. A
better approach would be to have all the data management performed by the class itself, isolating
the form from the data-management operations. A form using a properly-constructed class shouldn’t
have to know which database table contains the product data; instead, the form should be a strict
consumer of the product data.

Other Advantages of Object-Oriented
Programming Techniques
The simplest way to add properties to a class is to include public variables within the class module.
In fact, anything declared with the Public keyword is exposed by the class as either a property or
a method. In the “Creating simple product properties” section, earlier in this chapter, you can see
public variables used to define properties. The following sections explain using property proce-
dures, a more robust and sophisticated way to define properties, and explain in detail the require-
ments and rules governing the properties in a class.

The mix of properties (and their data types), methods (and the arguments accepted or returned by
the methods), and the events supported by a class are referred to as the class’s interface. A devel-
oper working with an object created from a class module is typically unable to access the class’s
interface, and not the code within the class (unless, of course, the class’s creator and the developer
working with the class are the same person). Very often, class modules are bundled as Access
libraries, or distributed as .mde or .accde files, and the interface is the only hint a developer
has of the operations supported by the class (unless printed or online documentation accompanies
the class).

A class’s interface is revealed by the Object Browser (press F2 with the Code Editor window open).
Figure 32-5 shows the Object Browser open to the Product2 class, revealing the properties,
methods, and events supported by this class.

At the bottom of the Object Browser, you’ll see that ProductName is defined as a public property
and is a string data type. This area is where you’d see that a property is read-only or write-only.
Also, all private elements are identified accordingly. Finally, notice how all the property variables
are sorted together because of the m_ prefix. You can read about property variables in the “Using
Property Procedures” section, later in this chapter.

1050

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1050

FIGURE 32-5

The Object Browser reveals a class’s interface.

Figure 32-6 illustrates one of the most valuable aspects of object-oriented programming. Notice
how the IntelliSense Auto List Members drop-down list shows you all of the appropriate interface
elements as soon as the object is identified and the dot is typed. This is a huge benefit to anyone
working with your class module.

FIGURE 32-6

The Auto List Members drop-down list makes it easy to select an object’s properties or methods.

1051

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1051

Furthermore, if you position the input cursor anywhere within the property name (such as
ProductName) and press Shift+F2, the class module opens, showing you the code associated
with the property (see Figure 32-7).

FIGURE 32-7

Shift+F2 shows you the code associated with an object’s property.

The class module’s VBA code must be available for the Shift+F2 shortcut to work, of course. If
the class has been bundled as an .mde or .accde file or is otherwise unavailable, Shift+F2 will
not work.

Generally speaking, object-oriented programming techniques are most often applied to unbound
applications. Although it is possible to build an Access application with a mix of bound, unbound,
and object-oriented techniques, using bound forms misses one of the main advantages of object-
oriented programming. Most developers turn to object-oriented programming techniques because
they want more control over how the data are used by their applications. Using bound forms
negates many of the considerable advantages of using object-oriented programming techniques
without really adding anything of value to the project.

Also, most developers using object-oriented programming techniques are fairly advanced and are
comfortable building unbound applications. The extra code involved in building classes containing
properties and methods is not a hindrance to the majority of advanced Access developers.

1052

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1052

Object-Oriented Programming Rules
There are two cardinal rules that you must obey when applying object-oriented programming tech-
niques. We didn’t make up these rules, but we know from personal experience that you’re asking
for trouble when you fail to pay adequate attention to them.

Never reveal a user interface component, such as
a message box, from a class module
This rule is perhaps less important in Access applications than in other systems, but ignoring this
rule may cause problems later on.

Here’s why this is important: Consider a class that opens a message box to the user, indicating that
a problem has arisen. Although this works fine in Access environments, this practice may cause
problems if the class is ported to other environments.

All Access applications run locally on the user’s computer. Therefore, opening a dialog box from an
Access class module is guaranteed to open on the user’s computer. In an Access application, there’s
no way to cause a message box to appear on another computer.

However, other development platforms support the notion of remoting, which means running code
on an application server. Most often, the remoted component is implemented as a set of compiled
classes, and if one of those classes opens a dialog box, the dialog box opens on the remote applica-
tion server.

In this case, the application freezes in front of the user, and the user has no idea what happened.
All the user knows is that the code stopped running. The code on the remote machine has stopped
running, waiting for a response to the dialog box that has opened on the application server.

For obvious reasons, you’re not going to make many friends if your application causes an applica-
tion server to stop running!

Preserve the class’s interface as the class is updated
You can add to the interface by introducing new properties, methods, and events, but you should
never alter the data type of existing properties or method arguments, or remove an event from a
class module.

It is very difficult to know where a class may be used, and once a class has been distributed, any
changes to the class may break code in many different places without warning.

Sometimes it’s impossible not to change a property’s value or modify a method’s arguments. As an
example, users may require an additional argument to be passed to the SellProduct method so
that shipping charges can be accurately calculated. Unless you take care to preserve backward
compatibility, the consumer code referencing the original version of the SellProduct method is
sure to fail.

1053

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1053

One technique I’ve seen used to ensure backward compatibility is to duplicate the property or
method, suffixing a numeric value to its name. For example, you might add SellProduct1 to
the class module, leaving the unchanged, original SellProduct for older code. New code will
use the updated SellProduct1 to take advantage of the shipping charges calculation.

Using Property Procedures
The concept of property procedures is fundamental to object-oriented programming. As the name
implies, a property procedure is a VBA procedure that defines a property for a class. Most classes
contain several to many property procedures.

There are three types of property procedures:

n Property Get: Retrieves the value of a property. A Property Get works very much
like any function, and follows the same pattern as any VBA function.

n Property Let: Assigns a new value to the property. Property Let works only for
simple data types such as numeric, strings, and date properties.

n Property Set: Assigns a value to an object property. You would use a Property Set
for a property defined as a recordset or other object data type.

The concepts behind property procedures are illustrated in Figure 32-8. Each type of property is
detailed a bit later in this chapter. In the meantime, be aware that each time your code references a
property, the class module responds by running the appropriate property procedure.

FIGURE 32-8

Each time you read or write an object’s properties, the class module runs a property procedure.

Consumer Code

Class ModuleDim Object As ClassType

Set Object = New ClassType

object.Property = Value

Variable = object.Property

Property Let (Value As DataType)
PropertyVariable = Value

Property Get () As DataType
Property = PropertyVariable

1054

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1054

Property procedures are always public by default. Even if you omit the Public keyword, your
property procedures is exposed to the other elements of your applications. You should, however,
always use the Public keyword to clarify the property procedure’s scope. It never hurts to be very
explicit in your code.

The properties you add to your classes can be read/write, read-only, or write-only, depending on
how you expect the property to be used. Omitting either the Property Get or Property Let
(or Property Set, for that matter) makes the property read-only or write-only, respectively.

Omitting the Property Let (or Property Set for object properties) makes a property read-
only. A consumer can read the property’s value through the Property Get procedure, but cannot
assign a new value to the property.

Obviously, because there is no way to assign a value to a read-only property, the class must
provide the read-only property’s value. This is often done by extracting a value from a database,
or from the System Registry, or by reading a value from an .ini file or the operating system.
Because a Property Get is a procedure, you can add any logic your class requires to obtain the
property’s value.

Omitting a Property Get makes a property write-only. You may decide to use a write-only prop-
erty for sensitive information such as passwords and login identities. Making a write-only property
is an excellent way to preserve the security of sensitive data. Write-only properties are also used to
provide a class with information that it needs to support its activities, such as a connection string
or database name.

Persisting property values
At this point, we know that properties can be read/write, read-only, or write-only. What hasn’t been
explained is where the property persists the value when the property is written, and where the
property gets its value when the property is read.

In a VBA project, property value persistence is mediated through private variables contained within
the class module. Generally speaking, each property is accompanied by a private variable that is
the same data type as the property. This means that a property that reads or writes a string value
will be accompanied by a private string variable, and each date property will be accompanied by a
private date variable.

As you’ll see in the next sections, the property variables are either assigned or returned by the
property procedures. A property variable should be given a name that indicates which property
owns the variable. In the examples accompanying this chapter, each property variable has exactly
the same name as its property, and is tagged with an m_ prefix. For example, the property variable
for the CustomerID property is named m_CustomerID. Furthermore, because the
CustomerID property is a string, m_CustomerID is also a string.

1055

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1055

There are cases, of course, where a property is not accompanied by a variable. For instance, a read-
only property may extract the value from a database file or retrieve it from the operating system.
Or, the property might be write-only, in which case the property may act immediately on the value
passed to the property procedure, and no storage is necessary.

Property Let syntax
As described earlier, the Property Let procedure assigns a value to a property. The property’s value
is passed into the procedure as an argument, and the value is then assigned to the class module’s
private variable that stores the property’s value.

The following example is a prototype for any Property Let procedure:

Public Property Let <PropertyName>(Value As <DataType>)
<PrivateVariable> = Value

End Property

The property’s argument can be named anything you want. We always use Value as the argument
name. Consistently using Value is simpler than assigning a meaningful name to the argument,
and is consistent with how property values are assigned to built-in Access properties.

The following example is from the Employee class module:

Public Property Let LastName(Value As String)
m_LastName = Left$(Value, 20)

End Property

This small example hints at the power of property procedures. Notice that the Value argument is
a string. The statement within the property procedure assigns only the 20 leftmost characters of
the Value argument to the m_LastName variable. This is because the LastName field in the
Northwind Employees table only accepts 20 characters. Many database systems generate errors if
more characters are sent to a field than the field can hold. Adding a little bit of logic to a property
procedure can go a long way toward bulletproofing an application.

Property Set syntax
The syntax of Property Set is parallel to the Property Let procedure. The only difference is
that the argument is an object data type, and the VBA Set keyword is used for the assignment
within the body of the Property Set. The following is an example of hypothetical Property
Set procedure that accepts a recordset object and assigns it to a private variable named
m_Products:

Public Property Set Products(Value As ADO.Recordset)
If Not Value Is Nothing Then
Set m_Products = Value

End If
End Property

In this small example, the argument is validated before it is assigned to the private variable.

1056

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1056

Property Get syntax
This is the basic syntax of the Property Get:

Public Property Get <PropertyName>() As <DataType>
<PropertyName> = <PrivateVariable>

End Property

Notice the similarities between a Property Get and a VBA function. The Property Get is
declared as a particular data type, and the property is assigned a value within the body of the
property. The syntax is identical to any VBA function.

This is the Property Get from the Employee class module in the example application accom-
panying this chapter:

Public Property Get LastName() As String
LastName = m_LastName

End Property

The Property Get executes whenever the property’s value is assigned to a variable or otherwise
used by the application. For instance, the following VBA statement executes a Property Get
named LastName in the Employee class module (objEmployee has been declared and
instantiated from the Employee class):

strLastName = objEmployee.LastName

Notice that this statement does not directly reference the Property Get. Because the
objEmployee object was created from the Employee class, the VBA engine knows to run the
Property Get because a variable is assigned the value of the LastName property. In other
words, the VBA engine gets the LastName property value from the class.

In this example, the Property Get is very simple and only returns the value of the private vari-
able. However, you could have a much more complex Property Get that performs data transfor-
mation on the value or retrieves the value from a database file, an .ini file, the operating system,
or some other source.

This example also illustrates the simplified programming possible with object-oriented techniques.
A single VBA statement in the application’s consumer code is enough to run whatever complex
operation is necessary to retrieve the value of the property. The consumer is never aware of the
logic supporting the property.

Property procedure rules
There are just a few rules that apply to property procedures. First of all, the name assigned to a
property procedure is the name of the property. Therefore, you should use a descriptive, helpful
name for all of your properties. Typically, a developer using objects created from a class you create
does not have access to the VBA code in the class and has to rely on the names you’ve assigned to
its properties and methods for guidance.

1057

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1057

Also, the data type of the Property Let, Property Get, and the private variable must coin-
cide. For example, if the property is defined as a string, the private variable must be a string.
Figure 32-9 illustrates this concept.

FIGURE 32-9

The property variable data type must coincide with the property’s data type.

Note the following points in Figure 32-9:

n The property variable is declared as some data type (labeled “A” in Figure 32-9).

n The argument to the Property Let procedure is the same data type as the property
variable (“B” in Figure 32-9).

n The property variable is assigned its value in the body of the Property Let
(“C” in Figure 32-9).

n The Property Get procedure returns the same data type as the property variable
(“D” in Figure 32-9).

n The Property Get is assigned the value of the property variable (“E” in Figure 32-9).

You’ll get the following error if the data type assigned by the property procedures does not
coincide:

Definitions of property procedures for the same property are inconsistent, or property pro-
cedure has an optional parameter, a ParamArray, or an invalid Set final parameter.

Although you can use an incorrectly typed private variable for your property procedures, you’ll
encounter side-effect bugs if the variable does not match the data type used for the property
procedures.

Class Module

Private m_ProductID As Long

Public Property Let ProductID (Value As Long)

Public Property Get ProductID() As Long

A

m_Product ID= Value

End Property

End Product

C

D

ProductID = m_ProductID E

B

1058

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1058

Extending the Product Class
Earlier in this chapter, we built a simple product class representing a Northwind product. The ini-
tial class is included in the Access .accdb file accompanying this chapter as the clsProduct1
class module. In this section, we extend the initial class (as the clsProduct2 class module) by
making its properties more intelligent and useful.

Specifically, this section extends the property procedures within the Product class module, and
adds methods to the module. We also expand the basic application by adding a few other classes
needed to support the Northwind Traders application.

The example application accompanying this chapter includes a form named Products_OOP,
which is based on the Products form included with Northwind Traders (see Figure 32-10). This
form utilizes the majority of OOP techniques described in this chapter and can serve as a model for
your OOP endeavors.

FIGURE 32-10

The Products_OOP form demonstrates unbound object-oriented techniques.

Retrieving product details
The first enhancement to the Product class is to update the process of retrieving product details,
given a particular ProductID. In the initial example, the user selected a product from a combo
box, and the form used an inline SQL statement to extract the details for the selected product.

The problem with having the form directly manage data are that the form (which is the consumer
of the product data) has to know a great deal about how the product data are stored. The form
holds a hard-coded SQL statement, creates a recordset with product data, then assigns the record-
set’s data to the product object’s properties. This is far too much to entrust to the user interface.

1059

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1059

Consider an application with perhaps hundreds of forms. Using the design described in the previ-
ous paragraph, each form in the application has to manage its own data. Changing anything in the
database means many different changes have to be made to the user interface, greatly complicating
maintenance.

Two of the primary objectives of object-oriented programming are code-reuse and data abstraction.
We all know and understand code reuse: Write the code once, and use it many different places.
Data abstraction is a bit more complex, but it’s based on the notion that each layer of an applica-
tion (data management, business logic, and user interface) should do what it does best, and not
have to worry about other parts of the application. The data layer should concern itself with get-
ting data into and out of the data source. The business logic should concern itself with the rules
that drive the application, and the user interface presents data from the user and manages the
application’s interaction with the user.

Bundling all of those operations behind or within a form violates the notion of data abstraction.
Every form in a bound application knows everything about the data managed by the form. Although
this works well in small applications where complete control over the data are relatively unimpor-
tant, larger, more ambitious applications generally require significant control over the data.

The new ProductID property
The ProductID property enhancement is quite simple, even though the implementation requires
a bit of code. The Property Get procedure simply returns the value of m_ProductID, as
described earlier in this document. The real change comes with the Property Let.

The enhancements works like this: If a value greater than zero is assigned to the ProductID
property, the class retrieves all of the product details matching the assigned ProductID. Each
product detail selected from the database is assigned to the corresponding product property. If a
value zero or less is assigned, the class assumes the product entity is a new product, and default
values are assigned to each property.

The updated Product class is utilized behind a form named Products_OOP.

The code contained in the ProductID Property Let is fairly extensive. It begins by opening a
recordset against the ProductID value, and then determines whether any data was selected. A
small bit of logic then either assigns the found data to the property variables, or sets the property
variables to default values:

Public Property Let ProductID(Value As Long)

Dim db As DAO.Database
Dim rs As DAO.Recordset

m_ProductID = Value

If m_ProductID <= 0 Then
Exit Property

1060

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1060

End If

Set db = CurrentDb()

Set rs = db.OpenRecordset(_
“Products”, dbOpenTable)

rs.Index = “PrimaryKey”

‘Seek the Product record matching
‘the m_ProductID value.
rs.Seek “=”, m_ProductID

If Not rs.NoMatch Then

‘Assign database data to object properties:
If IsNull(rs.Fields(“ProductName”).Value) Then
m_ProductName = vbNullString

Else
m_ProductName = rs.Fields(“ProductName”).Value

End If

<This pattern is repeated for each property>

Else ‘Product not found!

‘Assign default values to
‘each property variable:
m_ProductName = vbNullString
m_SupplierID = -1
m_CategoryID = -1
m_QuantityPerUnit = vbNullString
m_UnitPrice = -1
m_UnitsInStock = -1
m_UnitsOnOrder = -1
m_ReorderLevel = -1
m_Discontinued = False

‘Also assign default value to ProductID.
‘This will serve as a signal to the consumer
‘that an product was not found:
m_ProductID = -1

‘An alternate approach would be to raise an
‘event telling the consumer that the product
‘could not be found.

End If

End Property ‘Property Let ProductID

1061

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1061

This is a good example of encapsulation. Instead of requiring a consumer of the Product class to
select the product data, the Product class easily supplies the data through the ProductID setting.

This small example also illustrates one of the major benefits of object-oriented programming. In a
well-designed application, the only way to retrieve product data should be through the Product
class. No other portion of the application needs to know anything about where the product data
are stored, how to select or insert product data, and so on. In the future, should the need arise to
change the product data source, only the Product class is updated, and all other portions of the
application continue to function as before, without any changes.

Consider the time savings in a large application where the product data are used in dozens or even
hundreds of different places. Good object-oriented design enforces modular programming and
provides significant efficiencies when maintaining medium to large applications.

A new property
One of the things that bothers me about the Northwind Traders application is that it relies very
heavily on Access-only constructs. In particular, most of the tables, when viewed in datasheet view,
display related data. For instance, opening the Products table in datasheet view shows the prod-
uct category and supplier information, and not the ID values associated with each of these items.
For instance, the supplier name is shown in the Products table because the lookup properties of
the SupplierID field are set to display a combo box containing the supplier names.

We’ve found these constructs to be confusing to users, especially people new to Access. Most
people, when they see the supplier’s name in the Products table, expect to find the supplier
name among the data stored in the table. However, the only type of supplier information in the
Products table is the SupplierID. If the supplier name is required, you must extract it the
from the Suppliers table, using the SupplierID as the criterion.

An enhancement to the Product class is to make the supplier and category names accessible as
read-only properties. You probably can guess how this is done: Simply extract this information
from the respective tables, using the property variables for the SupplierID and CategoryID
properties.

Here is the Property Get procedure for the new SupplierName property. The Property Get
for the CategoryName property is virtually identical:

Public Property Get SupplierName() As String

Dim varTemp As Variant

If m_SupplierID <= 0 Then
SupplierName = vbNullString
Exit Property

End If

1062

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1062

varTemp = DLookup(“CompanyName”, “Suppliers”, _
“SupplierID = “ & m_SupplierID)

If Not IsNull(varTemp) Then
SupplierName = CStr(varTemp)

Else
SupplierName = vbNullString

End If

End Property

The Property Get uses DLookup to retrieve the CompanyName from the Suppliers table
that matches the m_SupplierID property variable. The property variable is first checked to make
sure its value is greater than zero, and the property ends if this condition is not met.

The SupplierName property is an example of how a class module can be enhanced by introduc-
ing new properties — either read-only, write-only, or read/write — that provide functionality not
otherwise available. Again, the consumer of the class needn’t know anything about the underlying
data structures, and all of the data management is handled through the class module.

Product Methods
Another major advantage of encapsulation is that, because all data operations required by the
entity are contained within the class, it’s quite easy to update business logic.

Earlier in this chapter, you read about a hypothetical SellProduct method that had to be
updated to accommodate a new sales tax. Whichever technique you use to update the method, the
end result is the same. Because the method is an integral part of the class, there is only one update
needed to update all uses of the SellProduct method in the application.

The previous section dealt with an update to the ProductID property. In the new ProductID
Property Let, the property variable was assigned –1 when it appeared that the product was a
new product. Here’s how the SaveProduct method would handle the various values of the
m_ProductID variable:

Public Function SaveProduct() As Boolean
Dim db As DAO.Database
Dim strSQL As String

On Error GoTo HandleError

Set db = CurrentDb()
If m_ProductID > 0 Then
‘Update existing record:

1063

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1063

strSQL = _
“UPDATE Products SET “ _

& “ProductName = ‘“ & m_ProductName & “‘“ _
& “SupplierID = “ & m_SupplierID _
& “CategoryID = “ & m_CategoryID _
& “QuantityPerUnit = ‘“ _
& m_QuantityPerUnit & “‘“ _
& “UnitPrice = “ & m_UnitPrice _
& “UnitsInStock = “ & m_UnitsInStock _
& “UnitsOnOrder = “ & m_UnitsOnOrder _
& “ReorderLevel = “ & m_ReorderLevel _
& “Discontinued = “ & m_Discontinued _
& “WHERE ProductID = “ & m_ProductID

Else
‘Insert new record:
strSQL = _

“INSERT INTO Products (“ _
& “ProductName,” _
& “SupplierID, “ _
& “CategoryID,” _
& “QuantityPerUnit, “ _
& “UnitPrice,” _
& “UnitsInStock, “ _
& “UnitsOnOrder,” _
& “ReorderLevel, “ _
& “Discontinued, “ _
& “)VALUES(“ _
& m_ProductName & “, “ _
& m_SupplierID & “, “ _
& m_CategoryID & “, “ _
& m_QuantityPerUnit & “, “ _
& m_UnitPrice & “, “ _
& m_UnitsInStock & “, “ _
& m_UnitsOnOrder & “, “ _
& m_ReorderLevel & “, “ _
& m_Discontinued & “)”

End If
SaveProduct = True

ExitHere:
Exit Function

HandleError:
SaveProduct = False
Resume ExitHere

End Function

1064

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1064

The code in the SaveProduct method is straightforward. If the m_ProductID variable is larger
than zero, the record in the Products table matching the ProductID is updated. Otherwise, a
new record is inserted into the Products table.

Class Events
There are two very important built-in events that accompany every Access class module. These are
the Initialize and Terminate events. As you’ll soon see, these two events provide invaluable
assistance in many object-oriented programming projects.

Using class events is one of the things that is completely different from using standard code mod-
ules. Not only do class modules maintain their own data states, they provide events that provide a
great deal of control over how the data are initialized and cleaned up within the class.

The Class_Initialize event procedure
Very often the property variables or other resources used by a class need to be initialized or set to
some beginning state. Other than adding a method to trigger initialization, it may not seem obvi-
ous how to add initialization operations to your classes.

For instance, let’s say you create a class module that needs to have a recordset open the entire time
the class is used. Perhaps it’s a class where the data needs to be frequently selected from a database.
Frequently opening and closing connections and recordsets can be a unnecessary drain on per-
formance. This is especially true when the selected data set doesn’t change from operation to oper-
ation. It’d be much more efficient to open the recordset one time, leave it open while the class is
being used, and then close it at the conclusion of the session.

That’s where the class’s Initialize event comes in. The Initialize event fires whenever
an object is instantiated from the class module. In the following consumer code example, the
Class_Initialize event procedure runs when the object is set to a new instance of the class:

Dim objProduct As Product
Set objProduct = New Product

Select Class from the object drop-down list in the upper-left corner of the VBA editor, then select
the Initialize event from the Events drop-down list in the upper-right corner. There’s nothing
else you must do other than add the code you want to run when an object is instantiated from
your class module. Figure 32-11 shows an example of a Class_Initialize event procedure in
the Product class.

1065

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1065

FIGURE 32-11

The Class_Initialize event procedure runs whenever an object is instantiated from the class module.

The sequence indicated by the numbers in Figure 32-11 is:

n The object is instantiated (A). Before this statement is completed by the VBA engine, the
Class_Initialize event is invoked.

n Notice that Class_Initialize (B) is a private subroutine. It is owned by the class,
and executes independently of the consumer code. No arguments are passed to
Class_Initialize.

n Execution is passed back to the consumer code when Class_Initialize ends (C).

n Execute recommences in the consumer code at the statement following the object instan-
tiation (D).

In this small example, you’ll notice that numeric property variables are set to –1, rather than VBA’s
default of zero for numeric variables. This is because certain logic in the class module uses –1 to
determine when certain states, such as when the user is entering a new product, are in effect.

The Class_Terminate event procedure
The opposite of the Initialize event is the Terminate event. The Terminate event fires
whenever an object created from the class is set to Nothing, or goes out of scope. In the following
code fragment, the Class_Terminate event procedure runs when the object is set to Nothing:

Set objProduct = Nothing

Consumer Code

Set objProduct = New Product

objProduct.ProductName = “Beans”

A

Product Class

Private Sub Class_Initialize

End Sub

m_ProductID = -1
m_ProductName = vbNullString
m_SupplierID = -1
m_CategoryID = -1
m_QuantityPerUnit = vbNullString
m_UnitPrice = -1
m_UnitsInStock = -1
m_UnitsOnOrder = -1
m_ReorderLevel = -1
m_Discontinued = False

B

C

D

1066

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1066

Use the Terminate event to clean up your class module. For instance, if a Database or
Recordset object has been opened, but hasn’t been closed by the class, use the Terminate
event to perform these operations.

The Terminate event fires as the statement dismissing the object runs, not after. VBA processes
one statement at a time, no matter where the statement takes the execution point. Therefore, when
the Set objProduct = Nothing executes, the Class_Terminate event procedure runs
before the statement ends. This sequence ensures that the class is cleaned up before execution is
returned to the code using the class. This process is illustrated in Figure 32-12.

FIGURE 32-12

The Class_Terminate event procedure passes control back to the consumer code when it ends.

Just as with the Class_Initialize event procedure, the sequence of Class_Terminate’s
execution is important:

n The object is set to Nothing, or goes out of scope (A). Before the statement causing
these states executes, control is passed to Class_Terminate.

n Just as you saw with Class_Initialize, notice that Class_Terminate (B) is a pri-
vate subroutine. It is owned by the class, and executes independently of the consumer
code. No arguments are passed to Class_Terminate.

n Execution is passed back to the consumer code (C) when Class_Terminate ends.

n Execution recommences in the consumer code at the statement following the object’s
dismissal (D).

Adding Events to Class Modules
We’re all familiar with the interfaces supported by the objects built into Microsoft Access. A
TextBox object, for example, supports ForeColor and BackColor as properties. The DoCmd
object provides a wide variety of methods (such as OpenForm) that perform a number of essential
actions in Access applications.

Consumer Code

Set objProduct = Nothing

MsgBox “Done”

A

Product Class

Private Sub Class_Terminate

End Sub

m_Recordset.Close
Set m_Recordset = Nothing
m_Database.Close
Set m_Database = Nothing

B

CD

1067

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1067

Beginning with Access 2000, developers have been able to add events to the class modules in their
applications. (Although Access 97 supported class modules with properties and methods, Access 97
did not provide for custom events in class modules.) Adding events to your class modules is an
excellent way to enhance and strengthen the object-oriented elements you add to your applications.

An Access events primer
Events are a bit more complex than properties or methods. Even though we constantly use events
in our applications, you never see an event (because events do not exhibit a use interface), and
under most circumstances, you don’t deliberately invoke an event through your code. Events just
sort of happen when a user clicks on a command button or tabs off of a control. Events are just
there, and we use them as needed.

A reasonable analogy for events is the ringer on your cell phone. Your phone rings whenever
someone wants to talk to you. The ring alerts you to the incoming call, and you decide whether to
respond to the ring or ignore it.

From an object-oriented perspective, you add events to your objects so that the object has some
way of notifying its consumer that something has happened within the object or has happened to
the object. For instance, consider a data management object that reads and writes data from a data
source. The properties are easy to understand and may include the path to the data source, the
name of a table, and an ID value to use when extracting or saving data.

In this case, you may add an event to the data management object that is triggered when the data
source is unavailable, or when a record matching the ID value cannot be found. Using events is
much cleaner and more direct than relying on errors to be thrown when the data management
object fails to complete its task.

The need for events
To my knowledge, there is no limit on the number of events you can add to a class module. You
declare events in a class module’s header, and invoke the events within the class’s properties and
methods.

This process may make more sense if we consider a property procedure built earlier in this chapter:

Public Property Get SupplierName() As String

Dim varTemp As Variant

If m_SupplierID <= 0 Then
Exit Property

End If

varTemp = DLookup(“CompanyName”, “Suppliers”, _
“SupplierID = “ & m_SupplierID)

1068

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1068

If Not IsNull(varTemp) Then
SupplierName = CStr(varTemp)

End If

End Property

This property procedure returns the name of a product supplier, given the SupplierID (notice
that the SupplierID is obtained through the class-level m_SupplierID variable). The
SupplierName property assumes that the m_SupplierID property variable has already been
set through the SupplierID Property Let procedure. The If..End If at the top of this pro-
cedure handles cases where the m_SupplierID variable has not been properly set to a value
greater than zero.

So far, so good. But, what happens if the SupplierID cannot be found in the supplier table? The
only way the class’s consumer can determine that the supplier does not exist is by examining the
value of the SupplierName property. If the SupplierName property is an empty string, the
consumer can assume the supplier cannot be found in the supplier table, and notify the user
accordingly.

The problem with this scheme is that a lot of work is left up to the consumer. The consumer must
first set the SupplierID property, then ask for the SupplierName property, and then finally
examine SupplierName to see if a non-zero-length string was returned by the SupplierName
Property Get.

One of the basic tenets of object-oriented programming is that a class module should encapsulate
most, if not all, of the processing required by the entity represented by the class. In the case of our
Product class, a consumer should not be required to examine a property’s return value to verify
its validity. The class should notify the consumer when a problem (such as missing or invalid data)
arises within the class.

And, that’s one of the primary purposes of events. The InvalidSupplierID event is invoked
whenever the class determines that a problem exists with the SupplierID value supplied by the
consumer code.

Creating custom events
Events must be declared within a class module. Although an event declaration may occur anywhere
within a VBA module, it only makes sense to position event declarations near the top of the module
where they are easily seen by other developers. An event declaration is actually quite simple:

Public Event InvalidSupplierID()

That’s all there is to an event declaration. The Public keyword is needed, of course, to expose the
event to the class’s consumers. In effect, the Public keyword adds the event to the class’s interface.
The Event keyword, of course, specifies that the declaration’s identifier (InvalidSupplierID) is
an event, and should be managed by VBA’s class module hosting mechanism.

1069

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1069

You may recall that I’ve asserted that class modules were special in a number of regards. Events are
clearly one of the special characteristics of VBA class modules.

A quick look through the Object Browser at the class module (see Figure 32-13) shows that the
class’s interface does, indeed, include the InvalidSupplierID event.

FIGURE 32-13

The InvalidSupplierID event appears in the Object Browser.

You’ll notice a couple other events (InsufficientStockAvailable and ProductSold) in
the Product class module. We’ve added the other events in exactly the same manner as the
InvalidSupplierID event. An event declaration is all that is required to add an event to a
class’s interface. The class module never even has to trigger an event shown in the Object Browser.

Raising events
It should be obvious that an event that is never invoked by a class module’s code isn’t much use to
anybody. Events are typically triggered (or raised) whenever circumstances indicate that the con-
sumer should be notified.

Raising an event requires a single line of code:

RaiseEvent <EventName>(<Arguments>)

We’ll discuss event arguments in the “Passing data through events” section, later in this chapter. In
the meantime, take a look at raising the InvalidSupplierID event from the SupplierName
Property Get:

Public Property Get SupplierName() As String

Dim varTemp As Variant

1070

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1070

If m_SupplierID <= 0 Then
RaiseEvent InvalidSupplierID()
Exit Property

End If

varTemp = DLookup(“CompanyName”, “Suppliers”, _
“SupplierID = “ & m_SupplierID)

If Not IsNull(varTemp) Then
SupplierName = CStr(varTemp)

Else
RaiseEvent InvalidSupplierID()

End If

End Property

The SupplierName property raises the InvalidSupplierID under two different situations:
when the SupplierID is zero or a negative number, and when the DLookup function fails to
locate a record in the Suppliers table.

There is no requirement that consumer code respond to events raised by class modules. In fact,
events are very often ignored in application code. We doubt you’ve ever written code for every sin-
gle event raised by an Access TextBox control, and custom events raised from class modules are
no different.

But, again, that’s one of the nice things about object-oriented programming. You can add as many
events as needed by your classes. Consumer code working with your classes can ignore irrelevant
events and trap only those events that are important to the application.

Trapping custom events
About the only place where event-driven programming with Access classes becomes tricky is when
it’s time to capture events (also called “sinking” events) in consumer code. There are a number of
rules governing event consumption:

n The class hosting events must be declared within another class module.

n The object variable created from the class must be module-level and cannot be declared
within a procedure.

n The object variable declaration must include the WithEvents keyword.

Let’s examine these requirements. It shouldn’t be surprising that events can only be captured by
code within class modules. After all, class modules are special critters and have capabilities beyond
simple code modules. You’ve never seen a stand-alone VBA code module directly respond to events
raised by controls on an Access form, so there’s no reason to expect a plain code module to be able
to consume events raised by the classes you add to an application.

1071

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1071

However, a plain code module can very well create and use objects derived from class modules. It’s
just that VBA code modules cannot capture events raised from class modules.

This requirement is not quite as onerous as it first appears. After all, every form and report module
is a class module. That means that forms and reports are ready-built for consuming the events
thrown by your class modules.

Similarly, the second requirement (the object variable must be module-level) also makes sense.
There’s no way to capture an event from within a procedure. Procedures know nothing about
objects, and there’s no provision for hooking a locally declared object variable to its events.

When you look at the class module behind a form, it becomes obvious why object variables must
be module-level before their events can be sunk by consumer code. You’ve seen the typical Access
form module, as shown in Figure 32-14. Notice what appears in the code module’s event list when
an object variable has been declared with the WithEvents keyword.

FIGURE 32-14

The WithEvents keyword instructs VBA to watch for events raised from the object’s class module.

As you’d expect, selecting an event from the Product object’s event list opens a new event proce-
dure, enabling you to write code in response to the event. The Product_InvalidSupplierID
event procedure notifies the user whenever the Product class determines that the SupplierID
value cannot be used by the class.

Obviously, the code in the event procedure runs whenever the corresponding event is raised from
the object’s class module. The consumer does not have to explicitly check the value returned by
the SupplierName property. Instead, the event procedure linked to the InvalidSupplierID
handles the event and takes appropriate action.

Also, because the same event can be raised from multiple places within the class module, a single
event procedure may handle many different situations related to a single problem within the class
module.

1072

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1072

We suspect that, behind the scenes, Access does exactly the same thing for built-in objects such as
text boxes and command buttons. As soon as you add a control to an Access form, you’re able to
add code to event procedures hooked into the control’s events.

Passing data through events
You probably noticed that the event declaration example given earlier in this chapter included a set
of empty parentheses:

Public Event InvalidSupplierID()

What may not be obvious is that event arguments may be added within the parentheses:

Public Event ProductSold(Quantity As Integer)

The RaiseEvent statement includes a value for the event argument:

RaiseEvent ProductSold(UnitsSold)

Event declarations may include multiple arguments, and (to our knowledge) can pass any valid
VBA data type, including complex data such as recordsets and other objects.

The ability to pass data through event arguments is an incredibly powerful tool for developers. A
class module can directly communicate with its consumers, passing whatever data and information
is necessary for the consumer to benefit from the class’s resources.

Exploiting Access class module events
It is possible to add custom events to Access forms and to raise those events from code within the
form. Custom events are declared with exactly the same syntax as declaring events within any class
module and are raised with the RaiseEvent statement. The only tricky part is sinking custom
events raised by a form in another form’s module.

Custom events can be exploited as a way to convey messages and data between forms. Recently,
we responded to a reader’s question about dialog boxes with a relatively lengthy explanation of
modally opening the dialog box, hiding the dialog box when the user was ready to return to the
main form, and then reading a custom property from the hidden dialog box. Although this tech-
nique works well, it requires quite a bit of planning and preparation.

The dialog box operation can be more simply implemented by adding a custom event to the dialog
form that is raised by the dialog and sunk by the main form. Information entered by the user on
the dialog form is passed to the main form as an event argument. The event is raised when the user
closes the dialog form and the information passed as the event argument is captured by the main
form. There is no need for the main form to close or otherwise manage the dialog form.

Let’s start with the dialog form that raises a custom event. The dialog form is shown in Figure 32-15.

1073

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1073

FIGURE 32-15

This form uses a custom event to pass data back to the main form.

The user types something into the text box and clicks either OK or Cancel. The OK button passes
the text box’s contents to the main form, while the Cancel button passes a “No Data message,
indicating that the user dismissed the dialog box without entering any data.

Here’s all of the code behind this simple dialog box:

Public Event FormClosing(Message As String)

Private Sub cmdOK_Click()
DoCmd.Close acForm, Me.Name

End Sub

Private Sub cmdCancel_Click()
txtSomeData.Value = Null
DoCmd.Close acForm, Me.Name

End Sub

Private Sub Form_Close()
If Not IsNull(txtSomeData.Value) Then
RaiseEvent FormClosing(txtSomeData.Value)

Else
RaiseEvent FormClosing(“No data”)

End If
End Sub

A public event named FormClosing is declared at the top of the dialog form’s module. This event
returns a single argument named Message. The cmdOK_Click event procedure closes the form,
while the cmdCancel_Click event clears the contents of the text box named txtSomeData
before closing the form.

The FormClosing event is raised by the dialog form’s Close event procedure, ensuring that the
event is raised whenever the form is closed. If the txtSomeData is not Null, the value of the text
box is passed by the FormClosing event, while a default message is passed if the text box’s value
is Null.

1074

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1074

No other code is needed by the dialog form, and the form is allowed to close normally because the
FormClosing event fires just before the form disappears from the screen.

The main form is shown in Figure 32-16.

FIGURE 32-16

The main form sinks the custom event raised by the dialog form.

The code behind the main form is also quite simple. Notice the WithEvents keyword applied to
the form object’s declaration:

Private WithEvents frm As Form_frmDialogForm

Private Sub cmdOpenDialogForm_Click()
Set frm = New Form_frmDialogForm
With frm.Visible = True

End Sub

Private Sub frm_FormClosing(Message As String)
txtDialogMessage.Value = Message

End Sub

The dialog form must be declared as a module-level variable behind the main form. The
WithEvents keyword notifies the VBA engine that you want the main form to capture (or sink)
events raised by the frm object.

Also notice that the form’s class name is Form_frmDialogForm. This is the name of the class
module behind frmDialogForm, and is the entity that actually raises the event. From the per-
spective of the VBA project driving the application, the form’s surface is just a graphic interface and
has nothing to do with the class module that supplies the logic driving the form.

The WithEvents keyword is almost magical. Once you’ve qualified an object declaration with
WithEvents, the name of the object appears in the drop-down list at the top of the class module,
and the object’s events appear in the right drop-down list (see Figure 32-17).

1075

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1075

FIGURE 32-17

The WithEvents keyword enables the main form’s class module to capture events raised by the object.

All Access developers are familiar with how the object drop-down list shows all of the controls
placed on the surface of an Access form, as well as an entry for the form itself. In this case, the
object drop-down list shows the form object declared with the WithEvents keyword in addition
to controls on the form’s surface.

In this case, the form object named frm is declared and instantiated and is completely controlled
by the main form. The main form captures the dialog form’s events, and uses the data passed
through the FormClosing event. The main form could just as easily reference other properties
of the dialog form.

Notice that this technique eliminates the infamous bang-dot notation that Access developers have
suffered with for so many years. Treating a form as an OOP object eliminates a lot of overhead from
the code behind the main form.

Access forms are objects
It’s important to understand that every Access form is actually an object created from a class and is
not a physical entity stored within the .accdb file. Most of us think of forms as a UI object that is
maintained somewhere within the .accdb file and used as needed. In reality, each form is stored
as a class, and Access instantiates a form object and displays the form on the screen whenever we
work with the form’s class. In design view, Access presents us with an editable interface to the
form’s class, and we work with the form’s properties.

Interestingly enough, the code behind an Access form is nothing more than a property of the form’s
class. The code behind an Access form is, itself, a class. There is nothing in the object-oriented par-
adigm supported by Access that prohibits a class from containing another class.

1076

Professional Database DevelopmentPart IV

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1076

Summary
This chapter has taken on the important topic of creating and using object classes. Access’s object-
oriented features are a powerful way to encapsulate functionality, letting you design modular appli-
cations that are easy to create and maintain. Breaking complex features into discrete objects is a
powerful way to incrementally build applications from a series of components, each of which per-
forms a single job in the application.

Property procedures and class events are at the core of any OOP project. Object-oriented program-
ming enforces modular programming, and the only access a consumer has to an entity’s data are
through a class’s interface. Assigning a value to an object’s property can run hundreds of lines of
code in the class module, greatly simplifying programming tasks on the consumer side.

Also, because encapsulation means that all of an object’s logic is contained within its class module,
maintenance is much simpler than with traditional linear programming practices.

There’s a lot to think about and learn when you begin using object-oriented programming in data-
base applications. Sometimes the rewards are a bit difficult to see at first, but once you begin using
OOP in your applications, you’ll wonder how you got along without it!

In case you’re wondering, class modules, properties, methods, and events are very similar in .NET
applications. The major difference is that the .NET framework adds many, many capabilities that
are not possible in VBA classes. However, the OOP code you write in Access would be quite com-
fortable in a .NET application.

1077

Object-Oriented Programming with VBA 32

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1077

39_046732 ch32.qxp 11/21/06 9:05 AM Page 1078

You’ll use many of the techniques described in this book in most of the
Access applications you prepare. Common features such as splash
screens, data validation, logging, and progress indicators will be used

over and over again in different applications. You may be discouraged at the
thought of having to program each of these techniques into every Access
application you build. After all, some of the techniques described in the
Access 2007 Bible require considerable programming and implementation.

A primary objective in most application-development projects is to reuse as
much of your programming as possible. People simply cannot afford to write
everything from scratch in every project. You’ll be happy to know that Access
provides a handy method of reusing not only code, but also forms and other
database objects. In fact, when you use Access libraries, the improvements you
make to a library’s contents are shared by all applications using the library.

Access also provides a way to share the more sophisticated aspects of the
user interfaces you build among applications. For instance, let’s assume
you’ve built a multiform dialog box that allows users to customize the user
interface. Using this dialog box, they can choose such things as the back-
ground color of forms, title bar color, fonts to use in labels, and so on.
Changing the colors on the other forms in the application, displaying sam-
ples to the user, and other such options may require a great deal of code
behind the dialog box. It would be a shame to be able to use such a sophisti-
cated feature in only one application.

This chapter explores the concepts of reusing code and other database
objects as Access libraries, and describes how to use custom libraries in your
Access applications. You’ll also learn how to add these database objects to
virtually any Access application.

1079

IN THIS CHAPTER
Understanding Access libraries

Comparing libraries with
traditional code-sharing
techniques

Building Access libraries

Establishing library references

Debugging library databases

Packaging libraries as .accde
files

Reusing VBA Code
with Libraries

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1079

This chapter uses the database named Chapter33.accdb. If you haven’t already
copied it onto your machine from the CD, you’ll need to do so now. The Chapter 33

folder on the CD also includes an .accde file created from Chapter33.accdb. You may want to
examine the .accde to see how converting an .accdb file to .accde format affects an applica-
tion’s objects.

What Are Libraries?
Access users often work with libraries without even being aware that they’re using anything other
than the basic Access product. In fact, many of the most sophisticated Access features don’t even
exist in the msaccess.exe executable file. Instead, these features exist as special libraries that are
loaded into the Access environment at startup or whenever the user asks for a feature that is sup-
ported by a library.

Because it was created with the capability to be extended through library components added at
runtime, Access gives almost unlimited power to the advanced developer. Libraries give you
powerful tools that allow you to reuse your carefully developed forms and code.

The library database is the basis of all other types of Access add-ins. A library database contains
Access VBA code, forms, queries, and other database objects that can be called from any Access
database application. Once referenced, an Access application can use any of the resources provided
by a library as if the resource existed in the current database.

You use library databases to store code such as data validation and error messaging that you fre-
quently add to your applications. Putting this code into a library database saves you from having to
add the routines to every application you create. Putting code into an external library database also
means that improvements and enhancements you make to the code will be shared by all applica-
tions using the library. Library databases are also a valuable way to distribute new features and
changes to your users.

Also, tables, queries, forms, and even reports contained in the library database file are accessible to
the Access application using the library. Access has no trouble opening a form or report contained
within a library. In fact, this is exactly how the built-in Access wizards work. When you open the
Linked Table Manager, for instance, you’re actually opening a complex form stored in an Access
library. The Linked Table Manager is not built into the msaccess.exe executable.

The Access wizards and other add-ins are contained in several Access libraries with extensions
such as .accde, .accdu, and .accda in the Office 2007 installation folder. Although you can
open these files in Access 2007, all the database objects are secured against changes, and you won’t
be able to modify the built-in Access wizards.

ON the CD-ROMON the CD-ROM

1080

Professional Database DevelopmentPart IV

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1080

Traditional Access programming
In most applications, the code and objects you add to the database work only within that applica-
tion and aren’t shared with other databases. This is how the Access product documentation and
most books and other training materials describe creating Access applications. You create the
tables, queries, forms, reports, and code within the .accdb or .mdb file that you make available
to your users. If necessary, you import code modules and forms from other .accdb or .mdb files
to use in the new application.

This approach is completely appropriate when the objects and code won’t be used by other Access
applications. If a code module is highly specific to an application, there is no reason to consider
using the same code in other databases. But there are many instances in which the VBA routines,
forms, or reports you’ve carefully constructed in an application might be used within another data-
base. Using a library is a simpler technique than physically importing database objects from
another database.

Sharing code between applications
It is likely that you’ll eventually seek more efficient ways to share application elements between
databases. Even though Access allows you to import any database object from another database
with complete fidelity, you import a copy of the object. If you change the original object later on,
the changes are not reflected in any database using a copy of the original object. Therefore,
improvements and enhancements to the shared code, forms, and other database objects are not
shared with the other databases.

As an example, consider the situation where the user has asked for business rules to be added to a
database. These rules determine how the data is to be validated, displayed, calculated, and so on. If
the user needs a number of different databases, you could simply copy the business rules module
among the databases. Later, however, if the business rules are modified because of changes in tax
laws, policies, or company strategy, each of the databases would have to be individually updated
with the new business-rules module.

A more efficient technique is to encapsulate the business rules in a single library database (located
on a file server, if the databases are used by many different users) that is loaded by each of the data-
bases at runtime. When changes are made to the library database, the changes are seen in each of
the relevant databases the next time that database is used.

It is important to keep in mind that library databases can contain much more than just code.
Although a code module is an obvious example of a database object that may be periodically
updated, there are many other examples as well. For instance, a company may use a table in a
library database to share employee phone numbers and contact information. A particular style of
report may be used to output information from a number of different databases, particularly if the
databases work with similar data.

1081

Reusing VBA Code with Libraries 33

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1081

Access library basics
A library database is identical in all regards to any other Access database. In fact, you create library
databases by building a normal database, adding to it all of the components and code you want to
have available to other databases, and converting it to the special .accde file format. As you’ll see
in the next section, Access 2007 automatically recognizes an Access database file with an .accde
extension as a library database.

The .accde file format is special. Most of the objects in an .accde file are read-only and cannot
be changed by the user. The only exceptions are tables and queries, which remain read/write so
that new tables and queries can be added or modified, if needed. You cannot export to or export
from an .accde file.

Because of its (mostly) read-only nature, the .accde file format is the ideal library database. You
can distribute code and other database objects without worrying whether users will try to make
changes to the .accde’s contents. Also, because certain elements have been stripped out of an
.accde, the size of the file is somewhat smaller than the equivalent .accdb.

When it’s time to use the library database, Access references the library database directly and opens
it for you. You don’t need to include any special code or calling routines in an application in order
to use the contents of a library database.

Access 2007 library database references
Most Access 2007 wizards and add-ins are loaded on demand, which means they’re read from their
respective library databases only when a user requests their features. You may have noticed that
there’s a significant delay the first time you invoke a Form or Table Wizard in Access 2007, and a
much smaller delay when you subsequently invoke the same wizard during the same session.

Knowing how to reference library database contents from your Access applications is important.
Admittedly, this is not a simple subject, but there are many benefits derived from the various refer-
encing options. As you’ll see in the following sections, references range from simple and direct (but
limited) to complex and powerful.

Under Windows you have a number of options when it comes to setting references to your add-
ins. Access 2007 doesn’t support the notion of global modules in libraries, which means that load-
ing library databases involves more than simply pointing at a library name at startup and letting
Access find the add-in references within the library. When working with Access 2007, you have the
following options for referencing library database contents:

n Using explicit references

n Using a runtime reference

1082

Professional Database DevelopmentPart IV

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1082

Explicit library references
A library reference creates a “link” between an application and a specific library database. You must
manually create library references in each application before you can use the code contained in the
library database.

You create the library reference in the References dialog box (see Figure 33-1). You open this dialog
box by choosing Tools ➪ References with any VBA code module open for editing in Design view.

FIGURE 33-1

You use the References dialog box to create connections to library databases.

Use the Browse button to locate the library database with the Add Reference dialog box (see Figure
33-2). By default, the .accde file type is not shown in the Add Reference dialog box. You must use
the Files of Type drop-down list to select .accde and .accdb files (this list is open in Figure 33-2).

Notice that the drop-down list in Figure 33-2 includes older Access file types, such as .mdb,
.mde, and .mda. Access 2007 makes no distinction when it comes to the database file referenced
as a library. This means that, if you have existing Access library files, you can reference them from
Access 2007 without changing anything.

When you’ve located the library, click OK to accept the library database and return to the
References dialog box. The selected library database will be added as shown in Figure 33-1.

Once you’ve connected to a library database, all of the code and other database objects contained
in the library are available to the application you’re building. When the application is opened by a
user, the library objects are still be available — you don’t have to reconnect each time the applica-
tion is opened. Other applications have access to the library database as well — the library database
will appear in the Available References list you see in Figure 33-1 but will not be selected.

1083

Reusing VBA Code with Libraries 33

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1083

FIGURE 33-2

The Browse button makes it easy to locate library databases.

Using the References dialog box to make library database references has several drawbacks. You
must manually perform the connection operation on each and every database needing access to the
library database. The library reference is stored within the Access database file and should not have
to be reset unless the location of the library file changes.

Also, the exact path to the library database is stored in the application database. This means that if
the library database is moved, renamed, or unavailable at runtime, calls to functions and objects in
the library database will fail. Be sure to adequately trap and handle such errors.

Programming references
Perhaps the easiest way to add references, or at least ensure that references are included in your
Access applications at runtime, is to add a little bit of code that adds the reference to the current
database:

Public Sub AddLibraryReference()
On Error Resume Next
References.AddFromFile(“<Path To Library File>”)

End Sub

The On Error Resume Next is a little bit of a cheat. Access raises an error if you add a reference
that already exists in the database. Putting On Error Resume Next above the statement that adds
the reference instructs Access to ignore this error. However, this technique works fine and causes
no problems in Access applications. Access will not allow you to add the same reference to an
application more than once, so there is no danger that your users will end up with multiple refer-
ences to the same library database.

1084

Professional Database DevelopmentPart IV

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1084

The library database path could be stored as a configuration item in a hidden Access table, or hard-
coded into the application as a constant or other value.

Creating Library Databases
It should be clear that there are certain advantages to using library databases. First and foremost,
adding VBA routines and database objects to library databases makes them available to all applica-
tions needing those routines and objects. The objects in a library database are easily maintained.
Changes to a library database are seen in all applications using the library. You don’t need to make
multiple maintenance changes to a number of different databases as you would if no libraries were
used. Finally, your users will benefit from consistency across all applications. Because you can put
tables containing message text, dialog boxes, and other user interface components into library data-
bases, your users will see the same interface components in all of the applications using the library.

Any time you need to share database components among a number of different applications, you
should consider adding them to a library database. In contrast to the complexity of library database
references, creating libraries is actually quite easy:

1. Create the objects and write the functions in a new Access .accdb file.

2. Save the .accdb as an .accde data file.

3. Load the database as a library.

We expand on these steps in the following sections.

Create the objects and write the functions
As mentioned earlier in this chapter, a library database is simply an Access database used as a
library. Therefore, the first step in creating a new library is to start with an empty .accdb file and
add to it the objects and code needed to support the wizards and builders. In many cases, you’ll
simply import database objects from existing databases rather than create new ones.

Make sure, of course, that the library database is fully debugged. Any errors in the code or user
interface in the library database will be seen in every application using the library. Because you
specify the entry points into the library, you can include routines and other components such as
dialog boxes needed to test the library functions.

All of the library’s entry points must be functions. You cannot call a subroutine from a control or
menu option, so be sure to code the starting point for each wizard and builder as a function.

Keep in mind that library databases can also contain tables, queries, and other database compo-
nents. You might, for instance, use a library database to store message text (a valuable aid to inter-
nationalizing applications), commonly used message boxes, and tables containing data of interest
to the user.

1085

Reusing VBA Code with Libraries 33

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1085

Library databases can be part of a replica set. Replication (the process of distributing
changes to Access databases) is fully discussed in Chapter 31. The Access 2007

replication feature makes it easy to distribute changes you make to your libraries to all users of your
applications.

When all development on the library database is complete, choose Run ➪ Compile (you see the
Run menu only when you have a module open for editing, of course). After compilation, compact
the library database.

Save as .accde
Saving the new library database as an .accde file is very easy. Simply select the Make ACCDE
button in the Database Tools ribbon group, and you’ll see the familiar Windows Save As dialog
box. Notice that ACCDE File is selected as the default format for the save as operation (see
Figure 33-3).

FIGURE 33-3

Saving an Access .accdb file as an .accde library.

That’s all there is to it. The .accde file contains all of the objects that were in the .accdb file,
with the forms, reports, macros, and modules made read-only. The .accde file can be placed on a
file server, making it simultaneously accessible to multiple users.

Converting the .accdb to .accde format is not a requirement of Access libraries. In fact, any
Access .accdb file can be used as a library; the main advantage of using the .accde format is that
no one is able to change the code, forms, and other objects in an .accde file.

CROSS-REFCROSS-REF

1086

Professional Database DevelopmentPart IV

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1086

Load the database as a library
Once you’ve created and tested the library database, you simply reference it using one of the refer-
ence techniques described earlier in this chapter. There is no special process for converting an
application database to a library.

You’ll want to give the database an .accde filename extension to indicate that it’s a library and not
a normal database file. By default, the Access Open dialog box won’t show files with the .accde
extension, so there is little chance a user will accidentally open a library database.

If you find it necessary to disguise the identity of your Access library files, you can provide an
alternate filename extension for your libraries. There is no requirement that all Access libraries
have the .accde extension. You could, for instance use a filename extension such as .sys or
.dat to infer that the file contains nothing of interest to users. Just be sure to use the proper file-
name extension when you create the reference to the library database.

Debugging Library Databases
You debug a library database as you would any other Access database application. You simply test
all of the functions and other code, forms, queries, and database objects against the conditions
expected when the application is used in real life. The only difference is that you must make sure
the library database operates well when referenced as a library.

This means you must build a “test bench” application database, create the references to the library
database, and use the library database as a library. You may have to make some changes to the
library code (particularly to object names in the library) to ensure there are no conflicts with
existing code or objects in the application database.

A good convention to follow is to use a special prefix for function and object names in the library
database. For instance, you may use your initials or lib as a prefix to make sure all objects in the
library have unique names. If, by coincidence, a library function or library object has the same
name as a function or object included in an application, an error occurs.

Library Database Object References
Perhaps the most common problem associated with library databases is keeping object references
straight. For instance, if a function in a library database refers to a table, is the table found in the
application database or in the library database?

Access follows these rules when referring to objects in library databases:

n Bound controls, forms, and reports are always bound to record sources (tables and
queries) in the library database. Access always searches the library database when

1087

Reusing VBA Code with Libraries 33

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1087

trying to resolve a record-source reference. If the record source cannot be found, an error
occurs. If necessary, you may have to use unbound controls and use DAO code to con-
nect to a record source in the application database at runtime.

n Access will first search the library database for a macro reference, then the applica-
tion database for the macro. If the macro cannot be found in either database, an error
occurs.

n Domain aggregate functions such as Dlookup, DMin, and Dmax always refer to the
data in the current database, not the library database.

n When using DAO, use CurrentDB() or DBEngine(0)(0) to refer to objects in the
application database, or CodeDB() to refer to objects in the library database.

In any case, it’s important to keep in mind which database is referenced by the code and objects in
a library database. If you encounter errors when working with library databases, be sure to check
the record source and other object references in the library.

Because multiple users may need access to the information stored in library databases, Access
always opens add-ins for shared access.

Summary
This chapter has reviewed the process of creating library databases as a way to reuse your Access
code. You may find it very efficient to take your frequently used code, add it to an .accdb file,
and save the .accdb file in the .accde format. Then, load the .accde as a library in any Access
application that needs the resources provided by the library.

Keep in mind that Access does not care what extension is applied to the library file. There are
many situations in which you might want to disguise the identity of a library file by given it an
uninteresting extension such as .sys or .dll. Most users are quite familiar with these extensions,
and have no reason to use Access to explore a file with a .sys or .dll extension. However, to
some people, a file with an extension that makes it look like an Access data file of some kind is too
tempting to ignore.

The library file can be located on a file server, making it accessible to all users on the network.
Access does not care if it has to go across the network to retrieve a library file reference. It’s all the
same to Access if the file is located on the user’s local computer or somewhere else on the network.

1088

Professional Database DevelopmentPart IV

40_046732 ch33.qxp 11/21/06 9:05 AM Page 1088

Perhaps the greatest surprise in Access 2007 for experienced Access
developers is the ribbon — the new control that replaces the Access
toolbars and menus. Many Access developers and users have long had

a love-hate relationship with the Access toolbars and menus. Toolbars and
menus are an effective user interface component when users need to get to a
variety of different tasks and operations. However, the CommandBars model
used in previous versions of Access was quite complex and sometimes diffi-
cult to program.

Microsoft has replaced toolbars and menus in Access 2007 with the ribbon, a
large horizontally oriented object at the top of the main Access 2007 screen.
The ribbon is quite unlike any toolbar or menu that you may have seen
before and supports features not possible with toolbars and menus. As you
will soon see, customizing Access 2007 ribbons is a very different process
than using CommandBars to compose toolbars and menus in previous ver-
sions of Access.

In the Chapter34.accdb database, you will find several
database objects needed to support the techniques

described in this chapter. You will not be able to see the USysRibbons table
until you right-click the Navigation Pane, select Navigation Options and select
the Show System Objects check box in the Navigation Options dialog.

ON the CD-ROMON the CD-ROM

1089

IN THIS CHAPTER
Learning about the new Access
ribbon

Working with the default ribbon

Examining ribbon architecture

Studying ribbon controls

Learning the XML necessary to
construct ribbons

Adding VBA callbacks

Customizing Access Ribbons

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1089

Why Replace Toolbars and Menus?
Unlike previous version of Access where developers used CommandBar objects to build toolbars
and menus, Access 2007 developers work with the Ribbon construct. The Ribbon is the large, hor-
izontal control that stretches across the top of the main Access 2007 window. A ribbon is a com-
plex entity, consisting of a number of nested controls that support the functions previously
provided by toolbars and menus.

The older CommandBars model (see Figure 34-1), although complex and somewhat difficult to
work with, featured a complete object model that included several different object types, with
properties, methods, and events. Although a considerable amount of work was involved building
CommandBar-based toolbars and menus, a developer working with CommandBar objects bene-
fited from IntelliSense and online help that documented each type of CommandBar control.

FIGURE 34-1

CommandBars were difficult to produce and sometimes confused users.

In addition to the difficulty programming the complex CommandBar model, CommandBar-based
toolbars and menus were somewhat limited in their abilities. Because of their rather “flat” construc-
tion, many developers had to resort to deeply nested menus, and toolbars buttons that didn’t do
much more than open dialogs that actually performed the task the user required. Many users com-
plained about the difficulty learning how to use custom menus, especially if they were not particu-
larly well planned and constructed.

As a final issue, some users had tremendous trouble with movable toolbars and menus. By default,
the CommandBar objects in previous versions of Access were not only movable, they could be
docked at the top, bottom, or either side of the main Access screen. Users often complained that,
after accidentally moving a toolbar or menu, it’d “stick” to one side or the other of the main Access
screen, and they couldn’t figure out how to move it back to its original location. Also, even though
the convention was to always place a menu CommandBar above a toolbar CommandBar, it was
easy to swap these positions, contributing to a user’s confusion.

The Access 2007 ribbon (see Figure 34-2), which is shared by all of the Office 2007 applications,
is an innovative approach to dealing with the problem of flat toolbars and menus. Perhaps the first
thing a new users notices about the ribbon is how large it is, being considerably taller than the
toolbar/menu combination common in previous versions of Access. However, when you take a
closer look at the ribbon, its differences from earlier user interface tools quickly become apparent.

1090

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1090

FIGURE 34-2

The ribbon is a new paradigm for Access developers and users.

First of all, the Access ribbon supports tabs that separate categories of tasks into logical groupings.
Each tab may contain a number of groups that further define task categories. Within a group many
different types of controls — both large and small — that actually perform tasks required by the
user might appear.

Microsoft’s objectives for introducing ribbons in Office 2007 included simplifying the user interface
by eliminating overly complex menus, with their fly-outs, drop-down lists, and other conventions
made necessary by the limitations of toolbars and menus.

Another benefit of the 2007 ribbons is that you can use different size controls within a group. This
means that you can use a large icon for frequently-performed operations, and smaller icons for less
common tasks.

One final benefit of the ribbon to developers is that you compose the XML for ribbons in any qual-
ified text editor. In this chapter we use the Microsoft Web Developer 2005 Express, a free down-
load from Microsoft at http://msdn.microsoft.com/vstudio/express/vwd/. This tool
has several advantages over using a plain text editor such as Windows Notepad. In the Web
Developer editor, XML is displayed with different colors signifying XML tags, keywords, and iden-
tifiers. Also, Web Developer is smart about XML, and flags poorly formed XML statements with the
familiar red squiggles Microsoft Word places under misspelled words.

Although a complete explanation of Microsoft Web Developer 2005 Express is beyond the scope of
this chapter, because Access does not support a qualified XML editor, you need access to an exter-
nal tools such as Web Developer for composing your ribbon XML. Because Web Developer is a free
download, and because it does such a fine job composing XML statements, it is the ideal tool for
Access developers to use when developing ribbon XML.

Because the XML syntax is used to create and customize Access 2007 ribbons, the exact same XML
code can be used in any of the Office 2007 applications. Also, because the XML exists in a file out-
side of Access, it is possible to work on a ribbon without disturbing users working with the appli-
cation. As you will soon see, updating the XML driving an Access 2007 ribbon is a simple process,
and does not require importing or exporting database objects.

At some point, it is inevitable that Microsoft will provide a developer interface for creating and cus-
tomizing Access ribbons. It is safe to assume that this tool will be made available as an Access add-
in and will provide the same or similar functionality as Microsoft Web Developer 2005 Express.
Therefore, the sections of this chapter describing how to compose the XML for Access 2007 rib-
bons will be applicable even after a ribbon customization tool becomes available from Microsoft.

1091

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1091

New controls for Access ribbons
The Access 2007 ribbon supports many more types of controls then the older command bars. In
previous versions of Access, the type and variety of controls you could add to menus and toolbars
were severely limited. Most toolbars included buttons, and if you had drop-down lists, and menus
could be nested menus within them, but there were very few options for adding complex or
sophisticated controls to command bars.

Access 2007 ribbons can contain text boxes, labels, separators, check boxes, document controls,
with buttons, toggle buttons, edit boxes, and even nested menus. This chapter has only enough
room to explore a few of these controls, but examples, showing how to utilize virtually every
type of ribbon control in Access 2007, exist on the Microsoft Office Web site (http://
office.microsoft.com).

Access 2007 features some very interesting new controls to use on your custom ribbons. These
controls are used in the default Access 2007 ribbon and are accessible to the custom ribbons you
add to your applications. These controls have no analogues in older versions of Access, and are
completely new or Access 2007.

SplitButton
The SplitButton is similar to a traditional button in an Access interface. What makes the SplitButton
different is that it is, quite literally, split vertically into two different controls. The left side of the
control works as any other button, and responds to a single click. The right side of the button
includes a right-pointing arrow that, when clicked, reveals a selection list of single-select options.
SplitButtons can also be split horizontally, into upper and lower portions.

The best example of a SplitButton is the Save As button in the File menu. Clicking the left side of
the Save As button opens the Save As dialog, whereas clicking the right side of the button reveals
the selection list you see in Figure 34-3.

Only one option in the SplitButton list can be selected. As soon as an item in the list is selected, the
SplitButton closes and the action selected by the user is performed.

DropDown
The DropDown is shown in Figure 34-4. Although the DropDown looks very much like a combo
box, they are not the same type of object. Notice that the items in the drop-down list in Figure
34-4 include not only text (Macro, Module, Class Module) but also an image and ToolTip help
associated with each item.

Each item in the list can be selected only once, providing an easy-to-understand interface for your
users, when a limited number of options exist.

1092

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1092

FIGURE 34-3

The SplitButton is new to Access 2007.

FIGURE 34-4

The DropDown control simplifies user’s selections.

The SplitButton and DropDown are very similar in many ways. They both expose a list when
clicked, and present a list of single-select items. The main difference is that a SplitButton is, liter-
ally, split into two portions (horizontal or vertical), while the DropDown simply drops down the
list when clicked.

Gallery
The Gallery presents the user with an abbreviated view of different options for formatting and other
tasks. Figure 34-5 shows the Gallery of the Auto Format options in Access 2007. The premise of
the Gallery is that the user can actually see the results of selecting any of the options displayed in
the control.

1093

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1093

FIGURE 34-5

The Gallery provides the user with a preview of the options.

Gallery controls are used extensively in Access 2007 for displaying options such as ForeColor,
BackColor, and font selections.

SuperTips
One last new Access 2007 ribbon control is the SuperTip. The SuperTip is very similar to the
ToolTip used in previous versions of Access. A SuperTip is relatively large and contains text that
you specify, helping the user understand the purpose of a control. The SuperTip, shown in Figure
34-6, appears as the user hovers the mouse over a control on the ribbon.

FIGURE 34-6

The SuperTip provides helpful information to the user.

1094

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1094

You see examples of creating each of these controls in the following sections of this chapter. The
Access Auto Options database accompanying this chapter (Chapter34.accdb) includes several
other examples that are not discussed in this chapter. You are encouraged to take a look at these
examples and to use them in your own Access ribbons if you find them useful.

Working with the Access 2007 Ribbon
We begin our discussion of the Access 2007 ribbons by briefly touring a custom ribbon built for
the Access Auto Auctions (shown in Figure 34-7). Later in this chapter you see how this ribbon
was constructed, but in the meantime just tour the ribbon, its controls, and its behaviors.

FIGURE 34-7

The custom ribbon built for the Access Auto Auctions

The Access Auto Auctions ribbon was constructed by modifying an example ribbon distributed by
Microsoft during the Access 2007 beta. As you’ll soon see, you are almost always better off starting
with a good example ribbon than constructing a ribbon entire from scratch. You will find numer-
ous examples of ribbons on the Microsoft Office web site (http://office.microsoft.com)
to serve as starting points for your custom ribbons.

Oddly enough, the default Access ribbon is inaccessible to developers. You cannot easily customize
the default Access ribbon. Instead, you have to build an identical ribbon from scratch, and cus-
tomize your hand-built ribbon. At some point Microsoft will probably publish an example ribbon
that mirrors the default Access ribbon, but such an example was not available during the Access
2007 beta.

Tabs
The Access Auto Auctions ribbon contains four tabs: Access Auto Auctions, Reports,
Administration, and Help. The main tab (Access Auto Auctions) contains the operations most fre-
quently conducted by the Access Auto Auctions application users, while the other tabs contain less
frequently used controls.

1095

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1095

Groups
Each tab in the Access Auto Auctions ribbon includes a number of groups. Figure 34-7 shows the
Access Auto Auctions tab which contains the Home, Auction News, Login, Orders, and Customer
groups. A tab can contain numerous groups, but take care not to overload a tab with too many
groups. It’s much better to add additional tabs as needed, rather than add so many groups that a
user is confused.

Controls
In Figure 34-7, each group contains a variety of controls. For instance, the Home group contains a
single large button labeled Home, whereas the Customers group contains three different buttons. A
DropDown control is located within the Login group, and the Auction News group includes only
label controls.

Managing the ribbon
By default, the ribbon is always open on the screen. However, the ribbon, with all its controls, and
tabs, is quite large, and may be in the way while users work with an application. The ribbon is easy
collapsed by double-clicking any tab. Single clicking any tab brings the ribbon back again.

Any forms or reports that are open as the ribbon is collapsed and expanded are moved up or down
so that their positions (relative to the ribbon) remain the same. For instance, a form that is open
right below the ribbon jumps up to occupy exactly the same position below the collapsed ribbon
(see Figure 34-8).

FIGURE 34-8

Objects move up or down to accommodate the ribbon as it is opened and closed.

1096

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1096

Working with the Quick Access Toolbar
You may have noticed the new Quick Access Toolbar (QAT) in the upper-left corner of the main
Access screen (see Figure 34-9), just to the right of the File button. The QAT remains visible at all
times in Access and provides a handy way to give your users quick access to commonly performed
tasks such as opening a database file, or sending an object to a printer.

FIGURE 34-9

The Quick Access Toolbar remains on the screen at all times.

The QAT is fully customizable. You can quickly and easily add any of a large number of operations
to the QAT. Also, the controls you add to the QAT are applicable either to the current database, or
to all Access databases.

Open the Customization dialog by clicking the large, round File button in the upper-left corner of
the main Access screen, and clicking the Access Options button near the bottom of the Office dia-
log. Then, select the Customization item from the Access Options list to open the Customize
dialog box.

The list on the left side of the screen contains items representing every command available in the
Office 2007 applications, even if the command is not relevant to Access. Above the list is a drop-
down containing the many, many different categories of Office commands (File, Home, External Data,
and so on). Selecting an item from this drop-down list reveals the commands within that category.

Keep in mind that the candidate list on the left contains commands that are not applicable to
Access. Be sure to choose commands appropriate to your application. The QAT is intended to
replace the Microsoft Office commands that are available in the Office (or File) menu you see when
you click the large round button in the upper-left corner of the main Access screen. Normally, end
users do not need to access these commands, and the QAT provides a handy way for you to control
which commands the users access as they work with your Access applications.

The tasks available to the QAT include operations such as backing up the current database, con-
verting the current database to another Access data format, viewing database properties, and link-
ing tables.

Because the QAT is visible to all users, be sure not to include commands (such as Design View)
that may be harmful to your applications, or confusing to users. Because the QAT is easy to cus-
tomize, it’s not difficult to add the commands you need at the time you need them, instead of leav-
ing them visible to all users all of the time.

1097

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1097

Use the right- and left-pointing arrows to move an item from the list on the left to the list on the
right. The Customization dialog is quite smart. Once a command has been added to the QAT, the
command is no longer available, so there is no chance you’ll add the same command more than once.

The Customization dialog also contains up and down arrows to the right of the selected list that
enable you to reorder the left-to-right appearance of the QAT commands.

Be warned that you can add virtually any number of commands to the QAT. When more com-
mands are contained than the QAT can display, scroll arrows appear at the far right side of the
QAT. However, because the whole idea of the QAT is to make commands quickly available to
users, there is no point in loading up the QAT with dozens of commands that only make it more
difficult for the user.

Access 2007 Ribbons: The Developer’s
Perspective
Ribbons are not represented by a programmable object model in Access 2007. Each ribbon is
defined by XML statements contained in a special table named USysRibbons. Access uses the
information it finds in the XML to compose and render the ribbon on the screen.

The ribbon creation process
Briefly, creating custom ribbons is a five-step process:

1. Design the ribbon and compose the XML that defines the ribbon.

2. Write callback (described in the following section) routines that support the rib-
bon’s operations.

3. Create the USysRibbons table.

4. Add XML to USysRibbons table.

5. Specify the custom ribbon property in the Access configuration screen.

None of these steps is particularly intuitive, especially when it comes to composing the XML and
writing callback routines. Your best bet is to find an example that is reasonably close to your
desired end-product, and customize its XML to suit your purposes.

Using VBA callbacks
A callback is code that is passed to another entity for processing. Each procedure you write to sup-
port operations on a ribbon is passed to the “ribbon processor” in Access that actually performs the
ribbon’s actions. This is very unlike the event-driven code you’ve been working with in Access.
Clicking a button on a form directly triggers the code in the button’s Click event procedure. A
ribbon’s callback procedure is linked to the ribbon, but is internally processed by Access and does
not directly run in response to the click on the ribbon.

1098

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1098

To fully understand this process, imagine that Access contains a process that constantly monitors
activity on the ribbon. As soon as the user clicks a ribbon control, the ribbon processor springs
into action, retrieving the callback procedure associated with the control, and performing the
actions specified in the callback.

This means that there are no Click or GotFocus events associated with Access 2007 ribbons.
Instead, you bind a callback to a ribbon control through the XML that defines the ribbon. Each rib-
bon control includes a number of action attributes that can be attached to callbacks, and the rib-
bon processor takes over when the user invokes a control’s action.

Here is an example. The following XML statements define a button control on a ribbon:

<button id=”cmdFindOrders” label=”Find Orders” size=”large”
imageMso=”GalInsertFnLookupReference”
onAction=”onOpenFormEdit” tag=”frmFindOrders”/>

(These lines appear as a single statement in the XML code behind the Access Auto Auctions ribbon.
Also, this XML is explained in detail later in this chapter.)

Notice the onAction attribute in the last line of this XML code. Notice also that the onAction
attribute is set to onOpenFormEdit. The onAction attribute is similar to the events associated
with a form’s controls. Each interactive ribbon control (buttons, SplitButtons, and so on) includes
the onAction attribute. The callback procedure (onOpenFormEdit, in this example) assigned
to the onAction attribute is passed to the ribbon processor when the control’s action occurs.

Notice that the button control does not contain a “click” event. Instead, each interactive control’s
onAction attribute handles whatever action is expected by the control. In the case of a button,
the action is a user clicking the button, whereas for a text box, the action is the user typing into the
text box. Both of these controls include the onAction attribute.

Ribbon controls have several other important attributes, described later in this chapter.

You probably want to see errors generated by your custom ribbon during development.
By default, ribbon error reporting is disabled, and you must enable before you see error

messages thrown by the ribbon. Click the Office button in the upper-left corner of the main Access
screen, and choose the Access Options button at the bottom. Next, select the Advanced tab in the
Options dialog and scroll down to the General section. Make sure the Show add-in user interface
errors option is selected; then click OK at the bottom of the dialog. The error messages generated by
the ribbon are invaluable debugging aids (see Figure 34-10). Without these messages you have no
idea what has failed in your custom ribbons.

FIGURE 34-10

An error message thrown by a custom Access 2007 ribbon

TIPTIP

1099

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1099

The Ribbon Hierarchy
The ribbon itself is a fairly complex structure and is hierarchical in nature. At the top-most level
are the tabs you see along the top of the ribbon. Each tab contains one or more groups, each con-
taining one or more controls.

n Tabs: The top-level object in the ribbon hierarchy. You use tabs to separate the most fun-
damental operations into logical groups. For instance, the default Access 2007 ribbon
contains four tabs: Home, Create, External Data, and Database Tools.

n Groups: The second highest object in the ribbon hierarchy. Groups contain any of the
number of different types of controls, and are used to logically separate operations sup-
ported by a ribbon tab. In Figure 34-11, the Home tab contains eight groups: Views,
Clipboard, Font, Rich Text, Records, Sort & Filter, Window, and Find.

n Controls: In Figure 34-11, notice the variety of controls within each group on the Home
tab. The View group contains a single control, while the Font group contains 13 different
controls. Normally, the controls within a group are related to one another, but this is not
a hard and fast rule.

FIGURE 34-11

The default Access 2007 ribbon

As you design your custom Access ribbons, you should keep the basic ribbon hierarchy in mind.
Microsoft has spent a great deal of time experimenting with and testing the Office 12 ribbon para-
digm, and it works well for a wide variety of applications.

One of the principles employed in Access 2007 ribbons is that there is virtually no limit to the
number of objects at each level of the ribbon hierarchy. This means that you can add virtually any
number of tabs to a custom ribbon. Obviously, too many tabs or too many groups can become a
real problem for your users. Generally speaking, you should design your ribbons in a conservative
manner, including only the items at each level that your users actually need.

Getting Started with Access 2007 Ribbons
As mentioned before, creating and customizing ribbons is somewhat more complicated than work-
ing with CommandBars in earlier versions of Access. Creating Access 2007 ribbons is, at a mini-
mum, a five-step process. Each of these steps is described in detail in the following sections. Later
you’ll see many more examples of these steps.

1100

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/27/06 5:24 PM Page 1100

Step 1: Design the ribbon and build the XML
As with most database objects, the first step to creating a new Access ribbon is to design it carefully
on paper. If you are converting an existing toolbar or menu to an Access 2007 ribbon, you have a
pretty good idea of the controls and other items to add to the ribbon.

The XML document you create for your ribbon mirrors the design you’ve laid out. Perhaps the
most challenging aspect of composing the ribbons XML is visualizing how the ribbon will look,
based on the XML behind it. There are no visual cues in a ribbon XML document that hints at the
ribbon’s appearance when rendered in Access 2007. Experience will be your best guide as you
work with ribbon customization, and sometimes trial and error is the only way to achieve a desired
objective.

As a final point, Access is extremely fussy about the XML used to compose ribbons. There appears
to be no “parser” in Access that validates the XML as a ribbon is rendered. If an error exists in the
XML document, Access refuses to render the ribbon, or the ribbon will be missing elements
defined in the XML.

Inevitably, ribbon development in Access 2007 requires a number of back-and-forth cycles in
which you modify the XML, transfer it to Access, and view the results. Until a graphical develop-
ment tool is available, you have no way of really knowing how well your XML will work as a rib-
bon specification.

The section titled, “The Basic Ribbon XML,” later in this chapter, describes the fundamental XML
statements required by Access 2007 ribbons.

See the section “Using Visual Web Developer 2005” later in this chapter to see how to use the
Express edition to compose the XML driving your Access 2007 ribbons. Also, several sections later
in this chapter discuss the XML necessary to define ribbons, tabs, groups, and controls.

Step 2: Write the callback routines
Before writing any callback code for Access 2007 ribbon controls, you must reference the Microsoft
Office 12.0 Object Library in the References dialog (select Tools ➪ References, and select the check
box next to Microsoft Office 12.0 Object Library). Otherwise, the VBA interpreter will have no idea
how to handle references to ribbon controls.

As described earlier in this chapter, callback routines are similar to event procedures but do not
directly run in response to control events. Each type of callback routine has a specific “signature”
that must be followed in order for the ribbon processor to locate and use the callback. For
instance, the onAction callback signature for a button control is:

Public Sub OnAction(control as IRibbonControl)

The onAction callback for a check box is:

Public Sub OnAction(control As IRibbonControl, _
pressed As Boolean)

1101

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1101

Even though these callbacks support the same onAction control attribute, because the controls
are different, the signatures are different. Clicking a button is just that — a simple click, and the
action is done. In the case of a check box, a click either selects (pressed = True) or deselects
(pressed = False) the control. Therefore, an additional parameter is required for check boxes.

The complete callback procedure for a simple button might be:

Public Sub OnAction(control As IRibbonControl)
DoCmd.OpenForm “frmMyForm”, , , , acNormal

End Sub

The callback procedure for the check box uses the pressed parameter to determine which path to
take through the procedure:

Public Sub OnAction(control As IRibbonControl, _
pressed As Boolean)

If pressed = True Then
DoCmd.OpenForm “frmHelp”

Else
DoCmd.Close acForm, “frmHelp”

End If

End Sub

We’ve been focusing on the onAction callback, but many other callbacks exist. Here is the XML
definition of a simple Label control:

<labelControl id=”lblTodaysDate” getLabel=”onGetLabel”/>

Notice the getLabel attribute. The callback signature of the getLabel attribute is:

Public Sub onGetLabel(control as IRibbonControl, ByRef label)

The Label control is passed as the IRibbonControl parameter, and the label’s contents are
passed as the (variant) label parameter. Notice that the label parameter is passed by reference,
allowing the callback to modify the parameter’s value. The complete procedure for filling a label
with the current date is:

Public Sub onGetLabel(control as IRibbonControl, ByRef label)
label = “Today is: “ & FormatDateTime(Date, vbLongDate)

End Sub

The attribute linked to this callback is getLabel, which designates the procedure that fills the
label’s text at runtime. The name of the callback (onGetLabel) can be anything, but it makes
good sense to provide it with a name that links it to the control’s getLabel attribute.

Notice that none of these callback procedures discussed so far reference the control by name. This
means that you have to write a uniquely named callback for each control, or use a single callback

1102

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1102

for multiple similar controls. Several of the Access Auto Auctions callbacks use the control’s id
property to determine which control has triggered the callback:

Public Sub onGetLabel(control As IRibbonControl, ByRef label)

Select Case control.id

Case “lblWelcome”
label = GetWelcomeMessage()

Case “lblToday”
label = “Today is: “ & FormatDateTime(Date, vbLongDate)

Case “lblOrderCount”
label = GetSalesCountString()

Case “lblCompany”
label = “Name: “ & DLookup(“Company”, “tblContacts”)

Case “lblCompanyLocation”
label = “Location: “ & DLookup(“City”, “tblContacts”) _
& “, “ & DLookup(“State”, “tblContacts”)

End Select
End Sub

A control’s id property, of course, is the name assigned to the control in the XML:

<labelControl id=”lblCompanyName” getLabel=”onGetLabel”/>
<labelControl id=”lblCompanyLocation” getLabel=”onGetLabel”/>

Because the id properties are different, both of these Label controls use the same callback proce-
dure. The callback uses the id to determine which label has triggered the callback.

Because the getLabel attribute specifies where the control gets its text, the getLabel attribute
could be just as easily written as follows:

<labelControl id=”lblHello” label=”Hello!”/>

In this case, no callback is used, and the label is filled with a literal text string.

Step 3: Create the USysRibbons table
Access 2007 looks for a table named USysRibbons to see whether there are any custom ribbons
in the current database application. This table does not exist by default and, if present, contains the
XML that defines the custom ribbons in the application.

USysRibbons is very simple and contains only three fields, shown in Table 34-1.

1103

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1103

TABLE 34-1

The USysRibbons Table Design

Field Data Type

ID AutoNumber

RibbonName Text 255

RibbonXML Memo

The ID field just keeps track of the ribbons in the table. The RibbonName is used to specify which
ribbon Access should load at startup (described in Step 5 later in this chapter), whereas
RibbonXML is a memo field (maximum size = 65,000 characters) containing the XML that defines
the ribbon.

Because USysRibbons is a table, your Access database may actually include the definitions of
many different custom ribbons. However, only one custom ribbon can be active at a time. In the
section titled “Managing Ribbons,” later in this chapter, you’ll read how to invalidate an existing
ribbon and load a new ribbon in its place.

Step 4: Add XML to USysRibbons
Figure 34-12 shows the XML, in a Microsoft Visual Web Developer window, for a very simple
Access ribbon.

FIGURE 34-12

The XML required for a very simple Access 2007 ribbon

1104

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1104

The ribbon produced with this XML is shown in Figure 34-13.

FIGURE 34-13

The simple Access 2007 ribbon created with the XML in Figure 34-12

The XML for the Simple ribbon is included in the USysRibbons table in Chapter34.accdb.
To use this ribbon, set the Custom Ribbon Id value in the Current Database options to Simple
and restart the application.

In Figure 34-12, notice the absence of red squiggles, indicating improperly formed XML. Visual
Web Developer flags any obvious XML errors (such as unmatched tags) by underlining suspicious
passages with red squiggles.

Keep in mind that the Visual Web Developer locates syntax errors but cannot detect problems with
the XML’s logic. Incorrect references, misplaced or missing attributes, and other problems with the
XML’s content can still prevent your XML code from working as expected.

Notice the very top line of XML (<?xml version=”1.0” encoding=”utf-8”?>) in Figure
34-12. This line is automatically added to every XML document created with Visual Web
Developer and is not really needed by Access ribbons. However, no harm is caused if this line is
copied into the USysRibbons table.

Copying the XML from an editor such as Visual Web Developer to USysRibbons is a simple
process. Highlight the XML, making sure to include the very top (<customUI...) and bottom
(</customUI>) tags. Then, switch to Access, open the USysRibbons table, and paste the XML
into the RibbonXML column of a new row. Finally, provide a RibbonName for the new ribbon (see
Figure 34-14).

FIGURE 34-14

Copying the XML to USysRibbons and naming the new ribbon

1105

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1105

Step 5: Specify the custom ribbon property
The last step, before restarting the application, is to open the Current Database properties (Office
Button ➪ Access Options ➪ Current Database), scroll to the Toolbar Options section, and enter
the name of the new ribbon in the Custom Ribbon Id combo box (see Figure 34-15). The
combo box’s list contains only the names of custom ribbons in USysRibbons that were in the
table as Access started, so it does not contain the name of the new ribbon. You’ll have to type the
ribbon’s name into the combo box or restart the application and let Access find the new ribbon in
USysRibbons.

FIGURE 34-15

Specifying the new custom ribbon in the Current Database options dialog

The Basic Ribbon XML
Let’s take a closer look at the basic XML required by Access ribbons. The following XML represents
a prototype ribbon (line numbers have been added to make the discussion following this XML eas-
ier to understand):

1 <?xml version=”1.0” encoding=”utf-8”?>
2 <customUI xmlns=”http://schemas.microsoft.com/office

/2006/01/customui” onLoad=”onRibbonLoad”>
3 <ribbon startFromScratch=”true”>
4 <tabs>
5 <tab id=”tab1” ...
6 <group id=”group1” ... >
7 ... Controls go here ...
8 </group>
9 </tab>

1106

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1106

10 <tab id=”tab2” ...
11 <group id=”group2” ... >
12 ... Controls go here ...
13 </group>
14 ... Repeat Groups ...
15 </tab>
16 ... Repeat Tabs ...
17 </tabs>
18 </ribbon>
19 </customUI>

The first statement (<?xml version=”1.0” encoding=”utf-8”?>), as discussed before, is
added by Visual Web Developer and does not affect Access 2007 ribbons.

The following statement (beginning with <customUI...) specifies an XML namespace (xmlns),
an XML document that predefines acceptable tags for the XML statements that follow. The Office
12 namespace defines the Office 12 ribbon constructs (tabs, groups, controls, and so on) and
enables IntelliSense in the Visual Web Developer editor.

The statement (3) that includes the startFromScratch directive is rather important. This direc-
tive notifies Access that we are building an entire ribbon from scratch, rather than starting with the
default Access ribbon and taking things away. Generally speaking, the majority of your custom rib-
bons will be built from scratch because the default Access ribbon knows nothing about the forms,
reports, and other objects and operations in your database.

The <tabs> (line 4) and </tabs> (line 17) tags indicate the beginning and end of the tabs on
the ribbon. You’ll recall that ribbons are very hierarchical, with tabs containing groups which con-
tain controls. The tabs, therefore, are the highest-level objects within a ribbon and enclose all other
ribbon objects.

Line 5 defines the left-most tab on the ribbon. In this example the tab’s name is “tab1”. The other
attributes for this tab are not shown but are implied by the ellipsis (...). The ending tag for tab1 is
located on line 9.

Line 6 begins the definition of the first group on tab1, and line 8 ends this group. Within the
group are the controls displayed by the group.

The rest of this prototype ribbon is simple repetition of the first few items.

It bears repeating that XML is case-sensitive. Be careful to use exactly the same case and spelling
for all references in your XML as well as in the callback code driving the ribbon.

Adding Ribbon Controls
The previous section presented a simple prototype ribbon. In this example, the controls were indi-
cated by “... Controls go here ...” on lines 7 and 12. Take a moment and look at the
actual XML construction of a few common ribbon controls.

1107

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1107

In the following examples, you may be wondering where we got the image references
(look for the imageMso tag) we used in our examples. The truth is, we guessed, based

on a few example ribbons provided by Microsoft. At the time this book was written, Microsoft had
not yet published a comprehensive list of built-in ribbon object names and image references to use on
ribbons. By the time you read this chapter, undoubtedly Microsoft will have published a comprehen-
sive guide to ribbon objects, the object tags and attributes, and the built-in images you can use in
your custom ribbons. Furthermore, Microsoft had mentioned that it is possible to programmatically
assign images to ribbon controls to modify a ribbon’s appearance at runtime. Unfortunately, these
examples are not yet available.

We suggest you search the Microsoft Office Web site (http://office.microsoft.com) for
comprehensive ribbon examples and documentation to use as you build your custom ribbons. Also,
check back at this book’s page on the Wiley Web site. As soon as we have good examples, we’ll post
them there.

Label control
The Label control is, by far, the simplest and easiest to add to a ribbon. A ribbon label is com-
pletely analogous to a label you add to an Access form. It contains either hard-coded text or text
that is generated by a callback procedure.

Here is an example label definition:

<group id=”grpFonts” label=”Settings”>
<labelControl id=”lbl1” label=”Font Things” />
<separator id=”s1”/>
<labelControl id=”lc2” label=”Choose Font Settings” />
<checkBox id=”chk1” label=”Bold” onAction=”SetBold”/>
<checkBox id=”chk2” label=”Italics” onAction=”SetItalics”/>

</group>

This XML contains three labels, a separator, and two check boxes. The text in each of these labels
is hard-coded, rather than returned by a back procedure. Earlier you read how to use the
getLabel attribute to specify a callback that returns a label’s text.

Separator
A separator is a graphical element that divides items in a group, as shown in Figure 34-16.
Separators contain no text and appear as a vertical line within a group. By themselves, they’re not
very interesting, but they graphically separate controls that would otherwise be too close within a
group.

NOTENOTE

1108

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1108

FIGURE 34-16

Separators provide a way to divide controls within a group.

The XML code for the separators in Figure 34-16 is:

<group id=”grpOrders” label=”Orders”>
<button id=”cmdNewOrder” label=”Place Order” .../>
<button id=”cmdViewOrders” label=”All Orders” .../>
<separator id=”sep4”/>
<button id=”cmdFindOrders” label=”Find Orders”.../>

</group>
<group id=”grpCustomers” label=”Customers”>
<button id=”cmdNewReservation” label=”New Reservation”.../>
<separator id=”sep2”/>
<button id=”cmdAddCustomer” label=”Add” .../>
<button id=”cmdViewCustomers” label=”View All”.../>
<button id=”cmdFavorites” label=”Favorites” .../>
<separator id=”sep3”/>
<button id=”cmdMailings” label=”Generate Mailings”..,/>

</group>

The previous XML statements have been shortened to make it easier to see the separator place-
ment. grpOrders contains a single separator, whereas grpCustomers contains two.

The only requirement of separators is that each be assigned a unique ID value.

Check boxes
Check boxes are effective for selecting any of a number of different options. Check boxes are not
mutually exclusive, so the user can choose any of the check boxes within a group without affecting
other selections.

Check boxes are established as any other ribbon control is:

<tab id=”tabOutdoor” label=”Outdoor”>
<group id=”grpSports” label=”Sports” ...>
<checkBox id=”chk04” label=”Baseball” .../>
<checkBox id=”chk05” label=”Basketball” .../>
<separator id=”Sep1”/>
<checkBox id=”chk06” label=”Tennis” .../>
<checkBox id=”chk07” label=”Water Polo” .../>

</group>

1109

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1109

<group id=”grpCamping” label=”Camping Supplies”>
<checkBox id=”chk08” label=”Tent” .../>
<checkBox id=”chk09” label=”Granola” .../>
<checkBox id=”chk10” label=”Lantern” .../>
<separator id=”Sep2”/>
<button id=”btn” imageMso=”DaVinciQuerySelect”
size=”large” label=”A Big Button” />

</group>
</tab>

As before, code has been removed and replaced with ellipsis characters to improve clarity of this
example XML.

The tab produced by this XML code is shown in Figure 34-17.

FIGURE 34-17

Check boxes are a good choice when the user can select among a number of options.

DropDown control
The DropDown control is more complex than the other examples you’ve seen. It includes a list of
items for the user to choose from. Therefore, a DropDown has a number of attributes that define its
appearance, as well as callbacks that populate its list:

<dropDown
id=”ddLogin”
label=”Login” supertip=”Select your employee name...
screentip=”Login Name”
getItemCount=”onGetLoginCount”
getItemLabel=”onGetLogins”
imageMso=”Private”
onAction=”onLogin”>

</dropDown>

The id, label, screentip, and imageMso attributes define the DropDown control’s appear-
ance. The getItemCount and getItemLabel populate the DropDown’s list. The onAction
specifies the callback that handles the control’s action.

1110

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1110

The VBA callbacks for a typical DropDown are shown in the following code. Two primary callbacks
are required for a DropDown. The first sets the count of items to appear in the list, and the second
actually populates the list.

Public Sub onGetLoginCount(_
control As IRibbonControl, ByRef count)
count = Nz(DCount(“*”, “tblSalesPerson”), 0)

End Sub

Public Sub onGetLogins(_
control As IRibbonControl, index As Integer, ByRef label)

Dim strName As String

strName = Nz(DLookup(“SalespersonName”, _
“tblSalesPerson”, “SalesPersonID = “ & index + 1), “”)

label = strName

End Sub

The first callback (onGetLoginCount) gets the count of items to be placed on the DropDown’s
list. Notice the ByRef count parameter. This parameter tells the DropDown how many items to
accommodate on its list.

The second procedure (onGetLogins) actually retrieves the items for the list. In this case, the
procedure pulls the SalesPerson name field from tblSalesPerson using DLookup.
onGetLogins is called by the DropDown multiple times; the exact number of calls is determined
by the count value established by onGetLoginCount.

The onGetLogins routine cheats a little bit to supply this information. Notice the index parame-
ter passed to this routine. Index tells the procedure which slot on the drop-down list is being filled
when the procedure is called. The DLookup adds 1 to this value and extracts the name of the sales
person whose ID matches this value. This means that the SalesPersonID values have to be
sequential, starting with 1, or this procedure will fail.

Extracting data with nonsequential ID values, or where the ID value is non-numeric, requires a bit
more work. You could, for instance, create a sorted recordset of the values you want on the list.
Then, using the index parameter, advance through the recordset to the record requested by the
DropDown.

An accurate count of values to add to the DropDown is important. The DropDown has no way,
other than the count parameter, to know how many items to expect. Setting a count too low means
that not all items will be added, while setting the count too high means that list contains blank
spaces. If, for instance, you set the count to 10 items, but only 5 are available, the DropDown’s list
contains the 5 items, but also 5 blank spaces.

1111

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1111

Using Visual Web Developer 2005
Visual Web Developer 2005 Express (VWD) is a freely downloadable tool provided by Microsoft to
aid your efforts to build Web sites. Visual Web Developer is used to produce entire Web sites, and
individual files. The XML code you see in this chapter was written and modified using Visual Web
Developer’s XML editor.

Begin by downloading VWD from http://msdn.microsoft.com/vstudio/express/vwd/
and installing it on your computer. When started, VWD presents a rather intimidating opening
screen (see Figure 34-18).

FIGURE 34-18

Visual Web Developer’s opening screen

The opening screen contains links to Web sites and pages related to using VWD, as well as naviga-
tion aids to help you organize and manage Web sites created with VWD.

For this demonstration, choose File ➪ New File to open the New File dialog (see Figure 34-19).

Notice that VWD is proficient at creating any of a number of different file types, including XML.
Selecting the XML option opens the XML editor (Figure 34-20), ready for your Access ribbon
XML code.

1112

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1112

FIGURE 34-19

VWD’s New File dialog

FIGURE 34-20

The XML editor in Visual Web Developer 2005

1113

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1113

And, that’s about all there is to VWD as far as working with XML. The primary advantage of using
a tool such as VWD is that it understands XML and performs basic syntax checking to help you
compose valid XML. Also, VWD supports multiple open documents at one time, making it quite
easy to copy XML from one window and paste into another. And, although you can’t tell from the
figures in this book, the XML code in Figure 34-20 is color-coded to indicate which words are key-
words, which are identifiers, and which are XML tags.

Together, these features make VWD a compelling addition to any developer’s toolkit.

Managing Ribbons
From time to time you may find it necessary to replace a ribbon with another one while the user
works with an application. So far all the examples you’ve seen are loaded as Access starts, and stay
on the screen as long as the user works with the application. You have not yet examined the steps
involved in closing one ribbon and opening another.

You don’t really close a ribbon. Instead, you invalidate it, causing Access to discontinue managing
the ribbon. The syntax for invalidating a ribbon is:

Ribbon.Invalidate

The problem is knowing which ribbon to invalidate. Microsoft suggests you cache a reference to a
ribbon each time it is opened, and then use that reference to invalidate the ribbon should the need
arise. You may have noticed the onLoad attribute of the prototype ribbon in the section titled,
“The Basic Ribbon XML,” earlier in this chapter:

<customUI xmlns=”http://schemas....” onLoad=”onRibbonLoad”>

(Some text has been removed from this statement for clarity’s sake.)

The onLoad attribute specifies a callback that supports the ribbon’s startup activities. You can use
the onLoad callback to cache a reference to the ribbon.

Begin by establishing a public object variable that will point to the ribbon:

Public gobjRibbon As IRibbonUI

Next, use the object variable to store a reference to the ribbon during startup:

Public Sub onRibbonLoad(ribbon As IRibbonUI)
‘Cache a copy of the Ribbon:
Set gobjRibbon = ribbon

End Sub

The gobjRibbon object variable remains in scope while the application is used. Should the need
arise to invalidate the ribbon, simply invoke the Invalidate method:

gobjRibbon.Invalidate

1114

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1114

Of course, after you invalidate a ribbon, you want to replace it with another. Invalidating a ribbon
does not remove it from the screen. Unless you overwrite it with another ribbon it stays on the
screen, taking up space, but not really doing anything.

Use the Access Application object’s LoadCustomUI method (new in Access 2007) to load a differ-
ent custom ribbon:

Application.LoadCustomUI(_
CustomUI_Name As String, CustomUI_XML As String)

The CustomUI_Name and CustomUI_XML are extracted from the USysRibbons table:

Public Function LoadRibbons(strName As String)

Dim strXML As String

strXML = DLookup(“RibbonXML”, “USysRibbons”, _
“RibbonName= ‘“ & strName & “‘“)

Call Access.Application.LoadCustomUI(strName, strXML)

End Function

Access should instantly replace the invalidated ribbon with the ribbon specified by the strName
and strXML values passed to LoadCustomUI.

Completely Removing the
Access 2007 Ribbon
Let’s assume, for a moment, that there are perfectly legitimate reasons why you don’t want to use
the Access ribbons in your applications. Perhaps you’ve developed a set of effective switchboard
forms, or have mimicked the old style toolbars and menus with borderless forms. Or, your applica-
tions are entirely forms-driven and don’t need the flexibility provided by toolbars and ribbons.

Here’s how you can completely remove ribbons from the Access 2007 interface:

1. Create a new table called USysRibbons.

2. Add two fields RibbonName (text) and RibbonXML (Memo).

3. Create a new record with the RibbonName set to “Blank”.

It doesn’t really matter what you call it.

4. Then add the following XML to the RibbonXML column:

<CustomUI xmlns=”http://schemas.microsoft.com/office/2006
/01/CustomUI”>
<Ribbon startFromScratch=”true”/>
</CustomUI>

1115

Customizing Access Ribbons 34

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1115

5. Restart the database.

6. Click the Office button and select the Access Options button.

7. Click the Current Database tab and scroll to the Toolbars area.

8. In the Toolbars option set the Custom Ribbon Id to Blank (the same name you
specified for the RibbonName column in Step 3).

9. Restart the database.

This process sets up a dummy ribbon named Blank that contains no tabs, no groups, and no con-
trols. In effect, you’re telling Access to put up an empty ribbon, which simply removes the ribbon
from the Access user interface.

Summary
This chapter documented the process of creating custom ribbons in Access 2007. At the time this
chapter was prepared, Access did not include a developer tool for customizing ribbons. Therefore,
this chapter describes building ribbons from scratch, using an XML editor to compose the XML
that defines a custom ribbon, adding the USysRibbons table to Access, and copying the XML
into USysRibbons.

This chapter has also reviewed several of the most common Access 2007 ribbon controls. You saw
how to add controls such as labels, buttons, check boxes, and separators to Access ribbons. Access
2007 supports many other types of ribbon controls, and you are encouraged to investigate the
wide variety of available controls.

1116

Professional Database DevelopmentPart IV

41_046732 ch34.qxp 11/21/06 9:06 AM Page 1116

You’re lucky if you have the luxury of developing only single-user, in-
house applications and you never have to worry about distributing an
application within a company or across the country. Most developers

have to worry about application distribution sooner or later. You don’t even
have to develop commercial software to be concerned with distribution; for
example, when you develop an application to be run on a dozen worksta-
tions in one organization, you need to distribute your application in some
form or other.

This chapter covers all the preceding points to some degree. However,
because some of the listed items, such as error handling and splitting tables,
are covered in detail in other chapters, this chapter focuses primarily on set-
ting database options when preparing your application for distribution.

You need to be concerned with many issues when preparing an Access appli-
cation for distribution. Distributing your application properly not only
makes installing and using the application easier for the end user, but it also
makes updating and maintaining the application easier for you. In addition,
the support required for an application is greatly decreased by properly
preparing and packaging the database and associated files for distribution.

This chapter uses the database named Chapter35.accdb.
If you haven’t already copied it onto your machine from the

CD, you’ll need to do so now.

ON the CD-ROMON the CD-ROM

1117

IN THIS CHAPTER
Defining Current Database
options

Testing the application

Polishing the application

Bulletproofing the application

Separating tables from the
application

Documenting the application

Distributing Access
Applications

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1117

Defining the Current Database Options
An Access database has a number of options that can greatly simplify the process of distributing
your database (see Figure 35-1). You can access these options for a database by selecting clicking
the Microsoft Office Button, selecting Access Options, and clicking the Current Database tab. You
can still use an Autoexec macro to execute initialization code, but the Current Database options
enable you to set up certain aspects of your application, thus reducing the amount of startup code
that you have to write. It is extremely important to correctly structure these options before distrib-
uting your Access application.

FIGURE 35-1

The Current Database options enable you to take control of your application from the moment a user starts it.

The Current Database options replace the Startup dialog box from previous versions of
Access.NEW FEATURENEW FEATURE

1118

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1118

Application Options
The settings in the Application Options section let you define parameters for your database as an
application:

n Application Title: The text that you provide in the Application Title field displays on the
main Access window’s title bar. You should always specify an application title for your
distributed applications. If you don’t, the database name and Access 2007 appear on the
title bar of your application. The Application Title is also the text that is displayed in the
Windows task bar when the application is open and running.

n Application Icon: The icon that you specify in the Application Icon field displays on the
title bar of your application and in the task switcher (Alt+Tab) of Windows. Checking the
box “Use as Form and Report Icon” also displays this icon when a form or report is mini-
mized. If you don’t specify your own icon, Access displays the default Access icon; there-
fore, you may want to provide an application-specific icon for your application. Using
special program icons helps your users distinguish between different Access applications.
You can create small bitmaps in Windows Paint and use available conversion tools to con-
vert a .bmp file to an .ico file format. You can also create icons using other graphics
programs or search for application icons in your favorite search engine.

n Display Form: The form you select in the Display Form field automatically displays
when the application opens in Access. When the form loads, the Form Load event of the
Display form fires (if it contains any code), eliminating the need to use an Autoexec
macro. You should consider using a splash screen (which is discussed later in this chap-
ter) as your startup Display Form.

n Display Status Bar: Deselect the Display Status Bar option to completely remove the sta-
tus bar from the screen (this option is selected by default). Keep in mind that the status
bar is an incredibly informative and easy-to-use tool because it automatically displays var-
ious key-states (such as Caps Lock and Scroll Lock), as well as the Status Bar Text prop-
erty for the active control. Instead of hiding the status bar, you should make full use of it
and disable only it if you have a very good reason to do so.

n Document Window Options: Choose Overlapping Windows or Tabbed Documents to
display how the forms and reports look in your distributed application. Overlapping
Windows retains the look of previous versions of Access, letting you look at multiple
screens at once, while Tabbed Documents uses a single-document interface, which is new
to Access 2007 (shown in Figure 35-2). You must close and reopen the current database
for the changes to take effect.

The Display Document Tabs option is only available when you select Tabbed Documents;
it turns on or off the tabs that appear at the top of any open database object. This setting
turns off only the tabs and does not close tabbed objects themselves.

1119

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1119

FIGURE 35-2

A database with the Tabbed Documents option selected. The tabs let you select which
Access object to work with.

n Use Access Special Keys: If you select this option, users of your application can use
accelerator keys that are specific to the Access environment in order to circumvent some
security measures, such as unhiding the Navigation Pane. If you deselect this option, the
following keys are disabled:

n F11: Use this key to show the Navigation Pane (if hidden).

n Ctrl+G: Use this key to display the Immediate window in the Visual Basic Editor.

n Ctrl+Break: In Access projects, use this key to stop Access from retrieving records
from the server database.

n Alt+F11: Use this key to start the VBA Editor.

You should probably deselect this option when distributing the application to prevent
users from circumventing the options you select. Otherwise, users may inadvertently
reveal the Navigation Pane or VBA code edition, leading to confusion and other problems.

n Compact on Close: Checking the Compact on Close option tells Access to automatically
compact and repair your database when you close it. You must close and reopen the cur-
rent database in order for this change to take effect.

For more information on the benefits of compacting and repairing a database, see
Chapter 26.

Keep in mind that compacting a large database may take a considerable amount of time.
Furthermore, Compact on Close only affects the front-end database. Unless your applica-
tion uses the front end for temporary tables or other operations that cause the front end
to bloat, the Compact and Repair option may be of minimal benefit to users.

CROSS-REFCROSS-REF

1120

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1120

n Remove Personal Information from File Properties on Save: Checking this option
automatically removes the personal information from the file properties when you save
the file. You must close and reopen the current database for this change to take effect.

n Use Windows-Themed Controls on Forms: Checking this option uses your system’s
Windows theme on the form/report controls. This setting only applies when you use a
Windows theme other than the standard theme.

n Enable Layout View for This Database: The Enable Layout View option shows or hides
the Layout View button on the Access status bar and in the shortcut menus that appear
when you right-click on an object tab. Remember that you can disable the Layout View for
individual objects, so even when you enable this option, it might not always be available.

n Check for truncated number fields: Checking this option makes numbers appear as
“#####” when the column is too narrow to display the entire value. Unchecking this
option truncates values that are too wide to be displayed in the datasheet. This means
that users see only a part of the column’s values when the column is too narrow.

n Picture Property Storage Format: This option lets you choose how graphic files are
stored in the database. Choose Preserve Source Image Format (Smaller File Size) to store
the image in the original format, which also reduces the database size. Choose Convert
All Picture Data to Bitmaps to store all images as bitmaps, which increases the database
size but keeps it compatible with previous versions of Access (Access 2003 and earlier).

Earlier versions of Access always stored images twice within the database. The first copy
was the original format (such as .jpg) of the image file, while the second copy was a
bitmap used only to display the image on Access forms and reports. Because images were
stored twice, Access databases before 2007 were prone to severe bloating when a lot of
image data was stored in the MDB.

Beginning with Access 2007, you have the option to Preserve Source Image Format to
conserve disk space by reducing the database file’s size (this option is only available in the
.accdb file format). When using this option, Access only stores one copy of an image
(in its original format) and dynamically generates a bitmap when the image is displayed
on a form or report.

Navigation Options
The settings in the Navigation Options section let you define parameters when navigating your
database as an application.

n Display Navigation Pane: With most distributed applications, you may never want your
users to have direct access to any of your tables, queries, forms, or other database objects.
It’s far too tempting for a user to try to “improve” a form or report, or to make some
minor modification to a table or query. Rarely are users really qualified to make such
changes to an Access database. Deselecting the Display Navigation Pane option hides the
Navigation Pane from the user at startup.

But unless you also deselect the Use Access Special Keys option (described earlier in this
chapter), users can press F11 to unhide the Navigation Pane. You must close and reopen
the current database for this change to take effect.

1121

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1121

n Navigation Options: One nice addition to Access 2007 is the ability to select which data-
base options are exposed to users when the Navigation Pane is visible at startup. The
Navigation Options button displays the Navigation Options dialog box (shown in Figure
35-3), which you use to change the categories and groups that appear in the Navigation
Pane.

FIGURE 35-3

The Navigation Options dialog box

In the Grouping Options, click on a Category on the left side of the dialog box to change
the category display order or to add groups to the right side of the dialog box. Click on
the Object Type category to disable viewing of certain Access objects (Tables, Queries,
Forms, Reports, Macros, and Modules).

Check the Display Options to Show Hidden Objects, Show System Objects, and Show
Search Bar. It’s usually a good idea to hide the hidden and system objects, which you nor-
mally don’t want to modify (they’re hidden for a reason!).

The Search Bar (see Figure 35-4) is useful in the Navigation Pane when you have a lot of
objects and want to narrow the list to avoid excessive scrolling. For example, if you
wanted to see the forms that had the word Customer in them, you’d type Customer in the
Search Bar to limit the tables shown in the Navigation Pane.

1122

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1122

FIGURE 35-4

The Search Bar appears at the top of the Navigation Pane.

In the Open Objects With section, select Single-Click or Double-Click to choose how you
open a database object. Double-Click is the default option and is most likely familiar to
all of your users.

Toolbar Options
The settings in the Toolbar Options section let you define custom ribbons and toolbars when using
your database as an application. Custom ribbon creation is explained in Chapter 34.

n Custom Ribbon Id: The Custom Ribbon Id option lets you specify a customized (usually
trimmed-down) version of the Access ribbon. If you don’t supply a Custom Ribbon Id,
Access uses its built-in ribbon, which may be inappropriate for your application. The
default ribbon contains many controls for modifying database objects, which may lead to
problems with your users.

You must close and reopen the current database for this change to take effect.

n Shortcut Menu Bar: Setting the Shortcut Menu Bar changes the default menu for short-
cut menus (right-click menus) to a menu bar that you specify. Using custom shortcut
menus that have functionality specific to your application is always preferable. You must
close and reopen the current database for this change to take effect.

n Allow Full Menus: Checking the Allow Full Menus option determines whether Access
displays all the commands in its menus or just the frequently used commands. If you
supply custom menus for all of your forms and reports and set the Menu Bar property to
a custom menu bar, this setting has no effect. You must close and reopen the current
database for this change to take effect.

n Allow Default Shortcut Menus: The Allow Default Shortcut Menus setting determines
whether Access displays its own default shortcut menus when a user right-clicks an
object in the Navigation Pane or a control on a form or report. You must close and reopen
the current database for this change to take effect.

n Name AutoCorrect Options: Several chapters in this book have mentioned the prob-
lems associated with changing the names of fundamental database objects such as tables
and fields within tables. For example, if you change the name of a table, everywhere you
refer to that table (a query, a control’s ControlSource property, VBA code, a macro, and so
on) becomes invalid, causing the application to function improperly.

1123

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1123

Microsoft added the Name AutoCorrect feature to Access 2000 as a way of mitigating the
problems that inevitably occur when database objects are renamed. Unfortunately, this
feature has never worked quite as well as Microsoft had hoped. Primarily, Name
AutoCorrect is a major drag on performance. Because Access must constantly monitor
activity while Access is used, a database with this option selected runs noticeably slower
than when the option is turned off. Secondly, there are far too many places where an
object’s name may appear for an AutoCorrect feature to effectively capture every instance
when the object is renamed. This is especially true of object names appearing in VBA
code. Many applications contain hundreds of thousands of lines of VBA code, making it
virtually impossible to find and update every object reference.

The Name AutoCorrect option is turned on by default in Access 2007 applications.
Unless you find this option useful in your projects, you should consider turning it off, as
it has been in the Chapter35.accdb example accompanying this chapter.

Setting the Current Database options saves you many lines of code that you would ordinarily need
in order to perform the same functions and enables you to control your application’s interface from
the moment the user starts it. Always verify the Current Database options before distributing your
application.

Testing the Application before Distribution
After you finish adding features and have everything in place within your application, you should
take some time to thoroughly test the application. Testing may seem obvious, but this step is often
overlooked by many developers, evidenced by the amount of buggy software appearing on the
shelves of your local software stores. If you don’t believe this to be true, check out the software
support forums on the Internet — almost every major commercial software application has some
patch available or known bugs that need to be addressed.

Distributing an application that is 100-percent bug-free is almost impossible. The nature of the soft-
ware development beast is that, if you write a program, someone can — and will — find an unantici-
pated way to break it. Certain individuals seem to have a black cloud above their heads and can
break an application (in other words, hit a critical bug) within minutes of using it. If you know of
such people, hire them, if you can! They can be a great asset when you’re testing an application.

While working through the debugging process of an application, categorize your bugs into one of
three categories:

n Category 1: Major ship-sinking bugs: These bugs are absolutely unacceptable — for
example, numbers in an accounting application that don’t add up the way they should or
a routine that consistently causes the application to terminate unexpectedly. If you ship
an application with known Category 1 bugs, prepare for a lynching party organized by
your users!

1124

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1124

n Category 2: Major bugs that have a workaround: Category 2 bugs are fairly major
bugs, but they don’t stop users from performing their tasks because some workaround
exists in the application. For example, a button that doesn’t call a procedure correctly is a
bug. If the button is the only way to run the procedure, this bug is a Category 1 bug. If,
however, a corresponding ribbon command calls the procedure correctly, the bug is a
Category 2 bug. Shipping an application with a Category 2 bug is sometimes necessary.
Although shipping a bug is officially a no-no, deadlines sometimes dictate that exceptions
need to be made. Category 2 bugs will annoy users but shouldn’t send them into fits.

If you ship an application with known Category 2 bugs, document them! Some developers
have a don’t-say-anything-and-act-surprised attitude regarding Category 2 bugs. This atti-
tude can frustrate users and waste considerable amounts of their time by forcing them to
discover not only the problem but also the solution. For example, if you were to ship an
application with the Category 2 bug just described, you should include a statement in your
application’s README file that reads something like this: “The button on the XYZ form does
not correctly call feature such-and-such. Please use the corresponding command such-and-
such found on the ribbon. A patch will be made available as soon as possible.”

n Category 3: Small bugs and minor nits: Category 3 bugs are small issues that don’t
affect the operation of your application. They may be caption or label misspellings or
incorrect text box colors. Category 3 bugs should be fixed soon, but should not take
precedence over Category 1 bugs. They should take precedence over Category 2 bugs
only when they’re so extreme that the application looks completely unacceptable or when
they cause enough trouble for users that a fix is quickly needed.

Categorizing bugs and approaching them systematically, helps you create a program that looks and
behaves the way its users think it should. Sometimes you may feel like you’ll never finish your
Category 1 list, but you will. You’ll be smiling the day you check your bug sheet and realize that
you’re down to a few Category 2s and a dozen or so Category 3s! Although you may be tempted to
skip this beta-testing phase of development, don’t. You’ll only pay for it in the long run.

Not all Access features are available when an application is run within the Access run-
time environment You can operate in the runtime environment and use the full version

of Access to test for problems with your code and with the runtime environment by using the
/Runtime command line option when starting your Access application. Click Run on the Windows
Start menu or create a shortcut. The following command-line example starts Access and opens the
Invoices database (if it is located at D:\MYAPPS\) in the runtime environment (all of this text
appears as a single line in a shortcut’s Target property):

D:\OFFICE2007\ACCESS\MSACCESS.EXE /RUNTIME
D:\MYAPPS\INVOICES.ACCDB

You should always test and debug your application in the runtime environment if you plan to distrib-
ute the application.

Access contains a new extension —.accdr— that automatically puts your database in
the runtime environment when it’s opened. Change your database file’s extension from

.accdb to .accdr to create a “locked-down” version of your Access 2007 database. Change the
extension back to .accdb to restore full functionality.

NEW FEATURENEW FEATURE

TIPTIP

1125

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1125

Polishing Your Application
When your application has been thoroughly tested and appears ready for distribution, spend some
time polishing your application. Polishing your application consists of the following:

n Giving your application a consistent look and feel

n Adding common, professional components

n Adding clear and concise pictures to buttons

n Using common, understandable field labels and button captions

Giving your application a consistent look and feel
First and foremost, you should decide on some design standards and apply them to your applica-
tion. This is incredibly important if you want a professional “look and feel” to your applications.
Figure 35-5 shows a form with samples of different styles of controls.

FIGURE 35-5

You can decide on any interface style that you like for your application. However, after you decide on a
style, use it consistently.

Your design decisions may include the following:

n Will text boxes be sunken, flat with a border, flat without a border, chiseled, or raised?

n What back color should text boxes be?

n What color will the forms be?

n Will you use chiseled borders to separate related items or select a sunken or raised border?

n What size will buttons on forms be?

n For forms that have similar buttons, such as Close and Help, in what order will the but-
tons appear?

n Which accelerator keys will you use on commonly used buttons, such as Close and Help?

1126

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1126

Making your application look and work in a consistent manner is the single most important way to
make it appear professional. For ideas on design standards to implement in your applications,
spend some time working with some of your favorite programs and see what standards they use. In
the area of look and feel, copying from another developer is generally not considered plagiarism
but is instead often looked upon as a compliment. Copying does not extend, however, to making
use of another application’s icons or directly copying the look and feel of a competitor’s product;
this is a very bad practice. For an example of a good look-and-feel environment, see the Microsoft
Office Compatible program.

An application may be certified Office Compatible by meeting certain user-interface requirements
specified by Microsoft. An Office-Compatible application uses the same menu structures as all the
Office applications. In addition, ribbons are similar and, where applicable, have the same button
image that Microsoft uses. Making an application look like an Office application saves the devel-
oper time by giving clear and concise guidelines for interface features, and it helps end users by
reducing the learning curve of the application.

Although you may not want to have your application independently tested and certified Office
Compatible, you may want to check out the specifications and use some of the ideas presented to
help you get started designing your own consistent application interfaces.

Adding common professional components
Most commercial/professional applications have some similar components. The most common
components are the splash screen, About box, and switchboard. Be aware that the splash screen
(see Figure 35-6 for a good example) not only aids in increasing perceived speed of an application
but also gives the application a polished, professional appearance from the moment a user runs the
program. Figure 35-7 shows a skeleton splash screen that can be used with any system. You simply
change the content to what you want.

FIGURE 35-6

A splash screen not only increases perceived speed of your application, but it also gives your application a
professional appearance.

1127

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1127

Figure 35-7 shows the design window for a splash screen template that you can use
when building your own applications. This form is included in the Chapter35.accdb

database. It is named SplashScreenTemplateSimple. Import this form into your application
and use it as a template for creating your own splash screen.

FIGURE 35-7

Use this form as a template to create your own splash screens for your applications.

Your splash screen should contain the following items:

n The application’s title

n The application’s version number

n Your company information

n A copyright notice (© Copyright)

In addition, you may want to include the licensee information and/or a picture on the splash
screen. If you use a picture on your splash screen, make it relevant to your application’s function.
For example, some coins and an image of a check could be used for a check-writing application. If
you want, you can also use clipart for your splash screen — just be sure that the picture is clear and
concise and doesn’t interfere with the text information presented on your splash screen.

To implement the splash screen, have your application load the splash form before it does anything
else (consider making your splash screen the Display Form in the Application Options, described
earlier in this chapter). When your application finishes all of its initialization procedures, close the
form. Make the splash form a light form and be sure to convert any bitmaps that you place on your
splash screen to pictures in order to decrease the splash form’s load time.

The second component that you should implement is an application switchboard. The switchboard
is essentially a steering wheel for users to find their way through the functions and forms that are
available in the application. Use the switchboard itself as a navigation form, using buttons to dis-
play other forms, as shown in the switchboard example in Figure 35-8. This is the switchboard
named frmSwitchboard created for the Access Auto Auctions systems in this book.

NOTENOTE

1128

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1128

FIGURE 35-8

The switchboard provides a handy way to navigate throughout the application.

Make sure that the switchboard redisplays whenever the user closes a form. The switchboard pro-
vides a familiar place where users can be assured that they won’t get lost in the application.

The third component that you should implement is an About box (see Figure 35-9). The About
box contains your company and copyright information, as well as the application name and cur-
rent version. Including your application’s licensee information (if you keep such information) in
the About box is also a good idea. The About box serves as legal notice of ownership and makes
your application easier to support by giving your users easy access to the version information.
Some advanced About boxes call other forms that display system information (Figure 35-9 has an
additional button — System Info). You can make the About box as fancy as you want, but usually a
simple one works just fine.

FIGURE 35-9

The implementation of an About box is a polishing technique that also provides useful information to the
user and protects your legal interests.

1129

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1129

Figure 35-9 shows an About box template form that you can use when building your
own applications. This form is included in the Chapter35.accdb database. It is

named AboutTemplateA. Import this form into your application and use it as a template for creat-
ing your own About box.

Most users love pictures, and most developers love to use pictures on buttons. Studies
have shown that clear and concise pictures are more intuitive and are more easily rec-

ognized than textual captions. Most developers, however, are not graphic artists and usually slap
together buttons made from any clipart images that are handy. These ugly buttons make an applica-
tion look clumsy and unprofessional. In addition, pictures that don’t clearly show the function of the
button make the application harder to use.

Select or create pictures that end users will easily recognize. Avoid abstract pictures or pictures that
require specific knowledge to understand them. If your budget permits, consider hiring a professional
design firm to create your button pictures. A number of professional image galleries and tools to cre-
ate and edit buttons are available.

Picture buttons that are well thought out can really make your application look outstanding, as well
as make it easier to use.

The About box should be accessible from a Help menu or from a button on your switchboard
form. The submenu title should be About My Application. Of course, substitute Your program name
here with your application’s actual name.

The splash screen, About box, and switchboard may seem like trivial features, but they can greatly
enhance your application’s appeal. They take little time to implement and should be included in all
of your distributed applications.

Bulletproofing an Application
Bulletproofing an application is the process of making the application idiot-proof. It involves trap-
ping errors that can be caused by users, such as invalid data entry, attempting to run a function
when the application is not ready to run the function, and allowing users to click a Calculate but-
ton before all necessary data has been entered. Bulletproofing your application is an additional
stage that should be completed in parallel with debugging, and should be performed again after
the application is working and debugged.

Chapter 28 discusses many bulletproofing techniques in addition to those discussed
here.

Using error trapping on all Visual Basic procedures
An error-handling routine gives you a chance to display a friendly message to the user, rather than
some unintuitive default message box; Figure 35-10 shows a message box with a runtime error
“2102,” which is unintuitive; however, it also shows a more-detailed message of a form missing or
misspelled. The user will not know the name of the form or if it’s misspelled or missing. An error-
handling routine is needed to provide the user with a more informative and meaningful error mes-
sage than what is shown in Figure 35-10.

CROSS-REFCROSS-REF

TIPTIP

NOTENOTE

1130

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1130

FIGURE 35-10

An error message resulting from a procedure with no error-handling routine

One of the most important elements of bulletproofing an application is making sure that the appli-
cation never crashes — that is, never ceases operation completely and unexpectedly. Although
Access provides built-in error processing for most data-entry errors (for example, characters
entered into a currency field), automatic processing doesn’t exist for VBA code errors. You should
include error-handling routines in every VBA procedure, even if you use just the following error
line in your code:

On Error Resume Next

When running an application at runtime, any untrapped error encountered in your code causes
the program to terminate completely. Your users can’t recover from such a crash, and serious data
loss may occur. Your users have to restart the application after such an application error.

For more information on error handling and bulletproofing an application, see Chapter
25 and Chapter 28.

Separating the tables from the rest
of the application
You should separate your code objects (forms, reports, queries, modules, and macros) from your
table objects. Many benefits are gained from distributing these objects in separate .accdb files:

n Network users benefit from speed increases by running the code .accdb (the database
containing the queries, forms, macros, reports, and modules) locally and accessing only
the shared data on the network.

n Updates can easily be distributed to users.

n Data can be backed up more efficiently because only one file is needed, and disk space
and time aren’t used to continuously back up the code objects.

All professionally distributed applications — especially those intended for network use — should
have separate code and data database (.accdb) files.

CROSS-REFCROSS-REF

1131

Distributing Access Applications 35

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1131

Documenting the application
Most developers don’t like to write documentation; it’s simply no fun and can be quite frustrating
and time-consuming. Also, every time a change is made to the application, the application’s docu-
mentation needs updating. Taking the time and effort now to prepare thorough documentation,
however, can save hours of technical support time down the road. Even if you don’t plan to distrib-
ute a full user’s manual, take time to document how to perform the most common functions in
your application. If you’ve created shortcuts, make sure to share them with the users.

Creating a Help system
Although documentation is extremely important for getting users started on your application, a
Help system that is well-written, thorough, and context-sensitive is just as important. A Help system
puts pertinent information at users’ disposal with just a click of the mouse or a push of a button.

Implementing a security structure
The final item that you need to consider before distributing your application is the level at which
you want to secure your application. You can secure specific individual objects, or you can secure
your entire application. If it’s important to you to secure design permissions for all of your objects
in order to protect your source code, you need to be aware that you can’t rely solely on Microsoft’s
word that the security in Access works. For example, Microsoft touted the security model of Access
2.0 as being the most secure available. It was discovered, however, that an average Access devel-
oper can unsecure an Access 2.0 database in about five minutes, with only minimum coding!
Although no method for unsecuring a secured Access 2007 application has yet been discovered, a
method may be uncovered in the future. You must understand and accept this risk when you dis-
tribute a secured Access application.

For more information on securing Access applications, see Chapter 29.

Summary
In this chapter, you learned how to set up the Current Database options, which make your applica-
tion professional looking and more difficult for the nosey user to poke around in. You learned how
to restrict components users can interact with as well as how to simulate the runtime environment
with the /runtime switch or the .accdr extension.

You also reviewed testing and polishing procedures that make your application less likely to break
after you distribute it. You revisited error handling and bulletproofing as additional methods to
make a solid application. Preparing your database for distribution may take a bit more time, but
you’ll be thankful after the deployment goes smoothly.

CROSS-REFCROSS-REF

1132

Professional Database DevelopmentPart IV

42_046732 ch35.qxp 11/21/06 9:06 AM Page 1132

Macros have been a part of Access since the beginning. As Access
became more of a development tool, the Visual Basic for
Applications (VBA) programming language became the standard in

automating database applications. Macros in previous versions of Access
lacked variables and error handling, which caused many developers to aban-
don macros altogether. Access 2007 adds these capabilities, as well and a few
others, which makes macros a better alternative to VBA than in previous ver-
sions. If it’s a slow day and you don’t feel like writing VBA code, or if you
aren’t a VBA guru but still want to customize the actions that your applica-
tion executes, then building structured macros is the answer.

This chapter uses a database named Chapter36.accdb. If
you have not already copied them onto your machine from

the CD, you’ll need to do so now. This database contains the tables, forms,
reports, and macros used in this chapter.

Understanding Macros
A macro is a tool that allows you to automate tasks in Access. It’s different
from Word’s Macro Recorder (described in Chapter 22), which lets you
record a series of actions and play them back later. Access macros let you
perform defined actions and add functionality to your forms and reports.
Think of macros as a simplified programming language; you build a list of
actions to perform and decide when you want those actions to occur.

For more information on the Access event model, see
Chapter 12.CROSS-REFCROSS-REF

ON the CD-ROMON the CD-ROM

1133

IN THIS CHAPTER
Understanding macros

Looking at the Hello World
macro

Working with multiaction
macros

Using macro names

Making decisions with
conditions

Using temporary Variables

Handling errors

Debugging macros

Understanding Embedded
macros

Comparing Macros to VBA

Converting macros to modules

Using Access Macros

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1133

Building macros consists of selecting actions from a drop-down list, and then filling in the action’s
arguments (values that provide information to the action). Macros let you choose actions without
writing a single line of VBA code. These actions are a subset of commands VBA provides, and most
people find it easier to build a macro than writing VBA code. If you’re not familiar with VBA,
building macros is a great stepping-stone to learning some of the commands available to you.

Suppose you want to build a main screen with buttons that open the other screens in your applica-
tion. You can add a button to the form, build a macro that opens another form in your application,
and then assign this macro to the button’s OnClick event. The macro can be a standalone object —
which appears in the Navigation Pane — or an embedded object that is part of the event itself.

The Hello World macro
A simple way to demonstrate how to create macros is to build one that displays a message box that
says Hello World! To create a new standalone macro, click the Macro command on the far right
of the Create ribbon’s Other group (shown in Figure 36-1).

FIGURE 36-1

Use the Create ribbon to build a new standalone macro.

The Macro command opens the macro design window and displays the Macro Tools Design ribbon
(shown in Figure 36-2). By default, the macro design window displays the Action, Arguments, and
Comments columns. The Action column contains a list of actions from which you select. The
Arguments column is read-only and displays the arguments for the selected action. The Comments
column lets you give the action a description telling you what that action does. The lower section
of the window is where you enter each action’s arguments.

The Arguments column in Access 2007 lets you see each action’s arguments without
clicking on each row and looking at the Action Arguments section in the lower section

of the window. To hide this column, click the Arguments command in the Design ribbon’s Show/Hide
group.

NEW FEATURENEW FEATURE

1134

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/27/06 5:27 PM Page 1134

FIGURE 36-2

The macro design window displaying the Action, Arguments, and Comments columns

Select the MsgBox action from the drop-down list in the Action column; the MsgBox action dis-
plays a message box. In the lower section of the window, the Action Arguments appear for the
MsgBox action. They also appear in the Arguments column in the top section of the screen. Set the
arguments in the lower section as follows:

n Message: Hello World!

n Beep: No

n Type: Information

n Title: My First Macro

Your screen should look similar to the one shown in Figure 36-3. The Message argument defines
the text that appears in the message box. The Beep argument determines whether a beep is heard
when the message box appears. The Type argument sets which icon appears in the message box:
None, Critical, Warning?, Warning!, or Information. The Title argument defines the text that
appears in the message box’s title bar.

1135

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1135

FIGURE 36-3

The Hello World macro uses the MsgBox action to display a message.

To run the macro, click the Run command in the Design ribbon’s Tools group. When you create a
new macro, or change an existing macro, you’ll be prompted to save the macro. When prompted,
click yes to save it, change the name to mcrHelloWorld, and click OK. The macro runs and dis-
plays a message box with the arguments you specified (shown in Figure 36-4).

FIGURE 36-4

Running the Hello World macro displays a message box with the arguments you specify.

You can also run the macro from the Navigation Pane. Close the macro design window and display
the Macros group in the Navigation Pane. Double-click on the mcrHelloWorld macro to run it.
You’ll see the same message box that displayed when you ran the macro from the design window.

Assign a macro to an event
When creating macros, you probably don’t want end users using the Navigation Pane to run
them — or worse, running them from the macro design window. Macros are intended for you to
automate your application without writing VBA code. In order to make an application easy to use,
assign your macros to an object’s event. The most common event to assign a macro is a button’s
OnClick event. Follow these steps to create a form with a button that runs mcrHelloWorld:

1136

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1136

1. Click the Create tab on the ribbon, and click on the Form Design command in the
Forms group.

2. In the form’s Design ribbon, unselect the Use Control Wizards option in the
Controls group.

For this example, you don’t want to use a wizard to decide what this button does.

3. Click the Button control and draw a button on the form.

4. Set the button’s Name property to cmdHelloWorld.

5. Set the button’s Caption property to Hello World.

6. Click the drop-down list in the button’s On Click event property, and select
mcrHelloWorld from the list (shown in Figure 36-5).

FIGURE 36-5

Set any object’s event property to the macro to trigger that macro when that event
occurs.

That’s all there is to creating and running a macro. Just select the action, set the action arguments,
and assign the macro to an event property. Remember: You aren’t limited to the button’s OnClick
event. If you want a macro to run when a form loads, set the On Load event property of the form
to the macro’s name. Use the Event tab on any object’s property sheet to see the available events.

Multiaction Macros
The true power of macros comes from performing multiple actions at the click of a button.
Creating a macro that runs a series of action queries is better than double-clicking each action
query in the Navigation Pane. You might forget to run one or you may run them out of sequence.

1137

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1137

Running multiple action queries
For this next example, the Chapter36.accdb contains two delete queries that delete data from
two tables — tblContacts_Backup and tblProducts_Backup— and two append queries
that copy records from tblContacts and tblProducts to the backup tables. Table 36-1 shows
the macro actions and action arguments for mcrBackupContactsAndProducts (shown in
Figure 36-6).

If all the actions don’t appear in the Action drop-down list, click on the Show All
Actions command in the Show/Hide group of the macro’s Design ribbon. By default,

Access only displays trusted macro actions that run regardless of the security settings. Some macro
actions require a trusted database or enabling macros through your security settings.

TABLE 36-1

mcrBackupContactsAndProducts

Action Action Argument Action Argument Setting

Hourglass Hourglass On Yes

SetWarnings Warnings On No

Echo Echo On No

Status Bar Text Step 1: Deleting Data

OpenQuery Query Name qryDeleteContactsBackup

View Datasheet

Data Mode Edit

OpenQuery Query Name qryDeleteProductsBackup

View Datasheet

Data Mode Edit

Echo Echo On No

Status Bar Text Step 2: Appending Data

OpenQuery Query Name qryAppendContactsBackup

View Datasheet

Data Mode Edit

OpenQuery Query Name qryAppendProductsBackup

View Datasheet

Data Mode Edit

Echo Echo On Yes

Status Bar Text <Leave Blank>

NOTENOTE

1138

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1138

Action Action Argument Action Argument Setting

SetWarnings Warnings On Yes

Hourglass Hourglass On No

MsgBox Message Contacts and Products have been
archived.

Beep Yes

Type Information

Title Finished Archiving

FIGURE 36-6

mcrBackupContactsAndProducts archives data from the live tables into the backup tables.

Let’s take a look at the actions this macro performs:

n Hourglass: This action changes the cursor to an hourglass or a pointer using the
Hourglass On argument. For macros that may take a while to run, set this argument to
Yes at the beginning of the macro and to No at the end of the macro.

n SetWarnings: This action turns the system messages on or off using the Warnings On
argument. When running action queries, you’ll be prompted to make sure you want to
run the action query, asked if it’s okay to delete these 58 records, and then asked again for
the next action query. Set Warnings On to No at the beginning of the macro to turn
these messages off — assuming you’ll click OK or Yes in each message box. Set it back to
Yes at the end of the macro.

1139

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1139

n Echo: This action shows or hides the results of a macro while it runs using the Echo On
argument. Set it to No to hide the results of the macro or Yes to show the results. Set the
Status Bar Text argument to give the user an indication of what’s happening. This is
useful in longer-running macros to know where in the process the macro is.

n OpenQuery: This action opens a select or crosstab query or runs an action query. The
Query Name argument contains the name of the query to open or run. The View
argument lets you pick the view — Datasheet, Design, Print Preview, PivotTable, or
PivotChart — that a select or crosstab query opens in. The Data Mode argument lets
you choose from Add, Edit, or Read Only to limit what users can do in a select query.
The View and Data Mode arguments are ignored for action queries.

The heart of the macro is the four OpenQuery actions that run the four action queries.
qryDeleteContactsBackup and qryDeleteProductsBackup clear the contents of
tblContacts_Backup and tblProducts_Backup, so the current data can be copied into
them. qryAppendContactsBackup and qryAppendProductsBackup append data from
tblContacts and tblProducts into the backup tables.

You could easily build this macro just using the four OpenQuery actions, but running it would be
cumbersome, especially if one of the queries took a few minutes — or hours — to run. Use the
Hourglass, SetWarnings, Echo, and MsgBox actions to eliminate the need for user interac-
tion and to let the user know what’s happening and when it’s done happening.

Macro Names
When automating your application with macros, you might easily get carried away filling the
Navigation Pane for opening every form and every report. Macro names let you create one macro
object that contains more than one macro. Click the Macro Names command in the Show/Hide
group on the macro’s Design ribbon to display the Macro Names column in the macro window.

Opening forms
Without using macro names, you’d have to create three separate macros to automate a main menu
form with three buttons that open frmContacts, frmProducts, and frmSales. Using macro
names, just create one macro that opens each form individually. Table 36-2 shows the macro
names, actions, and action arguments for mcrMainMenu (shown in Figure 36-7), which opens
one of three forms.

1140

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1140

TABLE 36-2

mcrMainMenu

Macro Name Action Action Argument Action Argument Setting

OpenContacts OpenForm Form Name frmContacts

View Form

Filter Name <Leave Blank>

Where Condition <Leave Blank>

Data Mode <Leave Blank>

Window Mode Normal

OpenProducts OpenForm Form Name frmProducts

View Form

Filter Name <Leave Blank>

Where Condition [ProductID]=3

Data Mode Read Only

Window Mode Dialog

OpenSales OpenForm Form Name frmSales

View Layout

Filter Name qrySales2008

Where Condition <Leave Blank>

Data Mode Edit

Window Mode Icon

FIGURE 36-7

mcrMainMenu uses macro names to open three forms individually.

1141

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1141

To implement a macro using macro names, create a form (frmMainMenu) with three buttons — in
this case, cmdContacts, cmdProducts, and cmdSales. Then set the On Click event proper-
ties of these buttons as follows (see Figure 36-8):

Button name On Click event property

cmdContacts mcrMainMenu.OpenContacts

cmdProducts mcrMainMenu.OpenProducts

cmdSales mcrMainMenu.OpenSales

FIGURE 36-8

The macro names appear after the macro object in the event property drop-down list.

Open frmMainMenu in Form View and click on the Contacts button; frmContacts opens and
displays all the records. Click the Products button to display frmProducts, which only displays
one record. Click the Sales button to display frmSales in a minimized state, which displays the
sales made in 2008. To see why these forms open differently, let’s take a look at the action argu-
ments for the OpenForm action:

n Form Name: This argument is the name of the form you want the macro to open.

n View: This argument lets you select which view to open the form: Form View, Design
View, Print Preview, Datasheet View, PivotTable View, PivotChart View, or Layout View.
For this example, frmContacts and frmProducts open in Form View, while
frmSales opens in Layout View.

n Filter Name: This argument lets you select a query or a filter saved as a query to restrict
and/or sort the records for the form. For this example, this argument is set to
qrySales2008 for the OpenSales macro name. qrySales2008 is a query that out-
puts all the fields in the table and only displays sales between 1/1/2008 and 12/31/2008.
This query also sorts the records by SaleDate.

1142

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1142

n Where Condition: This argument lets you enter a SQL Where clause or expression that
selects records for the form from its underlying table or query. For this example, this
argument is set to [ProductID]=3 for the OpenProducts macro name, which only
shows one record when you open frmProducts.

n Data Mode: This argument lets you choose the data-entry mode for the form. Select Add
to only allow users to add new records, Edit to allow adding and editing of records, or
Read Only to only allow viewing of records. This setting only applies to forms opened in
Form View or Datasheet View, and overrides settings of the form’s AllowEdits,
AllowDeletions, AllowAdditions, and DataEntry properties. To use the form’s
setting for these properties, leave this argument blank. For this example, frmProducts
opens in read-only mode while frmContacts and frmSales allow editing.

n Window Mode: This argument lets you choose the window mode for the form. Select
Normal to use the form’s properties. Select Hidden to open the form with its Visible
property set to No. Select Icon to open the form minimized. Select Dialog to open the
form with its Modal and PopUp properties set to Yes and Border Style property set to
Dialog. For this example, frmContacts opens normally, frmProducts opens as a dia-
log box, and frmSales opens minimized.

For more information on form properties, see Chapter 8.

When you run a macro with macro names from the Navigation Pane, only the first
macro name executes.

If you’re careful in planning your macros, you can create one macro object for each form or report,
and use macro names for each action in the form or report you want to perform. Macro names let
you limit the number of macros that appear in the Navigation Pane and make managing a lot of
macros much easier.

Using Conditions
While macro names let you put multiple groups of actions in a single macro object, a condition
specifies certain criteria that must be met before the macro performs the action. You can enter any
expression in the macro’s condition column that evaluates to True/False or Yes/No. If the expres-
sion evaluates to False, No, or 0 (zero), the action will not execute. If the expression evaluates to
any other value, the action is performed. Click the Conditions command in the Show/Hide group
on the macro’s Design ribbon to display the Condition column in the macro window.

Opening reports using conditions
To demonstrate conditions, use frmReportMenu (shown in Figure 36-9), which contains three
buttons and a frame (fraView) with two option buttons: Print and Print Preview. Clicking Print
sets the frame’s value to 1; clicking Print Preview sets the frame’s value to 2.

NOTENOTE

CROSS-REFCROSS-REF

1143

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1143

FIGURE 36-9

frmReportMenu uses a frame to select the view in which to open the Contacts, Products, and Sales reports.

The macro that opens the reports uses the Macro Names column, as well as the Condition column.
Table 36-3 shows the macro names, conditions, actions, and action arguments for mcrReportMenu
(shown in Figure 36-10), which opens one of three reports. The Filter Name and Where
Condition arguments are blank for each OpenReport action.

TABLE 36-3

mcrReportMenu

Action
Argument

Macro Name Condition Action Action Argument Setting

OpenContacts [Forms]![frmReportMenu]![fraView]=1 OpenReport Report Name rptContacts

View Print

Window Mode Normal

[Forms]![frmReportMenu]![fraView]=2 OpenReport Report Name rptContacts

View Print
Preview

Window Mode Normal

OpenProducts [Forms]![frmReportMenu]![fraView]=1 OpenReport Report Name rptProducts

View Print

Window Mode Normal

[Forms]![frmReportMenu]![fraView]=2 OpenReport Report Name rptProducts

View Print
Preview

Window Mode Normal

1144

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1144

Action
Argument

Macro Name Condition Action Action Argument Setting

OpenSales [Forms]![frmReportMenu]![fraView]=1 OpenReport Report Name rptSales

View Print

Window Mode Normal

[Forms]![frmReportMenu]![fraView]=2 OpenReport Report Name rptSales

View Print
Preview

Window Mode Normal

FIGURE 36-10

mcrReportMenu uses the Condition column to open the reports in Print or Print Preview view.

To implement this macro, set the On Click event properties of the buttons (cmdContacts,
cmdProducts, and cmdSales) on frmReportMenu as follows:

Button name On Click event property

cmdContacts mcrReportMenu.OpenContacts

cmdProducts mcrReportMenu.OpenProducts

cmdSales mcrReportMenu.OpenSales

The Condition column of mcrReportMenu has two expressions that look at fraView on
frmReportMenu to determine if Print or Print Preview is selected:

n [Forms]![frmReportMenu]![fraView]=1: Print view selected

n [Forms]![frmReportMenu]![fraView]=2: Print Preview view selected

1145

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1145

If Print is selected on frmReportMenu, the OpenReport action with the View arguments set to
Print executes; if Print Preview is selected on frmReportMenu, the OpenReport action with the
View arguments set to Print Preview executes. This structure is set up for each macro name.

For more information referring to a control on a form using Forms!expression, see
Chapter 13.

Multiple actions in conditions
If you want to run multiple actions for a condition, enter ellipses (...) in the Condition column
directly under the expression being tested. If the expression evaluates to a nonzero value (True,
Yes, and so on), the expressions containing the ellipses execute. Set up the macro as follows:

Condition Action

[Expression 1] [Action 1a]

... [Action 1b]

... [Action 1c]

[Expression 2] [Action 2a]

... [Action 2b]

... [Action 2c]

To temporarily skip an action in a macro, enter False in the Condition column.
Temporarily skipping an action is helpful when troubleshooting macros.

Conditions let you selectively run actions based on other values in your application. Use the
Condition column to reference forms, reports, controls, and other objects and determine which
actions to execute. Think of a condition as an If statement — without the word If— and the
actions as the Then portion.

Using Temporary Variables
Before Access 2007, you could only use variables in VBA code; macros were limited to performing a
series of actions without remembering anything from a previous action. Three new macro actions —
SetTempVar, RemoveTempVar, and RemoveAllTempVars— let you create and use temporary
variables in your macros. You can use these variables in conditional expressions to control which
actions execute, or to pass data to and from forms or reports. You can even access these variables in
VBA to communicate data to and from modules.

TIPTIP

CROSS-REFCROSS-REF

1146

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1146

Enhanced Hello World macro
A simple way to demonstrate how to use variables in macros is to enhance the Hello World exam-
ple created earlier in this chapter. Table 36-4 shows the macro actions and action arguments for
mcrHelloWorldEnhanced (shown in Figure 36-11).

TABLE 36-4

mcrHelloWorldEnhanced

Action Action Argument Action Argument Setting

SetTempVar Name MyName

Expression InputBox(“Enter your name.”)

MsgBox Message =”Hello “ & [TempVars]![MyName] & “.”

Beep Yes

Type Information

Title Using Variables

RemoveTempVar Name MyName

FIGURE 36-11

mcrHelloWorldEnhanced uses the SetTempVar action to get a value from the user and display it in a
message box.

The SetTempVar action has two arguments: Name and Expression. The Name argument is sim-
ply the name of the temporary variable. The Expression argument is what you want the value of
the variable to be. In this example, the InputBox() function prompts the user for his name.

1147

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1147

The MsgBox action’s Message argument contains the following expression:

=”Hello “ & [TempVars]![MyName] & “.”

This expression concatenates the word Hello with the temporary variable MyName, created in the
SetTempVar action of the macro. When referring to a temporary variable created with the
SetTempVar action, use the following syntax:

[TempVars]![VariableName]

For more information on string concatenation using the ampersand (&), see Chapter 5.

The RemoveTempVar action removes a single temporary variable from memory — in this exam-
ple, MyName. You can only have 255 temporary variables defined at one time. These variables stay
in memory until you close the database, unless you remove them with RemoveTempVar or
RemoveAllTempVars. It’s a good practice to remove temporary variables when you’re finished
using them.

Using the RemoveAllTempVars action removes all temporary variables created with
the SetTempVar action. Unless you’re sure you want to do this, use the

RemoveTempVar action instead.

Temporary variables are global. Once you create a temporary variable, you can use it in VBA proce-
dures, queries, macros, or object properties. For example, if you remove the RemoveTempVar
action from mcrHelloWorldEnhanced, you can create a text box on a form and set its
Control Source property as follows to display the name the user entered:

=[TempVars]![MyName]

Enhanced reporting macro
Using temporary variables, you can eliminate steps from the macro. You can get the form or report
name from another control on a form. With a temporary variable, you eliminate the need for creat-
ing a structure of many OpenForm or OpenReport actions. You can also use more than one vari-
able in a macro.

For this example, use frmReportMenuEnhanced (shown in Figure 36-12), which contains the
same fraView shown in Figure 36-9, but adds a combo box (cboReport), which contains a list
of reports to run. The Run Command button executes mcrReportMenuEnhanced, which doesn’t
use macro names to decide which report to open.

CAUTION CAUTION

CROSS-REFCROSS-REF

1148

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1148

FIGURE 36-12

frmReportMenuEnhanced uses a combo box to select which report to open.

Table 36-5 shows the conditions, actions, and action arguments for mcrReportMenuEnhanced
(shown in Figure 36-13), which opens one of three reports.

TABLE 36-5

mcrReportMenuEnhanced

Condition Action Action Argument Action Argument Setting

SetTempVar Name ReportName

Expression [Forms]![frmReportMenuEnhanced]!
[cboReport]

SetTempVar Name ReportView

Expression [Forms]![frmReportMenuEnhanced]!
[fraView]

[TempVars]![ReportView]=1 OpenReport Report Name =[TempVars]![ReportName]

View Print

Window Mode Normal

[TempVars]![ReportView]=2 OpenReport Report Name =[TempVars]![ReportName]

View Print Preview

Window Mode Normal

RemoveTempVar Name ReportName

RemoveTempVar Name ReportView

1149

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1149

FIGURE 36-13

mcrReportMenuEnhanced uses temporary variables to open the desired report in Print or Print Preview
view.

The first two SetTempVar actions in mcrReportMenuEnhanced set the values of the tempo-
rary variables — ReportName and ReportView— from cboReport and fraView on
frmReportMenuEnhanced. The OpenReport actions use the temporary variables in the
Condition column and for the Report Name argument. When using temporary variables as a set-
ting for an argument, you must use an equal (=) sign in front of the expression:

=[TempVars]![ReportName]

There are still two OpenReport actions in this macro. Certain arguments — such as View—
don’t allow the use of temporary variables in expressions. Because one of your variables is a setting
for the report’s view, you still have to use the Condition column to decide which view to open the
report.

The last two RemoveTempVar lines remove the temporary variables — ReportName and
ReportView— from memory. Because these variables probably won’t be used later on in the
application, it’s important to remove them.

Using temporary variables in macros gives you far more flexibility in Access 2007 than in previous
versions of Access. You can use these variables to store values to use later on in the macro, or any-
where in the application. Just remember, you only have 255 of them, so don’t forget to clean up
after yourself by removing temporary variables from memory once you’re finished using them.

Using temporary variables in VBA
You may start out using macros to automate your application, but over time, you’ll begin using
VBA code to automate and add functionality to other areas. What do you do with the temporary
variables you’ve already implemented with macros? Well, you don’t have to abandon them; instead,
you can use them directly in your VBA code.

1150

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1150

To access a temporary variable in VBA, use the same syntax used in macros:

X = [TempVars]![VariableName]

If you don’t use spaces in your variable names, you can omit the brackets:

X = TempVars!VariableName

Use the same syntax as above to assign a new value to an existing temporary variable. The only dif-
ference is to put the temporary variable on the left side of the equation:

TempVars!VariableName = NewValue

Use the TempVars object to create and remove temporary variables in VBA. The TempVars
object — new to Access 2007 — contains three methods: Add, Remove, and RemoveAll. To cre-
ate a new temporary variable and set it’s value, use the Add method of the TempVars object as
follows:

TempVars.Add “VariableName”, Value

Use the Remove method of the TempVars object to remove a single temporary variable from
memory:

TempVars.Remove “VariableName”

When adding or removing temporary variables in VBA, remember to put the variable
name in quotation marks.

To remove all the temporary variables from memory, use the RemoveAll method of the
TempVars object as follows:

TempVars.RemoveAll

Any VBA variables you create are available to use in your macros, and vice versa. Any variables you
remove in VBA are no longer available to use in your macros, and vice versa. Using temporary vari-
ables, your macros and VBA code no longer have to be independent from each other.

Handling Errors and Debugging Macros
In previous versions of Access, if an error occurred in a macro, the macro stopped execution, and
your users saw an ugly dialog box (shown in Figure 36-14) that didn’t really explain what was
going on. If they were unfamiliar with Access, they quickly became disgruntled using the applica-
tion. The lack of error handing in macros is one main reason many developers use VBA instead of
macros to automate their application.

TIPTIP

1151

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1151

FIGURE 36-14

Errors in macros cause the macro to cease operation, without running further actions.

A common error that’s easy to demonstrate is the divide-by-zero error. For the next example,
mcrDivision (shown in Figure 36-15) contains two temporary variables — MyNum and
MyDenom— set with the InputBox() function asking for a numerator and denominator. The
MsgBox action shows the result ([TempVars]![MyNum]/[TempVars]![MyDenom])in a mes-
sage box and the RemoveTempVar actions remove the variables from memory.

FIGURE 36-15

mcrDivision divides the numerator by the denominator and generates an error when the denominator is
zero.

Run the macro and enter 1 for the numerator and 2 for the denominator; the macro runs and dis-
plays a message box saying 1 divided by 2 is 0.5. Run the macro again and enter 0 in the
denominator; a divide-by-zero error occurs and the macro stops running. Without error handling, the
two RemoveTempVar actions won’t run and won’t remove the temporary variables from memory.

1152

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1152

If an error occurs in another macro — such as a string of action queries — any queries after an
error occurs won’t run. Adding error handling to your macros allows you to choose what to do
when an error occurs while a macro’s running.

The OnError action
The OnError action lets you decide what happens when an error occurs in your macro. This
action has two arguments: Go to and Macro Name. The Go to argument has three settings and
the Macro Name argument is only used with one of these settings, described as follows:

n Next: This setting records the details of the error in the MacroError object but does
not stop the macro. The macro continues with the next action.

n Macro Name: This setting stops the current macro and runs the macro in the Macro
Name argument of the OnError action.

n Fail: This setting stops the current macro and displays an error message. This is the same
as not having error handling in the macro.

The VBA equivalents of these settings are as follows:

On Error Resume Next ‘Next
On Error Goto LABELNAME ‘Macro Name
On Error Resume 0 ‘Fail

The simplest way to add error handling to a macro is to make OnError the first action and set the
Go to argument to Next. This will cause your macro to run without stopping, but you won’t have
any clue which actions ran and which ones didn’t.

Instead, create an error-handling structure. Table 36-6 shows the macro names, actions, and action
arguments for mcrDivisionErrorHandling (shown in Figure 36-16).

TABLE 36-6

mcrDivisionErrorHandling

Macro Name Action Action Argument Action Argument Setting

OnError Go to Macro Name

Macro Name ErrorHandler

SetTempVar Name MyNum

Expression InputBox(“Enter Numerator.”)

SetTempVar Name MyDenom

Expression InputBox(“Enter Denominator.”)

continued

1153

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1153

TABLE 36-6 (continued)

Macro Name Action Action Argument Action Argument Setting

MsgBox Message =[TempVars]![MyNum] & “ divided by “ &
[TempVars]![MyDenom] & “ is “ &
[TempVars]![MyNum]/[TempVars]![MyDenom]

Beep Yes

Type Information

Title Division Example

RunMacro Macro Name mcrDivisionErrorHandling.Cleanup

ErrorHandler MsgBox Message =”The following error occurred: “ &
[MacroError].[Description]

Beep Yes

Type Warning?

Title =”Error Number: “ & [MacroError].[Number]

ClearMacroError

RunMacro Macro Name mcrDivisionErrorHandling.Cleanup

Cleanup RemoveTempVar Name MyNum

RemoveTempVar Name MyDenom

FIGURE 36-16

mcrDivisionErrorHandling uses the OnError action to display a user-friendly error message and
remove the temporary variables.

1154

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1154

The first OnError action in the macro lets Access know to move to the macro name
ErrorHandler when an error occurs. If an error occurs (by entering 0 as the denominator), the
macro stops and moves to the ErrorHandler macro name. The ErrorHandler displays a mes-
sage box — using the MacroError object (described in the next section) to display the error’s
description in the Message and the error’s number in the Title, using the following expressions:

[MacroError].[Description]
[MacroError].[Number]

After the error handler’s message box, the ClearMacroError action clears the MacroError
object. The RunMacro action moves the execution to the macro’s Cleanup macro name. The
Cleanup section of the macro removes the temporary variables.

There’s no Resume functionality in macro error handling. If you want to run additional
code after the error-handling actions, you must use the RunMacro action to run

another macro or place the actions in the error-handling section of the macro.

The RunMacro action also appears after the MsgBox action in the main section of the macro.
Because you’re using macro names, the macro stops after it reaches the ErrorHandler macro
name. In order to force the cleanup of the temporary variables, use the RunMacro action to run
the Cleanup macro name. Otherwise, you’d have to put the RemoveTempVar actions in the
main section and in the ErrorHandler section of the macro.

The MacroError object
The MacroError object — new to Access 2007 — contains information about the last macro error
that occurred. It retains this information until a new error occurs or you clear it with the
ClearMacroError action. This object contains a number of read-only properties you can access
from the macro itself or from VBA. These properties are as follows:

n ActionName: This property contains the name of the macro action that was running
when the error occurred.

n Arguments: This property contains the arguments for the macro action that was running
when the error occurred.

n Condition: This property contains the condition for the macro action that was running
when the error occurred.

n Description: This property contains the text representing the current error message — for
example, Divide by Zero or Type Mismatch.

n MacroName: This property contains the name of the macro that was running when the
error occurred.

n Number: This property contains current error number — for example, 11 or 13.

Use the MacroError object as a debugging tool or to display messages to the user, who can then
relay that information to you. You can even write these properties to a table to track the errors that
occur in your macros. Use this object in the Condition column to customize what actions execute

NOTENOTE

1155

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1155

based on the error that occurs. When used in combination with the OnError action, it gives you
additional functionality by handling errors, displaying useful messages, and providing information
to you and the user.

Debugging macros
Trying to figure out what’s going on in a macro can be difficult. The new OnError action and
MacroError object make debugging in Access 2007 easier than previous versions. There are
other tools and techniques that are useful when debugging macros. Use the following list as a
guideline for troubleshooting macros.

n Single Step: Click the Single Step command in the macro design ribbon’s Tools group to
turn on Single Step mode. The Macro Single Step dialog box (shown in Figure 36-17) lets
you see the macro name, condition, action name, arguments, and error number before
the action executes. From this dialog box, click Step to execute the action, Stop All
Macros to stop the macro from running, or Continue to finish the macro with Single Step
mode turned off.

FIGURE 36-17

Use the Macro Single Step dialog box to step through a macro.

n MsgBox: Use the MsgBox action to display values of variables, error messages, control
settings, or whatever else you want to see while the macro is running. To see the value of
a combo box on a form, set the Message argument as follows:

[Forms]![frmReportMenuEnhanced]![cboReport]

n StopMacro: Use the StopMacro action to stop the macro from executing. Insert this
action at any point in the macro to stop it at that point. Use this in conjunction with the
debug window to check values.

n Debug window. Use the Debug window to look at any values, temporary variables, or
properties of the MacroError object after you stop the macro. Press Ctrl+G to display
the code window after you stop the macro. Just type a question mark (?) and the variable

1156

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1156

or expression you want to check the value of, and press Enter. Some examples of expres-
sions to display in the Debug window are:

? TempVars!MyNum
? MacroError!Description
? [Forms]![frmReportMenuEnhanced]![cboReport]

These techniques are similar to ones you’d use when debugging VBA code. You can step through
sections of code, pause the code and look at values in the debug window, and display message
boxes to display variables or errors that occur. Granted, you don’t have all the tools available —
such as watching variables and Debug.Print— but at least you have the new MacroError
object to provide the information you need to figure out what’s going wrong.

For more information on error handling, see Chapter 25. Debugging VBA code is cov-
ered in Chapter 15.

Embedded Macros
An embedded macro is stored in an event property and is part of the object to which it belongs.
When you modify an embedded macro, you don’t have to worry about other controls that might
use the macro; each embedded macro is independent. Embedded macros aren’t visible in the
Navigation Pane and are only accessible from the Property Sheet.

Embedded macros are trusted. They run even if your security settings prevent the running of code.
Using embedded macros allows you to distribute your application as a trusted application because
they are automatically prevented from performing unsafe operations.

One big change to Access 2007 is when you use a wizard to create a button, it no longer creates an
event procedure — it creates an embedded macro. So if you’re used to running a wizard and steal-
ing the code, you’ll have to abandon that technique. Using embedded macros instead of code
accomplishes two things:

n It allows you to quickly create an application that’s distributable.

n It allows users not familiar with VBA code to customize buttons created with wizards.

Follow these steps to create an embedded macro that opens frmContacts:

1. Click the Create tab on the ribbon, and then click on the Form Design command in
the Forms group.

2. In the form’s Design ribbon, unselect the Use Control Wizards option in the
Controls group.

For this example, you don’t want to use a wizard to decide what this button does.

3. Click the Button control and draw a button on the form.

4. Set the button’s Name property to cmdContacts and the Caption property to
Contacts.

CROSS-REFCROSS-REF

1157

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1157

5. Display the Property Sheet for cmdContacts, click the Event tab, and then click on
the On Click event property.

6. Click the builder button — the button with the ellipsis (...) — to display the Choose
Builder dialog box (shown in Figure 36-18).

FIGURE 36-18

Use the builder button in the event property to display the Choose Builder dialog box to
create an embedded macro.

7. Choose Macro Builder and click OK to display the macro window (shown in Figure
36-19).

FIGURE 36-19

An embedded macro doesn’t have a name. The title bar displays the control and the
event which the macro is embedded.

8. Add the OpenForm action to the macro, and then set the Form Name argument to
frmContacts.

9. Close the embedded macro, and click OK when you’re prompted to save the
changes and update the property.

The On Click event property of cmdContacts now displays [Embedded Macro].

1158

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1158

Using an embedded macro has some advantages over using an event procedure containing VBA
code. If you copy the button and paste it on another form, the embedded macro goes with it. You
don’t have to copy the code and paste it as a separate operation. Similarly, if you cut and paste the
button on the same form (for example, moving it onto a Tab control), you don’t have to reattach
the code to the button.

Embedded macros offer another improvement to macros in previous versions. If you automate
your application with embedded macros, and import a form or report into another database, you
don’t have to worry about importing the associated macros into the database as well. By using
embedded macros, all the automation moves with the form or report. This makes maintaining and
building applications easier.

Macros versus VBA Statements
In Access, macros often offer an ideal way to take care of many details, such as running reports and
forms. You can develop applications and assign actions faster using a macro because the arguments
for the macro actions are displayed with the macro (in the bottom portion of the macro window).
You don’t have to remember complex or difficult syntax.

Several actions you can accomplish with VBA statements are better suited for macros. The follow-
ing actions tend to be more efficient when they’re run from macros:

n Using macros against an entire set of records with action queries — for example, to
manipulate multiple records in a table or across tables (such as updating field values or
deleting records)

n Opening and closing forms

n Running reports

The VBA language supplies a DoCmd object that accomplishes many macro actions.
Under the surface, DoCmd runs a macro task to accomplish the same result provided by

a macro action. You could, for example, specify DoCmd.Close to run the Close macro action and
close the currently active form.

Although macros sometimes prove to be the solution of choice, VBA is the tool of choice at other
times. You probably will want to use VBA rather than macros when you want to perform any of the
following tasks:

n Create and use your own functions. In addition to using the built-in functions in
Access, you can create and work with your own functions by using VBA code.

n Use Automation to communicate with other Windows applications or to run sys-
tem-level actions. You can write code to see whether a file exists before you take some
action, or you can communicate with another Windows application (such as a spread-
sheet), passing data back and forth.

NOTENOTE

1159

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1159

n Use existing functions in external Windows DLLs. Macros don’t enable you to call
functions in other Windows Dynamic Link Libraries.

n Work with records one at a time. If you need to step through records or move values
from a record to variables for manipulation, code is the answer.

n Create or manipulate objects. In most cases, you’ll find that it’s easiest to create and
modify an object in that object’s Design View. In some situations, however, you may want
to manipulate the definition of an object in code. With a few VBA statements, you can
manipulate virtually any and all objects in a database, including the database itself.

n Display a progress meter on the status bar. If you need to display a progress meter to
communicate progress to the user, VBA code is the answer.

Converting existing macros to VBA
After you become comfortable with writing VBA code, you may want to rewrite some of your
application macros as VBA procedures. As you begin this process, you quickly realize how mentally
challenging the effort can be as you review every macro in your various macro libraries. You cannot
merely cut the macro from the macro window and paste it into a module window. For each condi-
tion, action, and action argument for a macro, you must analyze the task it accomplishes and then
write the equivalent statements of VBA code in your procedure.

Fortunately, Access provides a feature that converts macros to VBA code automatically. One of the
options in the Save As dialog box is Save As Module. You can use this option when a macro file is
highlighted in the Macros object window of the Database window. This option enables you to con-
vert an entire macro group to a module in seconds.

To try the conversion process, convert the mcrHelloWorldEnhanced macro used earlier in this
chapter. Follow these steps to run the conversion process:

1. Click the Macros group in the Navigation Pane.

2. Select mcrHelloWorldEnhanced.

3. Click the Microsoft Office button, and then click Save As to display the Save As dia-
log box (shown in Figure 36-20).

FIGURE 36-20

Saving a macro as a module

1160

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1160

Access assigns a default name for the new module as “Copy of” followed by the macro
name.

4. Enter a name for the new module and select Module for the As option.

5. Click OK to display the Convert Macro dialog box (shown in Figure 36-21).

FIGURE 36-21

The Convert Macro dialog box

6. Select the options that include error handling and macro comments, and click
Convert.

Access briefly displays each new procedure as it is converted. When the conversion
process completes, the Conversion Finished! message box appears.

7. Click OK to display the new module in the VBA Editor (shown in Figure 36-22).

Access names the new module Converted Macro- mcrHelloWorldEnhanced.

FIGURE 36-22

The newly converted module

1161

Using Access Macros 36

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1161

When you open the VBA Editor for the new module, you can view the procedure created from the
macro. Figure 36-22 shows the mcrHelloWorldEnhanced function that Access created from
the mcrHelloWorldEnhanced macro.

At the top of the function, Access inserts four comment lines for the name of the function. The
Function statement follows the comment lines. Access names the function, using the macro
library’s name (mcrHelloWorldEnhanced).

When you specify that you want Access to include error processing for the conversion, Access
automatically inserts the On Error statement as the first command in the procedure. The On
Error statement tells Access to branch to other statements that display an appropriate message
and then exit the function.

The statement beginning with DoCmd is the actual code that Access created from the macro. The
DoCmd methods run Access actions from VBA. An action performs important tasks, such as closing
windows, opening forms, and setting the value of controls.

If you’re new to VBA and want to learn code, a good starting point is converting your macros to
modules. Just save your macros and modules, and then look at the VBA code to become familiar
with the syntax. With the new features available in Access 2007 macros, it becomes harder to
decide whether to use macros or VBA.

Summary
In this chapter, you learned how to create a variety of different macros, from simple macros with
one action to complex macros containing many different actions that only run under certain condi-
tions. Using macro names, you saw how one macro object can hold many macros. You also com-
pared macros to VBA and converted a macro to a VBA module.

You also learned the new macro features in Access 2007. The addition of temporary variables
allows you to store values for use anywhere in your application, including VBA code. The new
error-handling actions let you gracefully stop a macro when an error occurs. These new features
also make troubleshooting macros easier. You also created a trusted embedded macro, which is
stored in the control and moves around with the control.

1162

Professional Database DevelopmentPart IV

43_046732 ch36.qxp 11/21/06 9:07 AM Page 1162

Access as an
Enterprise Platform

Access continues to grow as an integral part of enterprise
data management. Important capabilities have been
added with each new release of Microsoft Access. Even

though Access is not a strong tool for creating or driving Web
sites, Access 2007 includes outstanding capabilities for integrat-
ing with data sources located anywhere on the Internet.

This part begins by examining extensible markup language
(XML), the lingua franca of Internet data sharing. XML is a
native data format recognized and used by Access 2007, and all
communication with SharePoint is through XML exchange.

The most significant of these new capabilities is integration with
Microsoft SharePoint Services. Access 2007 seamlessly integrates
with SharePoint, using SharePoint Lists as linked tables. This
means that your Access 2007 applications can share data with
SharePoint users anywhere in the world. SharePoint data linked
to Access databases is completely updatable and can be dis-
played on Access forms and reports.

Access is able to share data with SQL Server, Oracle, and other
enterprise database engines. For obvious reasons, Access works
best with Microsoft SQL Server, and we cover this topic in the
following chapters. You’ll learn how to extract static data from a
SQL Server database and use it in Access forms and reports.
You’ll also figure out how to connect to SQL Server and seam-
lessly share dynamic data with this powerful database engine.

IN THIS PART
Chapter 37
Using XML in Access 2007

Chapter 38
SharePoint as a Data Source

Chapter 39
Client/Server Concepts

Chapter 40
SQL Server as an Access
Companion

Chapter 41
Upsizing Access Databases to
SQL Server

44_046732 pt05.qxp 11/21/06 9:07 AM Page 1163

You’ll learn the basics of client-server computing and how to upsize your Access 2007 applications to
SQL Server 2005. Server database engines such as SQL Server provide fast and virtually unlimited
access to enormous amounts of data. Because of Access’s superior user interface tools and strong
reporting capabilities, your Access application is the ideal companion to data managed by SQL Server.

44_046732 pt05.qxp 11/21/06 9:07 AM Page 1164

Over the past several years, XML has grown in importance as a data
storage format, as well as a reliable technology for sharing data
among multiple applications. XML is a native data format recog-

nized by all of the Microsoft Office 2007 applications. XML is the technology
wave of the future in the computer industry. Earlier in this book you saw
how easy it is to link to XML files and how to seamlessly import XML data
into an Access 2007 application.

This chapter continues the discussion on XML by explaining XML and using
XML in some detail. Also, this chapter includes a significant amount of VBA
code demonstrating how to automate XML data import into Access applica-
tions. Earlier chapters explained the manual, interactive processes of linking,
importing, and exporting XML data, but this chapter shows you how to
automate some of these operations with VBA code.

This chapter uses the database named Chapter37.accdb
on the book’s CD. If you haven’t already copied the file onto

your machine from the CD, you’ll need to do so now.

Introducing HTML and XML
Getting an introduction, however brief, to HTML, XML, and XSL is impor-
tant. These terms are easily confused, and taking the time now to get
acquainted with the terminology used when working with XML data sources
is well spent. You’ll encounter these terms over and over again as you begin
working with XML, and a working knowledge of the technologies underly-
ing XML is an important asset to your applications.

ON the CD-ROMON the CD-ROM

1165

IN THIS CHAPTER
Reviewing a primer on XML

Working with HTML and XML

Looking at the dynamic object
model

Working with XSL and XSLT

Sharing XML and RSS

Looking at Access 2007, XML,
and DAO

Using XML in Access 2007

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1165

What is HTML?
HTML, short for Hypertext Markup Language, is the language commonly used to define Web
pages. HTML is restricted to a specific number of tags. In fact, Web browsers such as Internet
Explorer closely conform to well-recognized standards controlling HTML tags. A tag in HTML is a
language element that defines the appearance of data on a Web page and is appropriately inter-
preted by a Web browser.

The left and right arrows (often called “pointy brackets”) delimit HTML tags. Without these charac-
ters, a Web browser is unable to properly interpret HTML markup. For example, the text
 is
recognized by a browser as an HTML tag indicating a line break, whereas the similar string BR is
not interpreted at all, because it isn’t enclosed within the < and > characters.

Here’s the script for a very simple HTML page:

<HTML>
<HEAD>

<TITLE>Contact Details</TITLE>
</HEAD>
<BODY>

<P>Name: Joe Soap</P>
<P>Address: 1234 Something Way

Some Place Somewhere

A Country

</P>
</BODY>

</HTML>

The execution of this HTML script in a Web browser is shown in Figure 37-1.

FIGURE 37-1

A simple HTML script

Figure 37-2 shows a somewhat more complex example, which happens to be an HTML export of a
Join query executed from the Access 2007 database for this chapter (Chapter37.accdb).

1166

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1166

FIGURE 37-2

A more complex HTML example

HTML is not central to the subject matter of this book, but if you want more information on it,
check out HTML, XHTML, and CSS Bible, 3rd Edition, by Bryan Pfaffenberger, Bill Karow, Chuck
White, Steven M. Schafer (published by Wiley) or HTML 4 For Dummies, 5th Edition, by Ed Tittel
and Mary Burmeister (published by Wiley).

What is XML?
HTML has a fixed set of predefined tags — there are many different tags but ultimately the number
of variations is limited. XML, short for eXtensible Markup Language, can be extended by the addi-
tion of new tags whenever needed. Tags can be created at any time in XML. Essentially, XML is a
scripting language that can have features changed and added to it by any developer for any pur-
pose. XML can be customized such that every XML document can have its own unique tags. The
result is a browser-based language, where both the data and the language (the tags) are variable. In
other words, XML provides dynamism to both data and metadata.

An XML tag is also known as an element.

Data are information describing something, such as a person’s name. Metadata
describes data, such as how long a person’s name can be, and that it must be a string

and not a numeric value. In an Access application, the metadata associated with a field in a table
include the name applied to the field, its data type, and the maximum length applied to the field.
Data, of course, are the values stored within the field.

NOTENOTE

NOTENOTE

1167

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1167

One thing that is relatively difficult for some people to understand is that an XML document
includes very few predefined tags. Unlike HTML, where every tag is defined by a specification,
XML tags are completely variable. There are one or two exceptions, such as the <XML> tag.
Otherwise, almost anything goes, as long as the tags follow a few basic rules. The only restrictions
applying to XML are as follows:

n Every opening tag must have a corresponding closing tag. Therefore, this XML statement
works (notice that the data within the <name> and </name> tags are not enclosed in
quotes):

<root><name>Jack Jones</name></root>

But, this statement causes an error because the closing </name> tag is missing:

<root><name>Jack Jones</root>

The combination of an opening and a closing tag is often referred to as a node. Nodes may
contain data (Jack Jones) or other nodes.

An opening tag in both HTML and XML is of the format <tag>. A closing tag is of the
format </tag>. A combination open-closing tag is written as <tag/>, but this only

applies when no data are contained with in the <tag> element.

n Opening and closing tags must be properly sequenced and positioned in the hierarchy of
an XML document. This statement causes an error because the </name> tag appears
after the </root> closing tag:

<root><name>Jack Jones</root></name>

HTML doesn’t care about the sequence of opening and closing tags. HTML allows
<P><PRE>My name is Jack Jones</P></PRE>.

n An XML document must have a single root node, and every other node in the XML docu-
ment must be a descendant of the root node. In other words, XML nodes must be prop-
erly nested within the root node that begins the document.

n XML is case sensitive. So, this will work:

<root><name>Jack Jones</name></root>

This example returns an error because <root> and </Root> are different tags because
of the case-sensitive nature of XML:

<root><name>Jack Jones</name></Root>

The preceding points are generally known as XML being “properly formed,” except for
processing instructions, such as <XML . . . ?>, which do not have the same restric-

tions. These rules apply in general to XML and not to HTML.

NOTENOTE

NOTENOTE

NOTENOTE

1168

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1168

XML can have its tags defined and is thus flexible depending on the content of its data. In fact, the
content of an XML document can be represented by three things:

n The data or textual values between the tags: Textual values are strings, numbers, dates,
and so on. In this example, Joe is the data:

<name>Joe</name>

n The tags representing the meaning or semantics of what’s between the tags: So, in
the above example, <name> and </name> describes that Joe is actually somebody’s
name.

n The tag hierarchy: In the following example, the hierarchy describes that regions contain
countries, countries contain cities, and some counties contain states that include cities.
You can also tell that cities are a part of countries or states:

<?xml version=”1.0”?>
<Locations>

<northamerica>
<california>

<losangeles/>
<sanfrancisco/>

</california>
<texas>

<dallas/>
<houston/>

</texas>
</northamerica>
<southamerica>

<peru>
<lima/>

</peru>
<brazil>

<riodejaneiro/>
<brasilia/>
<saopaulo/>

</brazil>
</southamerica>

</Locations>

All of the countries in this XML script contain states. Sometimes they’re called provinces, counties,
regions, and so on. Just because they exist doesn’t mean they have to be included in the XML doc-
ument. The execution of the Locations XML document is shown in Figure 37-3.

1169

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1169

FIGURE 37-3

A simple XML document

Figure 37-4 shows a more complex example, which is an XML export of a Join query executed
from the Access 2007 database for this chapter (Chapter37.accdb).

FIGURE 37-4

A more complex XML example

1170

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1170

Again, as for HTML, XML is not central to the subject matter of this book. But you do need to have
some idea of what XML actually is. You can find more information on XML in Beginning XML, 3rd
Edition, by David Hunter, Andrew Watt, Jeff Rafter, Jon Duckett, Danny Ayers, Nicholas Chase, Joe
Fawcett, Tom Gaven, and Bill Patterson; Beginning XML Databases, by Gavin Powell; and XML For
Dummies, 4th Edition, by Lucinda Dykes and Ed Tittel (all three published by Wiley), among other
books.

What is a DOM?
A DOM is an acronym for Document Object Model. A DOM, as applied to both HTML and XML,
allows you to get at the contents of an HTML or XML document when it’s running in a browser,
using a scripting or programming language.

The DOM allows you to program changes into XML and HTML documents in real-time, while
they’re running in a browser. For example, you could write a JavaScript script to parse the internal
structure behind an HTML document, and extract one or more tags, attributes, or values.
Essentially, the HTML DOM and XML DOM, allow you to write programs that can enhance and
change the behavior of Web pages during their execution within a browser.

A very general object structure of the HTML DOM is shown in Figure 37-5. A very general struc-
ture of the XML DOM is shown in Figure 37-6.

Formatting and transforming XSL(T)
XSL stands for eXtensible Style Sheet language. The HTML equivalent is called Cascading Style
Sheets (CSS). A style-sheet language is generally used to apply consistency across the format dis-
play and manipulation of things like HTML and XML Web page content.

XSLT is the transformation aspect of XSL; XML-FO encompasses the formatting aspect of
XSL.

In short, XSL formats XML documents by applying templates to repetitive sections of data in XML
documents. For example, Figure 37-7 shows an example of XML data, displayed in an HTML doc-
ument but formatted using XSL.

NOTENOTE

1171

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1171

FIGURE 37-5

The HTML DOM hierarchical structure

document

frames

location

historywindow

navigator

plugins

mimeTypes

packages

window
object

anchors

links button
checkbox

radiobutton
text

textarea
etc.

images

forms

embeds

applets

window.self,
window.parent

1172

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1172

FIGURE 37-6

The XML DOM object hierarchical structure

element-1

element-2

element-3document

element-n

... text value

attribute-1

attribute-2

attribute-3

attribute-n

...

Both elements
and attributes can
have text values

An element can
have zero or more

attributes

An XML document
can have one or
many elements

1173

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1173

FIGURE 37-7

XSL applies beautification to XML data.

You’ve already seen the XML document equivalent of Figure 37-7, as shown in Figure 37-4. Figure
37-8 shows a picture of a small section of the XSL script coding applied in Figure 37-7.

FIGURE 37-8

The XSL formatting applied to the XML data in Figure 37-7

1174

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1174

Some of the XSL tag elements for creating the table field, as shown in Figure 37-7, are highlighted
in Figure 37-8. And of course, XSL is actually written in XML as well. XML is really flexible — it
can be used to describe a different type of scripting language, in a file other than an XML docu-
ment. And that XSL script can reformat the display of the XML data.

The XML, XSL, and HTM (HTML) files used for the example shown in Figure 37-7 and Figure
37-8 are direct exports of data from the Chapter37.accdb database. Normally, the XSL scripting
commands apply formatting in the XML document itself. You execute the XML document in the
browser to apply the XSL formatting.

The example in this section is a direct XML export from the Access database Chapter37.accdb.
This particular export format applies the XSL scripting formatting in the XSL file, to the XML file,
as a sequence of VBScript language commands.

VBScript is a Microsoft browser scripting language used to build both client-side scripts
and server-side scripts.

The result is an HTML file (.htm extension), shown in Figure 37-7, generated from the combina-
tion of the XML and XSL files.

Sharing data using XML
Sharing of data is one of the common current commercial applications of XML. XML has standards
established by the World Wide Web Consortium. The result is a highly standardized and consistent
structure and syntax in XML documents. The real end result is that any person, computer, operat-
ing system, and programming or scripting language can understand XML documents. This is
because XML documents all have the same standardized structure.

Therefore, it follows that a set of data from one company, transferred to another company as XML
data, is easily understood by both organizations.

Transmitting data between businesses is called B2B or “Business-to-Business” data
transfer.

The overall result is data connections established between both consistent and disparate environ-
ments, plus across both homogenous and heterogeneous environments and networks. And the
more XML comes into general commercial use, the more software tools such as database engines
and SDKs have value-added XML features included within them.

Access 2007 has some quite extensive XML capabilities, which you’ve seen in previous chapters
(and this chapter as output XML examples), particularly in the realm of importing XML documents
into Access and exporting Access data as XML documents.

Additionally, because XML standards are so open and flexible, software vendors can no longer con-
tinue capitalizing on markets by forcing customers to use specific software products for transfer-
ring data. As XML comes more and more into commercial use, software vendors have no choice
but to adopt XML, without altering the internal structures and mechanism inherent within the uni-
versal standards encouraged by the use of XML.

NOTENOTE

NOTENOTE

1175

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1175

RSS feeds are one of the really incredible spinoffs from sharing of XML data, and the increase in use
of XML. Rich Site Summary, Really Simple Syndication, or just RSS, is a specialized formatting lan-
guage written in XML, which is used to feed information over the Internet. Some RSS feeds are even
free. Web sites such as Yahoo! and MSN.com are richly populated with lots and lots of free RSS
feeds, including subject matter such as news, sports results, weather reports, daily comic strips,
stock quotes — generally anything and everything fun and interesting you might be able to think of.

RSS feeds can be embedded into Web pages. Access can generate pages from ADO recordsets, as
you will see later in this chapter. Thus, including RSS feeds into Access database automatically gen-
erated Web pages is not currently possible.

Some really advanced XML stuff
There are some advanced features of XML including XPath, XQuery, XLink, XPointer, XForms,
XInclude, XML-FO. These features can be described briefly as follows:

n XPath: XPath is an expression language used to parse XML documents. XPath treats an
XML document as a node hierarchy. XPath expressions return chunks of data from XML
documents. XPath finds data by scanning an XML document for a pattern matching a
specified XPath expression. An XPath expression can be absolute (searching from the root
node) or relative (searching from a node somewhere within an XML document). An
absolute XPath expression looks something like this: /root/nodeX/nodeY. A relative
XPath expression looks something like this: nodeX/nodeY.

n XQuery: XQuery is used to execute queries against XML documents. XQuery is con-
structed largely with XPath expressions. Where Structured Query Language (SQL) reads
information from relational databases, XQuery reads data from XML documents. XQuery
uses specialized tools (such as Saxon) to execute XQuery queries against an XML
document.

XQuery can be used to query XML documents stored as XML native structure inside
XML data types, in relational databases such as SQL Server, Oracle, and to a certain

extent DB2 Database using the DB2 Extender.

n XLink and XPointer: These standards are used to create hyperlinks in Web pages using
XML. These links are similar to HTML <A HREF> tags. The difference is that XLink and
XPointer hyperlinks are dynamic, in that they are generated at runtime, based solely on
the content of an XML document. More specifically, the difference between XLink and
XPointer is that XLink creates links pointing to a complete XML document, and thus the
root of an XML document. XPointer, on the other hand, points to a specific fragment
within an XML document.

The term fragment is used to describe a subset node of an XML document, which
includes all that node’s descendant nodes. All descendant nodes are the child nodes, the

children of the children, and so on. An XML fragment must be properly formed XML and must be a
descendant node of the root node. Thus, a fragment cannot be an entire XML document (it cannot
begin with the root node of an XML document).

NOTENOTE

NOTENOTE

1176

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1176

n XForms: XForms is a generic XML standard and is used to dynamically create Web-page
entry forms, based on the dynamic content of an XML document.

n XInclude: This standard allows embedding or inclusion of one XML document within
another, and executed as a single XML document at runtime.

n XML-FO: This standard is the display formatting part of XSL, as opposed to XSLT (XSL
Transformations).

With the exception of XQuery, all of the advanced XML features are consistent with
XML standards by being written in XML. However, there is a new XML standard called

XQueryX, under development, which is written in XML.

XML as a database
A special type of a database is known as a Native XML database, of which there are many available
and in existence, some in use, and some even freely available. However, as mentioned previously
in this chapter: an XML document is made up of data, metadata, and intra-relationships inherent
in its hierarchical structure. Based on these three facts, any XML document is, essentially, a self-
contained database all by itself.

Various standards are used to help refine XML structure, and map structure between relational
tables and XML document structure. This mapping is required because relational databases are
relational structures, while XML documents are hierarchical. The differences between relational
and object structures are considerable.

Comparing relational and object structures has been described as trying to force square
pegs into round holes, or visa versa. The effect is the same: difficult!

There are three XML standards used to create directly programmable mappings between relational
database tables and XML documents:

n Document Type Definition (DTD): Defines the building blocks of an XML document. A
DTD is a separate document (also written in XML of course), containing the relationally
understandable structural definition for the data in an XML document. The resulting
DTD definition can be used as a mapping structure between metadata and relationships,
across relational and XML objects. DTD is not written in XML.

When generating an XML structure as an export from an Access 2007 database, you’ll see
an option to generate a DTD file structure as shown in Figure 37-9.

Figure 39-10 shows a small snippet of the script generated by the export from Access
2007, as shown in Figure 37-9.

NOTENOTE

NOTENOTE

1177

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1177

FIGURE 37-9

Generating DTDs with Access 2007 XML document exports

FIGURE 37-10

An Access 2007 generated XSD file

1178

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1178

n XML Schema Definition (XSD): This is a newer and more sophisticated form of DTD.
XML Schemas apply logical structure to XML data, much like defining a mapping
between XML data and relational table structures in a relational database. Unlike DTDs,
XML Schemas can be used with other XML technologies, such as XPath and XQuery. The
other important improvement of XSD over that of DTD is that XSD is written in XML.

n XML data type: One of the most significant XML features in modern relational databases
is that of the XML data type. The objective of an XML data type is to store not only the
actual text of an XML document into a relational database, but also the programmability
of that XML data. The result is that other XML standards such as XPath and XQuery can
be executed directly against XML data type XML documents, even when the XML is
stored within a relational database.

Unfortunately, Access 2007 does not include the capability of an XML data type. As
already mentioned earlier in this chapter, XML documents can be stored as directly exe-

cutable XML data types in high-end relational databases such as SQL Server, Oracle, and to a certain
extent DB2 Database using the DB2 Extender.

DAO, ADO, ADO.Net, Access 2007,
and XML
Traditionally, in many Microsoft products, including Office and Visual Studio products, XML is
generated using ActiveX Data Objects (ADO) and Recordsets. Essentially, ADO is simply a Data
Definition Language (DLL) file containing a set of routines used for reading data sources, such
as an Access database, and then creating arrays of records. A recordset is the result of a query
against a database. ADO is an ActiveX object, and can, generally speaking, be embedded into any
Microsoft-developed system, as an object with executable methods. ADO recordsets can be created
in VBA programs, Web pages, and many other interfaces and executables.

And there are multiple versions of ADO. There is “traditional” ADO, found in Access. And there is,
of course, ADO.NET, a more sophisticated version of ADO. Microsoft .NET products are techni-
cally black-boxable objects that can be consumed by a wide variety of application types. As a
result, ADO.NET components can be plugged into anything and used somewhat more easily than
ADO.

MSXML is a Microsoft XML Parser with a fully function XML DOM. The latest version
includes recently introduced standards such as XPath and XQuery (using something

called SAX2). MSXML is available in SQL Server 2005 but does not appear to be available in Access
2007. This book is about Access and not SQL Server, so we don’t have room to cover MSXML.

Data Access Objects (DAO) functions in Access 2007. DAO is somewhat faster and less compli-
cated than ADO for certain operations. With this in mind, using DAO to handle XML data in
Access 2007 is a simple operation. The Chapter37.accdb database contains a query
(qryBooks) that looks like this:

NOTENOTE

NOTENOTE

1179

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1179

SELECT BOOKS_AUTHOR.NAME, BOOKS_PUBLICATION.TITLE,
BOOKS_EDITION.ISBN, BOOKS_EDITION.PRINT_DATE,
BOOKS_EDITION.LIST_PRICE, BOOKS_EDITION.FORMAT
FROM (BOOKS_AUTHOR
INNER JOIN BOOKS_PUBLICATION
ON BOOKS_AUTHOR.AUTHOR_ID=BOOKS_PUBLICATION.AUTHOR_ID)
INNER JOIN BOOKS_EDITION ON
BOOKS_PUBLICATION.PUBLICATION_ID=BOOKS_EDITION.PUBLICATION_ID
ORDER BY BOOKS_AUTHOR.NAME;

qryBooks produces the data shown in Figure 37-11.

FIGURE 37-11

The Books query finds records joined from three tables.

In order to code the example shown in Figure 37-11, you can use DAO in a code module that
looks something like this:

Public Sub GenerateXML1()
Dim rs As DAO.Recordset
Dim strsql As String
Dim strOut As String

strsql = “SELECT * FROM Books;”
Set rs = CurrentDb.OpenRecordset(strsql)
Do Until rs.EOF
‘The following statement is too long to
‘reproduce here, but includes the names

1180

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1180

‘of all fields returned by the query:
strOut = strOut & rs.Fields(“NAME”) & ...
rs.MoveNext

Loop
MsgBox strOut

End Sub

All that remains is to create properly formatted XML using a script like that above. So, we change
the script for the generateXML function as follows:

Public Sub GenerateXML2()

‘Declare variables:
Dim rs As DAO.Recordset
Dim strsql As String
Dim strOut As String
Dim fs As Object
Dim xmlFile As Object

‘Create and execute the query:
strsql = “SELECT * FROM Books;”
Set rs = CurrentDb.OpenRecordset(strsql)

‘Build a basic XML document:
strOut = “<?xml version=’1.0’?>” _
& vbCrLf & “<books>” & vbCrLf

Do Until rs.EOF
strOut = strOut & vbTab & “<book author=””” _
& rs.Fields(“NAME”) & “”” _
& “ title=””” & rs.Fields(“TITLE”) & “””” _
& “ isbn=””” & rs.Fields(“ISBN”) & “””” _
& “ print_date=””” & rs.Fields(“PRINT_DATE”) & “””” _
& “ list_price=””” & rs.Fields(“LIST_PRICE”) & “””” _
& “ format=””” & rs.Fields(“FORMAT”) & “””>” _
& “</book>” & vbCrLf

rs.MoveNext
Loop
‘Clean up by shutting down the recordset:
rs.Close
strOut = strOut & “</books>” & vbCrLf

‘write out the XML document
Set fs = CreateObject(“Scripting.FileSystemObject”)
Set xmlFile = fs.CreateTextFile(“c:\Books.xml”, True)
xmlFile.Write (strOut)
xmlFile.Close

End Sub

This VBA procedure creates a file named Books.xml. The result is shown in Figure 37-12.

1181

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1181

FIGURE 37-12

Generating XML from scratch using DAO, a string, and an I/O stream.

The result in Figure 37-12 doesn’t look very good because it has a single-layer hierarchy where all
fields are expressed as attributes of the <book> tag. It could be a lot better. The first step is to cre-
ate a separate tag for each entry as in the following script:

Function GetTab(n As Integer) As String
Dim i As Integer
Dim str As String
For i = 1 To n
str = str & vbTab

Next
GetTab = str

End Function

Public Sub GenerateXML3()

‘declare variables
Dim rs As DAO.Recordset
Dim strsql As String
Dim strOut As String
Dim fs As Object
Dim xmlFile As Object

‘create and execute the query

1182

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1182

strsql = “”SELECT * FROM Books;”
Set rs = CurrentDb.OpenRecordset(strsql)

‘build a basic XML document
strOut = “<?xml version=’1.0’?>” _
& vbCrLf & “<books>” & vbCrLf

Do Until rs.EOF
strOut = strOut & GetTab(1) & “<book>” & vbCrLf
strOut = strOut & GetTab(2) & “<author>” _
& rs.Fields(“NAME”) & “</author>” & vbCrLf

strOut = strOut & GetTab(2) & “<title>” _
& rs.Fields(“TITLE”) & “</title>” & vbCrLf

strOut = strOut & GetTab(2) & “<isbn>” _
& rs.Fields(“ISBN”) & “</isbn>” & vbCrLf

strOut = strOut & GetTab(2) & “<printed>” _
& rs.Fields(“PRINT_DATE”) & “</printed>” & vbCrLf

strOut = strOut & GetTab(2) & “<list>” _
& rs.Fields(“LIST_PRICE”) & “</list>” & vbCrLf

strOut = strOut & GetTab(2) & “<format>” _
& rs.Fields(“FORMAT”) & “</format>” & vbCrLf

strOut = strOut & GetTab(1) & “</book>” & vbCrLf
rs.MoveNext

Loop

‘Clean up by shutting down the recordset:
rs.Close
Set rs =Nothing

‘Add the closing XML tag:
strOut = strOut & “</books>” & vbCrLf

‘Write out the XML document:
Set fs = CreateObject(“Scripting.FileSystemObject”)

Set xmlFile = fs.CreateTextFile(“c:\books.xml”, True)

xmlFile.Write (strOut)
xmlFile.Close

End Sub

The preceding script writes out a file called Books.xml again. The result looks like what you see
in Figure 37-13.

The only problem with these XML examples so far is that the proper relational table structural hier-
archy is not properly represented. The first thing to do is to alter the underlying Books query in
Access 2007, as shown in Figure 37-14.

1183

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1183

FIGURE 37-13

Generating XML from scratch using DAO, a string, and an I/O stream

FIGURE 37-14

Sorting the Access query to match the XML hierarchy

The hierarchical issue is remedied in the following script:

Function GetIndent(n As Integer) As String
Dim i As Integer
Dim str As String

1184

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1184

For i = 1 To n
str = str & Chr(32) & Chr(32) & Chr(32)

Next
GetIndent = str

End Function

Public Sub GenerateXML4()

‘declare variables
Dim rs As DAO.Recordset
Dim strsql As String
Dim strOut As String
Dim fs As Object
Dim xmlFile As Object
Dim author As String
Dim title As String

‘create and execute the query
strsql = “”SELECT * FROM Books ;”
Set rs = CurrentDb.OpenRecordset(strsql)

‘build a basic XML document
strOut = “<?xml version=’1.0’?>” & vbCrLf _
& “<books>” & vbCrLf

Do Until rs.EOF

‘Could use multiple recordsets for this but
‘in Access it is better to “just code it!”

If author <> rs.Fields(“NAME”) Then
strOut = strOut & GetIndent(1) & “<author name=””” _
& rs.Fields(“NAME”) & “””>” & vbCrLf

author = rs.Fields(“NAME”)
End If

If title <> rs.Fields(“TITLE”) Then
strOut = strOut & GetIndent(2) & “<title name=””” _
& rs.Fields(“TITLE”) & “””>” & vbCrLf

title = rs.Fields(“TITLE”)
End If

‘this is the lowest level of the hierarchy
strOut = strOut & GetIndent(3) & “<edition>” & vbCrLf
strOut = strOut & GetIndent(4) _
& “<isbn>” & rs.Fields(“ISBN”) & “</isbn>” & vbCrLf

strOut = strOut & GetIndent(4) & “<printed>” _
& rs.Fields(“PRINT_DATE”) & “</printed>” & vbCrLf

strOut = strOut & GetIndent(4) & “<list>” _

1185

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1185

& rs.Fields(“LIST_PRICE”) & “</list>” & vbCrLf
strOut = strOut & GetIndent(4) & “<format>” _
& rs.Fields(“FORMAT”) & “</format>” & vbCrLf

strOut = strOut & GetIndent(3) & “</edition>” & vbCrLf

rs.MoveNext

If rs.EOF Then
strOut = strOut & GetIndent(2) & “</title>” & vbCrLf

Else
If title <> rs.Fields(“TITLE”) Then
strOut = strOut & GetIndent(2) & “</title>” & vbCrLf

End If
End If

If rs.EOF Then
strOut = strOut & GetIndent(1) _

& “</author>” & vbCrLf
Else
If author <> rs.Fields(“NAME”) Then
strOut = strOut & GetIndent(1) _
& “</author>” & vbCrLf

End If
End If

Loop

‘Clean up by shutting down the recordset:
rs.Close
Set rs = Nothing

strOut = strOut & “</books>” & vbCrLf

‘write out the XML document
Set fs = CreateObject(“Scripting.FileSystemObject”)
Set xmlFile = fs.CreateTextFile(“c:\Books.xml”, True)
xmlFile.Write (strOut)
xmlFile.Close

End Sub

The preceding script once again writes out a file called Books.xml. The result looks like what
you see in Figure 37-15.

1186

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1186

FIGURE 37-15

A properly structured XML hierarchy from a relational table structure

The actual Books.xml document looks like this:

<?xml version=’1.0’?>
<books>

<author name=”Isaac Azimov”>
<title name=”Foundation”>

<edition>
<isbn>246118318</isbn>
<printed>4/28/1983</printed>
<list>9.44</list>
<format>Hardcover</format>

</edition>
<edition>

<isbn>345308999</isbn>
<printed>2/28/1983</printed>
<list>7.99</list>
<format></format>

</edition>
<edition>

<isbn>345334787</isbn>
<printed>12/31/1985</printed>
<list>4.99</list>

1187

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1187

<format>Paperback</format>
</edition>
<edition>

<isbn>345336275</isbn>
<printed>7/31/1986</printed>
<list>6.5</list>
<format></format>

</edition>
<edition>

<isbn>893402095</isbn>
<printed>5/31/1979</printed>
<list>7.49</list>
<format></format>

</edition>
<edition>

<isbn>5553673224</isbn>
<printed>1/31/2020</printed>
<list>29.95</list>
<format>Audio Cassette</format>

</edition>
<edition>

<isbn>5557076654</isbn>
<printed>1/31/1951</printed>
<list>29.99</list>
<format>Audio Cassette</format>

</edition>
</title>
<title name=”Foundation and Empire”>

<edition>
<isbn>553293370</isbn>
<printed></printed>
<list>7.5</list>
<format>Paperback</format>

</edition>
</title>
<title name=”Foundation’s Edge”>

<edition>
<isbn>553293389</isbn>
<printed></printed>
<list>7.5</list>
<format>Paperback</format>

</edition>
</title>
<title name=”Prelude to Foundation”>

<edition>
<isbn>553278398</isbn>
<printed></printed>
<list>7.5</list>
<format>Paperback</format>

1188

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1188

</edition>
</title>
<title name=”Second Foundation”>

<edition>
<isbn>553293362</isbn>
<printed></printed>
<list>7.5</list>
<format>Paperback</format>

</edition>
</title>

</author>
<author name=”James Blish”>

<title name=”A Case of Conscience”>
<edition>

<isbn>345438353</isbn>
<printed></printed>
<list>12</list>
<format>Paperback</format>

</edition>
</title>
<title name=”Cities in Flight”>

<edition>
<isbn>1585670081</isbn>
<printed></printed>
<list>34.5</list>
<format>Hardcover</format>

</edition>
</title>

</author>
<author name=”Larry Niven”>

<title name=”Footfall”>
<edition>

<isbn>345323440</isbn>
<printed>7/31/1996</printed>
<list>7.99</list>
<format>Paperback</format>

</edition>
</title>
<title name=”Lucifer’s Hammer”>

<edition>
<isbn>449208133</isbn>
<printed>5/31/1985</printed>
<list>6.99</list>
<format>Paperback</format>

</edition>
</title>
<title name=”Ringworld”>

<edition>
<isbn>345333926</isbn>

1189

Using XML in Access 2007 37

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1189

<printed>11/30/1990</printed>
<list>6.99</list>
<format>Paperback</format>

</edition>
</title>

</author>
<author name=”William Shakespeare”>

<title name=”The Complete Works of Shakespeare”>
<edition>

<isbn>198711905</isbn>
<printed></printed>
<list>39.95</list>
<format>Hardcover</format>

</edition>
</title>

</author>
</books>

It appears that in Access 2007, XML is only available through the wizards, which handle XML files,
such as importing and exporting, as described in Chapter 17.

SQL Server can use ADO and ADO.NET to manage XML document. However, with the
inclusion of XML data types, and all sorts of other bells and whistles in SQL Server

2005, ADO and even ADO.NET are primitive by comparison.

Summary
XML is, arguably, one of the most important technologies to emerge in recent years. XML is now a
native data format recognized by all of the Microsoft Office applications; it is increasingly finding
acceptance as a format for transferring data from application to application. Because of XML’s
unique ability to support new tags at any time, there are very few types of data that cannot be con-
veyed in an XML file.

This chapter has barely touched on the capabilities possible when using VBA to directly access
XML data. An entire book could be written on just this one topic. This chapter has shown you the
basic VBA code required to read and write XML files, but there is much more that can be done in
your applications once you’ve mastered XML. As with so many other things, it’s impossible to tell
when you’ll need to incorporate XML into your Access 2007 applications.

NOTENOTE

1190

Access as an Enterprise PlatformPart V

45_046732 ch37.qxp 11/21/06 9:08 AM Page 1190

Several of the previous chapters of this book have touched on different
data sources for Access 2007. You’ve seen how Access 2007 supports
importing, linking, and exporting data. Access 2007 has no equal

when it comes to sharing data with other applications.

This chapter explains how to use Microsoft SharePoint as a data source for
Access applications. Microsoft has taken great pains to ensure that Access
and SharePoint interoperate seamlessly, providing Access developers with a
rich source of data accessible from anywhere on the Internet.

SharePoint data are stored as lists. SharePoint lists can be exported from, and
imported into, Access applications. SharePoint lists are available from any
SharePoint site, sharing data across the Internet. In earlier chapters, you read
about the SharePoint basics, about the services provided by SharePoint
Services, and how various types of applications can be implemented using
SharePoint. Additionally, you’ve read about how a SharePoint Web site and
Access can integrate with each other. Linking to SharePoint lists make data
stored on a SharePoint Web site appear as linked tables in Access.

Essentially, SharePoint is a way of sharing data over the Internet. Quite liter-
ally, a point or address on the Internet from which data can be shared
between multiple applications. Those applications can be virtually any-
where on the Internet. This chapter takes a more generic look at using
SharePoint data than previous chapters. The intent of this chapter is to
show how to use SharePoint as a reliable and valuable source of data for
Access applications.

1191

IN THIS CHAPTER
Considering SharePoint as a data
source

Understanding SharePoint and
Access interfaces

Using SharePoint data on Access
forms

Displaying SharePoint data in
Access reports

Using a SharePoint tracking
application

Looking at SharePoint
collaborative applications

Understanding Microsoft
SharePoint Designer

SharePoint as a Data Source

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1191

When hooked into an Access application, SharePoint data are available to all other users of that
SharePoint site. This means that the data input by users at their workstations may be viewed and
updated by other users around the world. Also, you can consider Access 2007 as a consumer of
SharePoint data. Access becomes a feature-rich front-end application, using remote SharePoint data
as if the data were located locally. The user notices nothing out of the ordinary. For all the world, a
SharePoint-hosted Access application looks like any other Access application and contains the
same data-entry screens and reports as any other Access database.

SharePoint technology is still in its infancy and is not really capable of the performance
requirements needed for servicing the Internet community. SharePoint is commonly

used for intranet applications running on local area networks (LANs), rather than across the Internet.

This chapter uses the database named Chapter38.accdb. If you haven’t already
copied this file onto your machine from the CD, you’ll need to do so now.

Building Access Interfaces with SharePoint
Building Access interfaces with SharePoint simply means going in to Access, hooking up with links
to SharePoint Web-site-based data, and then writing forms and reports off those linked tables.

ON the CD-ROMON the CD-ROM

NOTENOTE

1192

Access as an Enterprise PlatformPart V

Introducing SharePoint as a Data Source

This chapter builds on previous chapters covering importing and exporting SharePoint lists, and
includes close integration between Access and SharePoint Web sites. This chapter demonstrates

the power and flexibility of using SharePoint data within Access applications. The data in a
SharePoint Web site is live and real-time to its users. That same SharePoint data are also live and real-
time when data are linked directly to an Access 2007 application.

In reality, SharePoint integration is one of the big stories (from Microsoft’s perspective) in Access
2007. Microsoft is busily moving all kinds of features out of Access, expecting SharePoint function-
ality to take over these capabilities. SharePoint services can be both local to a specific company, and
even rented or leased from service providers.

Note: You can find a commercial site, perhaps even a free demonstration service to experiment with.
This book uses a Microsoft beta SharePoint Web site, which will not be available in the future. When
it comes to Access using SharePoint-available data, you can create links to SharePoint data. The
result is views in Access (which are actually Access tables) linked to SharePoint data. Then Access
applications can build front-end forms and reports from that SharePoint data.

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1192

Copying from Access to SharePoint
Let’s begin with adding something to a SharePoint Web site:

1. Open the Chapter38.accdb Access 2007 database for this chapter.

2. Open the BOOKS_Author table.

When you open the table the Access ribbon changes.

3. Under the Table Tools tab, select the Move to SharePoint option (shown in
Figure 38-1).

FIGURE 38-1

Moving data from Access to SharePoint

The SharePoint Site Wizard starts.

4. Enter the SharePoint site URL.

The site used in this chapter is shown in Figure 38-2.

You can use another active site when reading this book, if you have one available. The
site used here (in Figure 38-2) may not be available when reading this book.

The objective is to create a SharePoint list for each table in your Access database. A
SharePoint list is the SharePoint Services equivalent of a table.

5. Uncheck the Save a Copy of My Database check box.

NOTENOTE

1193

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1193

6. Click Next.

FIGURE 38-2

Selecting a SharePoint site

7. When prompted for a login, enter a valid username and password.

As the wizard progresses, you’ll notice some things happening on your screen indicating
that tables are being copied and converted. The final screen should be as shown in
Figure 38-3.

8. If you receive any errors or warnings, check the Show Details box and read the
information as displayed.

9. Click the Finish button when you’re done.

The result should show the tables linked to and stored at the SharePoint Web site, and
not just in Access any longer. You can see this by rolling over the table name with the
mouse in Access, as shown in Figure 38-4.

1194

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1194

FIGURE 38-3

The results of connecting to a SharePoint site

FIGURE 38-4

After executing the SharePoint Site Wizard, tables are shown linked from Access to
SharePoint.

1195

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1195

Notice also that the icon next to the table name has changed to indicate that the table is
now linked, and not contained locally.

Figure 38-5 shows the three tables copied from Access to the SharePoint site. The tables
and their data are now stored and managed by SharePoint Services. All that is left in the
Access database are logical links to the SharePoint Web site. The tables and data are no
longer stored in the Access database.

FIGURE 38-5

Tables added from Access to SharePoint are highlighted.

Building an Access form using SharePoint data
Now you can create a form in your Access application front end, hooking to data managed by the
SharePoint Web site through the linked tables in the Access database. For this example, we create a
simple form from the linked SharePoint data:

1. Highlight the BOOKS_EDITION table.

2. On the Access ribbon, select the Create tab and then select the Form icon.

Access 2007 builds the form shown in Figure 38-6.

Now let’s use the data in the form.

3. On the top-left side of the Access ribbon, select the View icon and select the Form
View option.

The Form’s view changes, as shown in Figure 38-7.

1196

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1196

FIGURE 38-6

Select a table, and a form creation generates a simple-format form.

FIGURE 38-7

Executing a form in Access against SharePoint-site-based data

1197

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1197

As you can see in Figure 38-7, the Navigation Buttons at the bottom of the form are used
to move to the second record in the SharePoint data. (The data displayed in Figure 38-8
is different from the data in Figure 38-7.)

4. Exit the form and save it as shown in Figure 38-8.

FIGURE 38-8

Saving the simple form you created

Building an Access report using SharePoint data
Now you can also create a very simple Access report using data source from the SharePoint Web site:

1. Select a linked SharePoint table.

2. On the Access ribbon, select the Create tab and click on the Report icon.

The Report wizard appears as shown in Figure 38-9. It may take some time for a
response. Remember that Access has to go out across the Internet to find SharePoint data.

1198

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1198

FIGURE 38-9

Creating a report from a SharePoint data source

The result is the report shown in Figure 38-10. You’ve now executed the report and dis-
played a number of records located anywhere on the Internet in an Access report.

At this point, you’ve created and executed both a form and a report built from SharePoint data
using the Access interface. What you’ve done in the last two sections is use the Access interface as
an application front-end tool. The SharePoint site has been used as a remote data source for an
Access 2007 application.

This chapter doesn’t need to be more complex than it is so far in order to demonstrate this simple
concept. You’ve already managed to achieve what the title of this chapter states: using SharePoint
as a data source (in this case, using Access as an application front-end tool).

1199

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1199

FIGURE 38-10

Executing a report from a SharePoint data source

SharePoint Application Types
SharePoint is an online data source. Access can be used to build extremely rich client-side applica-
tion graphical interfaces. Many collaborative and tracking applications use a SharePoint Services
Web site as a store for data, consuming data stored as SharePoint lists.

The simple fact that a SharePoint Services Web site makes data available online over the Internet
(or over an intranet) makes SharePoint list data simultaneously available to many users. The result
is what’s called a collaborative database or a collaborative application. The word collaborative implies
that data can be simultaneously shared among many users. For example, a company could share
data with its clients, or with employees located at remote offices.

1200

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1200

Tracking applications
A tracking application provides simple lists of data elements, which can be combined into richer
data sets. Many such applications combine both static and dynamic data. Static data in a sales
application describe the customers you sell to and the suppliers you buy from. Dynamic data con-
sist of day-to-day transactions, such as sales orders and notes issued against customers and
invoices from suppliers. In this kind of arrangement, SharePoint lists constitute the tables of a
relational database. The data are stored online and shared across an intranet (or the Internet).
Then rich GUI interfaces can be built for many different clients, or for specific, individual clients,
tailored to specific needs.

Access also ships with templates used to create various common types of applications. Templates
for tables are as shown in Figure 38-11.

FIGURE 38-11

Table templates available in Access 2007

Figure 38-12 shows a number of different templates for SharePoint list data.

1201

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1201

FIGURE 38-12

SharePoint list templates available in Access 2007

With the available templates, skilled programming is not required to use SharePoint data in an Access
2007 application. Anyone can build Access applications that work with SharePoint data, and data
maintenance becomes the responsibility of the company providing the SharePoint Web site. Examine
the templates available in Access 2007 with tables and SharePoint lists by following these steps:

1. Open the Chapter38.accdb database for this chapter.

Under the Create tab, you should see the Tables icon, the Table Templates icon, and the
SharePoint Lists icon.

2. Click the Table Templates icon.

You see the picture shown in Figure 38-13.

3. Examine the structure of the table.

4. Select the Table Templates icon, and click the Contacts option.

You get a new contacts table, much like a the contacts list inside Outlook Express or
Outlook. The new table is displayed in Datasheet View, making it difficult to understand
the design of the table.

5. Right-click the name of table, and then click the Design View option (both com-
mands are shown in Figure 38-13).

You’re prompted to save the table.

6. Name it Contacts and click OK.

This assumes, of course, that you don’t already have a table called Contacts.

1202

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1202

FIGURE 38-13

Creating a table from a table template in Access 2007

7. With the table open in Design View, click the View icon, and click the PivotTable
View option.

No, you’re not going to create a PivotTable — we just want you to see the PivotTable Field
List window that pops up (shown in Figure 38-14).

FIGURE 38-14

A Contacts table template in Access 2007

1203

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1203

As you can see in Figure 38-14, the Contacts table template has typical contact informa-
tion, such as names, e-mail addresses, phone numbers, fax numbers, addresses, and so on.

You don’t have to go through the steps of examining the table structure in each of the
templates, but you can, if you want. That way, you’ll get a good picture of what’s available
from the Access 2007 templates. Figure 38-15 shows the field lists for the tasks, issues,
events, and assets table templates.

FIGURE 38-15

Table templates for tasks, issues, events, and assets in Access 2007

Figure 38-16 shows the field lists for the SharePoint table templates.

SharePoint list templates actually allow you to create a simple schema in Access using a
default template structure. The schema is the table created, as shown by the example

SharePoint list templates in Figure 38-16.

Figure 38-17 shows an example SharePoint Services Web site. With the Existing
SharePoint List option template, you can create a template in the Access GUI for any list
(table of data) on a SharePoint Services Web site.

TIPTIP

1204

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1204

FIGURE 38-16

SharePoint list templates in Access 2007

FIGURE 38-17

A template can be created for an existing SharePoint list

1205

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1205

The same type of results can be obtained when using Access to generate reports as for
creating form table templates.

In the future, numerous other application templates for Access 2007 might become available.
Potential tracking application templates include customer service, projects and project manage-
ment, marketing, sales channels and pipelines, student management, school and college student
management, and others.

Collaborative applications and databases
SharePoint Services Web sites also allow for collaborative, or shared, applications. Companies can
even share application implementations, and even share SharePoint source data with their clientele.
In these situations, collaboration means collaboration between the source of data production (the
company producing data) and their clients (also potentially producing data, but likely consuming
as a priority).

The result is the sharing of data where the combination of SharePoint Portal Server and SharePoint
Services data source, becomes a multiuser database. SharePoint is still emerging as a collaborative
resource, and the capabilities provided by SharePoint lists will surely increase over time. The com-
ponents of a collaborative architecture would be comprised of a database (on a SharePoint Services
site), and perhaps applications could also be shared — but that is not strictly a requirement.
Different organizations could require a different application look and feel, and perhaps even vary-
ing data content. And there is also the issue of data security where you don’t want all your clients
seeing each other’s data. That would be like allowing all the employees in a company to see the
salaries for another company’s employees.

A collaborative application consists of the following general architectural pieces:

n Tracking applications: Used to store and track data changes on a daily basis by storing
the data produced by an operating business.

n Schema free: A customer using a company’s SharePoint data would need to define
schema structures for their application, as with a relational database. This is because the
structure is already defined in the SharePoint Services data. Also, the template capabilities
in tools such as Access and Excel create forms and reports automatically.

n E-Mail updates: Data can be collected and automated using e-mail. All Microsoft Office
products are integrated using forms, and then updated automatically into what is effec-
tively a SharePoint Services database (this is also available for tables linked into SQL
Server database).

n New Office interface: Most importantly, the new Microsoft Office interface is responsible
for much of the look and feel, and ease of use, of new capabilities and collaborative
aspects of Office tools such as Access and Excel.

NOTENOTE

1206

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1206

Microsoft SharePoint Designer 2007
SharePoint Designer is a part of Office 2007 and is interesting enough to mention briefly in this
book. Figure 38-18 shows a simple screen of the primary development window in SharePoint
Designer.

FIGURE 38-18

Microsoft Office SharePoint Designer 2007

Figure 38-18 shows HTML tags, and Cascading Style Sheet (CSS) settings. Figure 38-18 looks a little
like the interface for Visual Studio Designer or a product like Dreamweaver. In this context, SharePoint
Designer is a tool used for developing Web pages using basic HTML and CSS elements. This shows
that SharePoint is essentially and primarily an Internet (or intranet) source for shared data. SharePoint
Designer simply allows for rapid development of browser-driven application interfaces.

SharePoint Designer can also generate ASP.NET pages for server-driven Web applications. It is
more or less code-free (most of the objective behind tools like this), and like much of Access itself,
heavily wizard-driven. In other words, you don’t have to be a highly skilled programmer to pro-
duce usable applications.

You can find more information on SharePoint Designer at http://msdn2.microsoft
.com/en-us/library/ms454098.aspx.NOTENOTE

1207

SharePoint as a Data Source 38

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1207

Summary
This chapter has taken a quick look at the potential benefits of combining data stored in
SharePoint 2007 with Access 2007 forms and reports. Access 2007 enables you to seamlessly
integrate with SharePoint Services, across the Internet or more locally on an intranet. The
SharePoint data are available to any SharePoint user with the appropriate credentials (username
and password), and data security is provided by SharePoint Services.

Microsoft is aggressively and rapidly improving the performance in capability of SharePoint
Services. The ability to share Access data with remote users through SharePoint will only increase
over time.

Several unresolved issues will, in the short term, inhibit using SharePoint for mission-critical data.
Paramount among these concerns is adequately securing SharePoint data from different categories
of SharePoint users.

1208

Access as an Enterprise PlatformPart V

46_046732 ch38.qxp 11/21/06 9:08 AM Page 1208

Historically, the term client/server has been applied to two-tier, local-
ized computer systems. A client/server environment is typically used
to service a single company, using a local area network (LAN), or

sometimes a wide area network (WAN), where a multitude of client comput-
ers are connected to a single server computer. The server computer quite lit-
erally serves up information. The client computer consumes information
provided by the server computer. Of course, there is a two-way interaction
between the client computer and server computer, such that client comput-
ers can also send information back to server computers.

In an Access environment, client/server architecture is not applied only as a
historical term; it includes environments where an Access database commu-
nicates with a server database engine running on the same computer, as well
as server databases running on other computers.

This chapter uses the database named Chapter39.accdb.
If you have not already copied it onto your machine from

the CD, you’ll need to do so now.

The Parts of Client/Server
Architecture
A client/server setup is essentially one or more client computers (worksta-
tions) running some kind of application. That client application is connected
(usually through a network) to a server computer. The application’s features,
such as input screens and reports, provide an interface to the data that the
application uses. The data is stored on the server computer, not the client

ON the CD-ROMON the CD-ROM

1209

IN THIS CHAPTER
Looking at a client/server setup

Identifying the difference
between application and back
office (server)

Understanding multitiered
computer systems

Understanding what an OLTP
database is

Looking at what a data
warehouse is

Knowing where Access 2007 fits

Seeing where Access 2007 excels
and shines

Client/Server Concepts

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1209

computer. In many client/server environments, the only activity that occurs on the client computer
is the interaction between the user and the application.

The ideal example of client/server architecture is the Internet. The Internet is really nothing more
than a wide area network that connects computers using the TCP/IP networking protocol. Each
computer running a Web browser is a client that connects to resources provided by Web servers.
Very little data is stored on the client computers, while vast amounts of data may be kept on the
Web servers. The primary purpose of the Web browser application running on the client comput-
ers is to provide an interface to the data provided by the Web server computers.

Examine the diagram shown in Figure 39-1. Everything is connected to the central server com-
puter. All of the client computers, the Internet browsers shown in the cloud, and even the printer
are effectively client applications of one form or another.

FIGURE 39-1

A client/server computer system layout

Client
computer

Client
computer

Client
computer

Server
computer

Database

The
Internet

Printer

Reporting

1210

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1210

The printer shown in Figure 39-1 produces reports and is connected to both client
computers and the server computer. In this case, a printer is both a client to the server

computer, as well as a resource provided by the server.

Applications
From looking at Figure 39-1, you now know how the terms client and server are used when consid-
ering a computer system as a whole. The next thing to explore is what exactly runs on the different
computers. In Figure 39-1, you can see that a large cloud is used to represent the Internet in gen-
eral. Within that large cloud, you can see web browsers connected to various well-known Web
sites. Every time you go to Yahoo! on your computer at home, your home computer becomes a
client computer connected to the Yahoo! Web site. The combination of your browser program plus
the software running from Yahoo! computers (servers) into your browser on your computer is a
client/server application.

An application is a program running locally on a client computer. The application performs the
operation of connecting the client computer to a server computer. The server computer can be
somewhere on the local network or located on the Internet. Figure 39-2 and Figure 39-3 show two
different applications. Both of these are Access 2007 entry forms found in the Chapter39.accdb
example database.

FIGURE 39-2

An automobile products application entry screen (an Access 2007 form)

NOTENOTE

1211

Client/Server Concepts 39

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1211

FIGURE 39-3

A contacts application entry screen (an Access 2007 form)

The back office
You may have heard of the expression back office, referring to the computers that store a company’s
data. The back-office section of a client/server computer system is normally unseen by the users of
client computers. More than one server computer can be involved in a single application. Server
computers can be running databases, such as SQL Server or Oracle. Server computers can be used
to form a performance funneling structure and data between database servers and client applica-
tions. These funneling-type computers include functions such as acting as Web servers and
application servers.

Back-office computers perform the function of providing data to client applications. Back-office
computers, such as database servers and Web servers, are almost always invisible to end users. The
operation and existence of database and Web server computers is transparent to application users
because users do not interact directly with the server computers.

The database
A database is used primarily to store data. In general, larger and more scalable database engines
like SQL Server provide features well beyond the capabilities of Microsoft Access. One particular
difference between a server database engine like SQL Server and Access is with respect to special-
ized database objects supported by server database engines. These specialized database objects are
stored procedures, user-defined functions, and triggers.

A stored procedure is a block of commands that operates against data in the database. A user-defined
function is similar to a stored procedure except that it returns a single value. A trigger is an event
detector, which executes a sequence of commands when a specific event occurs with the database.
These objects add intelligence and logic that determines how data stored in the database is handled
by the database server.

1212

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1212

Access has its equivalent of stored procedures, functions, and triggers, in the form of macros, mod-
ules, and class modules (see Figure 39-4).

FIGURE 39-4

Access uses macros, modules, and class modules for coded functionality.

In general, a macro stores a sequence of commands and parameters for later automated repetition.
Modules and class modules can be used to create blocks of code, which are stored in an Access
database. These three objects all perform a similar function to that of stored procedures in a server
database, in that they execute sequences of commands. Those commands typically act on data
stored within an Access database, but they can do much more, such as modify the user interface or
interact with the user.

In reality, an Access database is not suitable for the extreme processing power that requires a
server-based database computer system. This role is more suited to database engines like SQL
Server and Oracle Database. Microsoft intends for Access to be used primarily as a single-user or
workgroup database system, not to drive Web sites or to support applications used by hundreds or
thousands of simultaneous users. Access processes its data locally, on the user’s computer. When an
Access database is split, and the back-end .accdb resides on a file server, Access pulls data from
the back-end database and processes it on the user’s computer.

In contrast, server database engines like SQL Server and Oracle, process data on the server com-
puter, and only deliver requested data to the client application. The client-side application is
responsible for supporting the user interface, and responding to user input. This division of opera-
tions is the primary difference between a file-oriented database system like Access and a server
database engine like SQL Server.

Concurrency is a measure of how many users a computer system can service simultane-
ously. Scalability is a measure of how much concurrency, processing and physical

throughput a computer system can handle. Performance is a measure of how fast a computer system
responds to user requests. Generally speaking, a fast response is better than a slow response.

NOTENOTE

1213

Client/Server Concepts 39

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1213

However, Access also fulfills the dual role of both database and application development. Also,
Access 2007 uses its own database engine (called the Access Database Engine), which does not
provide the multiuser/multitasking capabilities of SQL Server. For example, in addition to coding
in stored procedures, databases like SQL Server and Oracle also support highly specialized data-
base objects as in the following:

n View: A stored query definition containing no data. A view is not a physical copy of data.
The data are extracted when the view is requested by a client application.

n Cluster: Physical copies of entire columnar sections of heavily accessed tables, especially
in SQL joins. Clusters do not automatically refresh.

n Clustered index: A special type of index that the physical order of records in a table
matches the table’s primary index.

n Identity fields: Maintains sequential index counters. Typically used to generate surrogate
primary keys for creation of new records in a table in a relational database. Access does
allow auto counters.

A surrogate key is where an integer identifier is used to replace a primary key in a table.

n Temporary table: Used to temporarily store data, usually for intermediary steps in larger
operations.

n Partitioning and Parallel Processing: Physical splitting of tables into separate partitions,
including parallel processing on multiple partitions, or individual operations performed
on individual partitions. Querying a small portion of a table is called partition pruning.

All of the objects described above generally have very specific tasks, roles, or functions. Access
2007 (Access Database Engine) and Access 2003 and before (Jet database engine) do not have
objects of the capacity and scope listed above. Server-based database engines such as SQL Server
and Oracle Database are much more powerful than Access 2007 and can simultaneously service
hundreds or even thousands of users. Furthermore, SQL Server and Oracle databases often contain
millions and millions of records that must be made available to a user within seconds.

On the other hand, Access a supports sophisticated forms-and-reports packages. SQL Server and
Oracle Database do not have built-in application tools, and you must use other tools to build inter-
faces to SQL Server or Oracle data.

A huge improvement of the Access Database Engine over the Jet database engine is that the Access
2007 database engine has built-in integration with SharePoint Services capabilities (see Chapter
23). The Access Database Engine handles all of the complexity of communicating with SharePoint
operating on a remote server located across the Internet.

Web servers and application servers
These types of servers perform a very specific function and usually were not present in historical,
single-company-LAN, client/server environments. On a most basic level, a Web server and an

NOTENOTE

1214

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1214

application server perform exactly the same function. They both form a kind of a processing and
pooling funnel between application computers and back-end server computers.

Figure 39-5 illustrates that the difference between the computers shown in Figure 39-1 and those
shown in Figure 39-5 is a difference of scale and scalability. In Figure 39-5, there is much more
interrogation and direct access to the database on the single-server computer. That single-server
computer is limited as to how much load it can manage and continue to not irritate users by run-
ning too slowly.

FIGURE 39-5

A database server can be overloaded by too many users.

Lots more client
computers

Peripherals

Lots of client
computers

Server
computer

Database

Reports

Millions of Internet users

1215

Client/Server Concepts 39

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1215

Overloading a database server can be prevented by using an intermediary server of some kind. This
intermediary can be a Web server or an application server, as shown in Figure 39-6.

An application server is typically used to serve applications in a largescale client/server environ-
ment. Application servers often perform “load balancing” by directing user requests to server com-
puters that are less busy than heavily used servers. A Web server is used to serve applications in an
Internet environment, and may simultaneously service many hundreds of users. A Web server is
generally focused on the management of connections, by sharing database server connections
among many Internet connections, switching between each end user. The Web server uses connec-
tion pooling to share the resources of the database among all the concurrent user connections.

FIGURE 39-6

Web and application server computers manage back-end server access.

Lots more client
computers

Peripherals

Lots of client
computers

Application
server computer

Web server
computer

Database

Reports

Millions of Internet users

1216

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1216

An application server is less often used for connection pooling than Web servers because the scale
of the number of connections is much reduced. An application server is better suited to maintain
frequently used data in a dedicated computer, as well as performing load balancing.

Multitier Architecture
So, what is a multitier computer system? Database systems can be thought of as consisting of three
major components: the data, the business logic that determines how data are handled by the appli-
cation, and a user interface that interacts with the user. Each of these three components is a tier of
a multitier system.

A tier is a logical construct. It’s a way of segregating an application’s activities. Very often, the tier is
physical as well as logical, but physical separation of tiers is not a requirement of client/server
applications.

Other database architectures involve two tiers, and sometimes only a single tier. Most Access appli-
cations are, quite frankly, written as single-tier database applications. Access forms are most often
bound directly to a data source, and very often the specification for extracting the data is contained
within the ControlSource properties of the forms, reports, and controls in these applications.

An Access application that uses VBA code to extract data and populate forms can be considered a
two-tier database application, but even then, reports are almost always directly bound to a record
source in the database.

Two-tier systems
Most client/server database systems have been built as two-tier systems. This type of architecture is
typical of a company running one or only a few applications, against a database across a LAN.

In case you’re wondering, splitting an Access database into front and back ends is not considered
client/server. One of the fundamental characteristics of client/server databases is that processing
takes place on both the client end and the server end of the application. The front-end processing
is primarily involved with managing and maintaining the user interface, which involves interacting
with the user, validating the user’s input, and preparing the data for delivery to the database
engine. The server-side processing includes extracting and manipulating data before sending to the
client side, as well as receiving data sent from the client and storing that data in the database tables.

When an Access database has been split into two pieces and the portion containing the tables has
been moved to another computer, no processing ever takes place on the back-end computer. You
don’t have to install software on the “server” computer in order to place the back-end database on
it. Access is, and has always been, a file-based database system. The .accdb file used by an Access
2007 application is really nothing more than a data file, much as a Word document is contained
within a file. No processing is required on the part of the computer holding the file in order for
Access to use the data stored within the .accdb file.

1217

Client/Server Concepts 39

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1217

Three-tier systems
A three-tier computer system is where the Web servers and application servers come in to use. In
this case, the resulting architecture is the same as that shown in Figure 39-6, and for all the same
reasons described previously.

Many client/server databases are written as three-tier systems. The data-management tier runs on
the server computer, while the user interface is managed on the client-side workstation. The busi-
ness logic is often split between the client and server computers. Data validation, user notification,
and data transformation often take place within the user interface, usually in the programming
code under the forms and reports. The server computer may also implement business logic in the
form of user-defined functions and stored procedures that validate and verify data before storing it
in the database’s tables.

What Is an OLTP Database?
Historically a client/server database served clients in one company over a small-scale LAN. Online
Transaction Processing (OLTP) is a term used to describe a scaled-up client/server database. The
primary difference is that the OLTP-type database is intended to service a much greater number of
users, usually over the Internet. The result of OLTP databases for the Internet was the introduction
of Web servers and specialized functionality inside relational databases to cater to enormously
increased capacity requirements of the Internet.

An OLTP database is also a transaction-processing database. A transaction is change (adding,
updating, or deleting a record, or changing a table) to the database. So, OLTP databases are built
for large capacity operations (like the Internet) and are primarily used to change data. In other
words, the primary purpose of an OLTP database is to allow access to small amounts of data (at
any one time) to large numbers of users.

An OLTP database provides rapid access to small amounts of data and large numbers of users at
the same. An OLTP database is built with these purposes in mind. Access can be used as a very
small scale Internet database. Many Internet databases contain terabytes of data. Additionally, these
very large Internet OLTP databases are extremely complex from a hardware architectural perspec-
tive and support advanced operations such as:

n Replication: A process of copying database changes, in real-time, to one or more comput-
ers, typically across a WAN but sometimes across a LAN. The most complex form of repli-
cation is master-to-master replication, where data changes are gradually propagated and,
thus, equally distributed, both to and from many equivalent master databases across a net-
work of fully integrated databases. The WAN could be global or in the same company.

n Standby failover: This is specialized database that continually copies changes made in a
primary database, in real-time. If an error situation occurs on the primary database, the
standby database fails over and becomes the primary database. Some companies could

1218

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1218

have multiple standby databases, distributed all over the world. There could even be
standbys of standbys.

n Clusters and grids: This is a term used to describe gluing one or more computers
together, such that many computers behave as a single, far-more-powerful computer.

Advanced features such as replication, failover, and clustering are requirements of high-perform-
ance, high-capacity database systems. These features require the specialized capabilities of server
database engines like SQL Server and Oracle and are simply not possible with a desktop database
system like Microsoft Access.

Access, Client/Server, and Multiple Tiers
Access is really a combination of an application development system, plus a database engine. The
target market for Access as a database development system is not large-scale operations.

Most often, client-side applications that use server-provided data are built with tools like Visual
Studio.NET or the Java programming language. These development systems provide no database
capabilities themselves, yet, they support all the features needed by client-side database applica-
tions. A relatively simple application written in Visual Basic .NET or Microsoft Access is able to
work with terabytes of data stored in SQL Server, without having to support all of the database
operations supported by a server database engine.

Where does Access 2007 fit?
Now just imagine a scenario with an Access 2007 database on a single desktop computer. Then
add an application or two, or maybe 10 or 20 different applications. These applications are all writ-
ten in that same Access database. Next, imagine that the single computer, with the Access database
supports hundreds of simultaneous users. If you’ve had any experience with Access, or a similar
tool, such as dBase or Paradox, you’ll know that this kind of scaled-up scenario is likely to drive
the programmer to another job.

Microsoft has never represented Access as a strong candidate for an application servicing thousands
of simultaneous users. Instead, Microsoft has always primarily represented Access as a single-user
database system, or, at most, a workgroup database. Over time, of course, the capabilities built into
Access have improved to the point that Access is now a valid tool for building client-side applica-
tions that hook into server-provided data. As mentioned earlier in this chapter, Access 2007 seam-
lessly uses data provided by SharePoint Services, no matter where that data is located. Similarly,
Access is also able to use data provided by Microsoft SQL Server or Oracle, located on the local
network or anywhere on the Internet.

Access has severe limitations in client/server environments and, realistically, cannot be used to
drive an Internet site. Even in large-scale computer systems, a tool like Access has a place as a
front-end development tool.

1219

Client/Server Concepts 39

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1219

Access as a database repository
Access is used as a database repository throughout this book. The basic relational database consists
of the ability to create tables containing fields and records, the ability to establish and enforce rela-
tionships between those tables. The application layer of an Access database adds commands allow-
ing changes to data and commands allowing reading of data. Access has all this and then some.
However, as a database repository (a thing to shove data into and change the data), Access has all
that it needs. Figure 39-7 shows a picture of data stored in records (sometimes called rows) in a
table in an Access database.

FIGURE 39-7

A database repository stores fields into records and into tables.

Figure 39-8 shows a table structure in Access, detailing the table’s fields, data types, and specifica-
tions for each field.

Figure 39-9 shows relationships established and enforced between various tables inside an Access
database.

1220

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1220

FIGURE 39-8

A database repository stores data into tables with field and data-type definitions.

FIGURE 39-9

A relational database allows relationships between related tables.

1221

Client/Server Concepts 39

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1221

Access as both database and application
The real beauty and value of Access 2007 can be summarized in the following points:

n Versatile: Access is a highly versatile tool.

n Multifunctional: Access can be used as a database or an application SDK, or both.

n Very easy to use: Most importantly, Access is very easy to use. The interfaces are all
graphical and all intuitive with end users in mind.

So, scalability, Internet databases, data warehouses are really not the target user population of
Access, except in smaller organizations. So all those things are unimportant with respect to Access
as a database and an application SDK.

Access as an Internet database
Although an Access database can be used to drive an Internet site, this practice is not recom-
mended. The Access database engine just can’t hold up to hundreds or thousands of simultaneous
requests. Performance is sure to suffer, and database corruption is virtually guaranteed in such an
environment. For any measure of scalability something like SQL Server is best. And SharePoint is
increasingly a viable data repository for Access applications, or, at the very least, portions of the
data provided by an Access 2007 application. Utilizing SharePoint Services and Access in tandem
might allow adequate servicing of a small-scale Internet database, or perhaps a localized company
or educational intranet.

Summary
This chapter has provided the basis for understanding the differences between an Access desktop
application and a full-blown client/server database produced with a database engine such as SQL
Server. Access 2007 is a fine development tool for producing client-side user interfaces to server-
provided data. Access’s excellent report writer, its superior forms designer, and VBA code com-
bined to produce powerful and useful front ends for SQL Server and Oracle database data.

Microsoft SharePoint Services represents the future of client/server computing. Access 2007 seam-
lessly integrates SharePoint data. The user is unaware whether the data he sees on an Access form
or report resides on his desktop computer, on the local network, or across the Internet. This level
of remote data integration was simply not practical with previous versions of Access but is made
possible by the new features in Access 2007.

1222

Access as an Enterprise PlatformPart V

47_046732 ch39.qxp 11/21/06 9:09 AM Page 1222

Access projects are used to create and maintain SQL Server 2005
Express edition databases, or “full” SQL Server 2005 databases (from
here on usually referred simply as SQL Server). You can also use an

Access project to create the user-interface objects and forms, reports, macros,
and modules, which get their data from SQL Server. The database window
for a project looks very similar to the Access database window you are
already accustomed to. In fact, creating the user-interface objects is virtually
the same as creating them in Access.

This chapter uses a database named Chapter40.accdb. If
you have not already copied it onto your machine from the

CD, you’ll need to do so now.

In general, SQL Server Express edition automatically installs
as if it is to be executed on the same computer you’re work-

ing on. In other words, even though SQL Server is a server database, the
default for SQL Server Express is to execute on the same computer as a client
environment such as Access or Excel.

SQL Server 2005 Express edition is free. You can download it
from (http://msdn.microsoft.com/vstudio/

express/sql/) and use it as a development and deployment database
server. Chapter 41 discusses SQL Server 2005 Express Edition in more detail.

Before beginning this chapter, keep in mind that the intention when using
SQL Server is to use SQL Server to store data and Access to host and present
an application’s screens (forms and reports).

NOTENOTE

CAUTION CAUTION

ON the CD-ROMON the CD-ROM

1223

IN THIS CHAPTER
Learning about SQL Server
connections

Understanding Listener process

Building Connection strings

Comparing SQL Server and
Access 2007 security

Accessing SQL Server tables
from Access 2007

Using SQL Server stored
procedures and views in Access
2007 applications

Understanding SQL Server
procedures, functions, and
triggers

SQL Server as an Access
Companion

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1223

This chapter examines a number of different ways to access SQL Server data from Access 2007.
Although there are no SQL Server object designers (tables, stored procedures, views, and so on) in
the .accdb file format, you can use Open Database Connectivity (ODBC) to link to SQL Server
data objects. However, if you choose to use the Access 2000 ADP data file format you still have
access to the full range of SQL Server object designers (as in earlier versions of Access). You can
edit existing or create new tables, stored procedures, and views when using the ADP file format.

Be aware, however, that when you create an ADP file in Access 2007 (File ➪ New ➪ Browse, then
select ADP from the Save as Type drop-down list), you’re actually creating an Access 2000–format
data file. This isn’t a big issue for most developers, but you may encounter situations where Access
2007 features cannot be supported in an application because the file is not an .accdb.

1224

Access as an Enterprise PlatformPart V

Downloading SQL Server 2005 Express Edition

Microsoft is vitally interested in developers learning and using SQL Server 2005. But, the truth is
that acquiring and installing the “full” versions of SQL Server can be daunting tasks. As a server

application, SQL Server is relatively expensive to license, and its hardware requirements are rather
extensive. Not to worry! Microsoft has a wonderful gift available to you, free for the downloading.

SQL Server 2005 Express Edition is a somewhat stripped-down version of SQL Server intended to be
used as a database engine for smallish workgroup applications, and as a test platform for developers
working on SQL Server front-end applications. You may freely download and install SQL Server
2005 Express, install and use it on your computer, and even bundle it with applications you distrib-
ute to users.

SQL Server Express works and behaves exactly like SQL Server Enterprise, its much bigger brother.
SQL Server Express supports all of the data types, stored procedures, triggers, and other database
objects used in SQL Server Enterprise. In fact, migrating a SQL Server Express database to SQL Server
Enterprise involves nothing more than disconnecting from SQL Server Express and connecting the
database files to SQL Server Enterprise.

The primary differences between the standard editions of SQL Server 2005 and SQL Server Express is
that SQL Server Express databases are limited to 4 GB in size (twice that of Access 2007!), and SQL
Server Express does not support some of the more advanced features of SQL Server Standard and
Enterprise Editions. Otherwise, the database engines in all SQL Server 2005 editions are identical.

You really owe it to yourself and your users to take a look at SQL Server 2005 Express. At the time of
publication, the official home of SQL Server 2005 Express Edition can be found at
http://msdn.microsoft.com/vstudio/express/sql, or do a Web search for “SQL Server
Express download.”

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1224

Connecting to SQL Server
One of the most fundamental operations with any large-scale multiuser database engine, such as
SQL Server, is connecting to the database. Connecting directly to SQL Server, using SQL Server
front-end tools is quite easy. The most basic connection to a database engine such as SQL Server, or
even Oracle Database, is called just that: a connection. A connection is made by routing to that
database on a specific computer, using a username and password (for security), usually using some
type of network protocol such as TCP/IP.

What is a listener?
In SQL Server 2005 Enterprise Edition, a Windows service called SQL Browser is designated as the
SQL Server database listening process. A listening process (or listener) quite literally listens over a
network for requests to connect to a database. Computers on an Ethernet network place messages
onto the network pipeline. Those messages are continually passed around the pipeline, where a
message is routed to by routers, based on an IP address, and sent to the computer having the
matching IP address.

A listener listens on a network for messages with an IP address matching its own. When the lis-
tener hears a network message directed to its IP address, the listener removes the message packet
from the network and services the message. The listener asks the server for a database connection
to use for processing the message. When the server grants a connection to the database, the listener
hands the connection over to a database server process (server database engines like SQL Server
are multi-threaded, and can simultaneously process many, many requests). The database server
processes the request (perhaps a query), and then passes the result back to the sender. Because the
server process assumes responsibility for servicing the user’s request, the listener is able to continue
listening for new database connection requests.

The interaction between the listener process and the database server means that the database
engine does not have to spend time listening for messages directed its way. Instead, the highly
specialized listener serves as a “traffic controller” for the database engine, enabling the engine to
continue working at top-speed on user requests. Once the database engine allocates an execution
thread to process the message handed to it by the listener, the listener returns to its primary task of
listening for the appropriate types of messages on the network.

What is a connection string?
The specification that is used to communicate with a database is called a connection string. A con-
nection string is made up of a number of things:

n Hostname: The host is the computer where the database server resides.

n Database name: The name of a database on a specific server. SQL Server allows for mul-
tiple databases in a single installation, as well as multiple SQL Server installations on a
single computer. Now and then, a SQL Server installation services a single database for
each database server.

1225

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1225

n Authentication: A username and password are used for security. Only authorized users
will have usernames and passwords; thus, only people with usernames and passwords
have access. In some environments, the username and password can use an operating
system username and password. In other cases, a username and password can be part of
the database software itself.

The easiest way to connect to a SQL Server database may be to use a command-line shell utility
called SQLCMD that comes with both SQL Server and SQL Server Express (look in the
C:\Program Files\Microsoft SQL Server\90\Tools\Binn folder). SQLCMD provides a
simple, command-driven interface to SQL Server. Although not practical for managing complex
databases, SQLCMD provides a simple way to verify a SQL Server installation.

The options for SQLCMD are shown in Figure 40-1.

FIGURE 40-1

The SQLCMD utility has numerous options.

Highlighted in Figure 40-1 are the two most significant options, which are –S server (the com-
puter on which SQL Server is running) and -d use database name (the name of a database
within the SQL Server installation).

The name of the server in Figure 40-1 (-S server) is in reality a SQL Server instance
name, not the name of a computer. Figure 40-1 shows a hostname which is the name of

a computer on a network. When installing SQL Server, the default name applied to the SQL Server
instance is the name of the host computer. Also, by default, SQL Server security is set to use the user’s
login name and password as authentication. In other words, SQL Server uses Windows security and
the name of the machine on the network.

When using the SQLCMD utility, the easiest way to communicate with a SQL Server database is
with the following command to get to a specific SQL Server installation:

sqlcmd –S mycomputer

NOTENOTE

1226

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1226

And the following more refined command to connect to a specific database, within a specific SQL
Server installation:

sqlcmd –S mycomputer –d mydatabase

Figure 40-2 shows two connection screens for a tool called SQL Server Management Studio (SQL
Server Management Studio can be downloaded from the same site as SQL Server Express). The
screen on the left is connecting to a SQL Server on a remote computer called P450, using a SQL
Server stored username and password to authenticate. The screen on the right side of Figure 40-2
is on the local computer, using the Windows username to authenticate.

FIGURE 40-2

Connecting to a SQL Server in the Management Studio

As you can see, the connection parameters (making up the connection string) are the same for both
the command-line shell SQLCMD utility and for the windows GUI Management Studio connection
to a SQL Server.

Connecting to SQL Server from Access
Creating a connection between Access and SQL Server environments requires a little something
extra, as opposed to just a simple database connection, because both Access and SQL Server are
essentially autonomous environments that must work together. As with many relational databases
running under Windows, drivers are used to allow tools such as SQL Server and Access to commu-
nicate. As is common with many Microsoft software tools and toys, special drivers are created to
facilitate communication between different software products. These drivers can be used to con-
nect tools such as Excel and Access to an Oracle or DB2 database or, in this case, an Access data-
base connected to SQL Server.

1227

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1227

The drivers in question fall into a number of categories and include Object Database Connectivity
(ODBC), Object Linked Embedding (OLE), and native drivers. Native drivers are often the best
and fastest way to connect to server database engines, but they tend to be less generic and adapt-
able, and likely to apply to one specific product or database. Many of these drivers are produced by
Microsoft because they all run under Windows operating systems. Some individual vendors do
produce their own ODBC and OLE drivers. Microsoft drivers are often said to be more reliable, but
that is an issue open to debate.

Let’s focus on an ODBC driver allowing Access to communicate with a SQL Server. How does one
deal with an ODBC driver? You have to create an ODBC data source, then the reference the ODBC
data source from within Access. First, you create an instance of an ODBC driver, on your client
computer, provide the ODBC driver a name (Access associates with that name). Then Access talks
to the data source name (DSN), which is hooked to the ODBC drive. The ODBC driver in turn
contains the connection string to the SQL Server, which talks to the SQL Server database either on
your local computer or remotely, to another computer, across a network.

Create a data source as follows:

1. Go to Windows Start menu, and choose Settings ➪ Control Panel.

2. In the Control Panel, double-click the Administrative Tools option, and select Data
Sources (ODBC).

The three ODBC configuration options are

n User DSN: A User DSN applies to a specific user on the client computer on which the
User DSN is created.

n System DSN: A System DSN is similar to a User DSN except it applies over a network
(to a certain extent).

n File DSN: A File DSN creates a connection configuration (a connection string), for a
database, into a file on your client computer.

Of these three options, perhaps the File DSN is most useful in most situations. Because the connec-
tion information is stored in a file (the default location for DSN files is C:\Program Files\
Common Files\ODBC\Data Sources), it is easy for you to share a DSN configuration with
other users. Sharing a File DSN is easy: simply locate the DSN on your machine and attach it to an
email, or move it to a common location on the network. User DSNs and System DSNs are actually
stored in the computer’s registry and must be manually set up on each computer needing access to
a data source.

1228

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1228

Essentially, what you are doing in this situation is creating a link from Access to data that is stored
in SQL Server. Therefore, tables are maintained in SQL Server, and the front-end application
(queries, forms, reports, VBA code, and so on) is maintained in Access. In Chapter 17, you exam-
ined importing tables into Access, making copies of metadata and data, from something like a SQL
Server or an Oracle database, creating complete copies of data in an Access database. In this case,
you want to simply link between Access and SQL Server because data are maintained in SQL
Server, and not copied in their entirety in Access. How can you do this?

1. In Figure 40-3, you can see that you select the External Data tab, the Import sec-
tion, and the More drop-down control from the Access user interface.

FIGURE 40-3

Linking to an ODBC data source

2. From the More drop-down control select ODBC Database as a source to link to. As
shown in Figure 40-4, select to link to a table in an external database. Click OK to
continue.

1229

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1229

FIGURE 40-4

Linking to a table stored externally to Access

The screen you get is as shown in Figure 40-5.

FIGURE 40-5

Selecting a data source type

1230

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1230

The options are to link to a File Data Source, a User Data Source, or (possibly) a System
DSN to communicate between Access and SQL Server. You will see a System Data Source
tab in the Select Data Source dialog box when a System DSN is already available on
your computer.

3. Type LocalSQLServer into the DSN Name box and click New.

4. Scroll all the way down the list of drivers and select the SQL Server driver
(ignore the SQL Native Client driver for now), and click Next.

5. When asked where to store the File DSN file, click the Browser button, enter
LocalSQLServer in the File Name box, click Save, and click Next when back at
the screen with the Browse button.

You should have a screen entitled Create New Data Source.

6. Click Finish.

Your next screen is shown in Figure 40-6.

7. Note how the File DSN filename you created is now shown in the data source name
box in Figure 40-6. Enter that, as shown in Figure 40-6, into the other two entry
fields.

The description is not essential. The name of the SQL Server shown in Figure 40-6 is
necessary and should obviously be a SQL Server you can actually get to, if you have
access to one.

FIGURE 40-6

Creating a new data source connection to a SQL Server

1231

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1231

8. Click Next.

9. As you can see in Figure 40-7, you can change all sorts of things.

FIGURE 40-7

Authentication of data source connection to a SQL Server

The default settings shown in Figure 40-7 assume you have a SQL Server with operating
system authentication (SQL Server uses your Windows login name and password to
authenticate you and grant permission to its databases).

10. Click Next.

The next screen, shown in Figure 40-8, shows that my SQL Server installation contains a
database called test.

FIGURE 40-8

Changing the name of the default database to access

1232

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1232

In Figure 40-8, I have checked the Change the Default Database To checkbox,
and changed the text of the database name from master to that of test.

11. Click Next.

12. The following screen you don’t need to worry about. Just click the Finish button
on it. The screen after that you should worry about. Figure 40-9 shows the last dia-
log box of the SQL Server Setup wizard after clicking the Test Data Source button.

If the connection fails, go back over these steps again. If that doesn’t help, you might
want to consider talking to a database administrator or a network administrator.

SQL Server is rather fussy about its name. Prior to SQL Server 2000, SQL Server
assumed the same name as its host computer because only one instance of SQL

Server could be installed on a computer. However, beginning with SQL Server 2000, a single com-
puter can host multiple SQL Sever installations, so the name you use to reference a SQL Server
instance is a bit more complex. The syntax used to reference a SQL Server instance is
MyComputer\MySQLServerInstance, where MyComputer is the name of the host computer,
and MySQLServerInstance is the instance you wish to reference.

If only a single SQL Server instance is installed on the local computer, you may be able to, quite
simply, specify (local) as the name of server. Otherwise, you’ll have to provide the name of the
computer and the SQL Server instance name as described in the previous paragraph.

FIGURE 40-9

Ensuring a successful Access to ODBC to SQL Server connection

13. Click OK on the first screen, and then click OK again on the second screen.

The resulting screen should look like what you see in Figure 40-10.

TIPTIP

1233

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1233

FIGURE 40-10

Using an ODBC connection to link to SQL Server using a File DSN

14. If you want to create a User DSN, a System DSN, or both, go ahead and do so. You’ll
simply be creating multiple data sources to the same SQL Server database. Click OK
to save the new DSN.

Ignore all the system tables (prefixed with sys.) and tables prefixed with INFORMATION_
SCHEMA in the Link Tables dialog box. The tables you’re interested in are generally at the top
of the list in the Link Tables dialog box.

15. Next select tables from the Link Tables dialog box shown in Figure 40-11.

In Figure 40-11, a single table has been created in the test database. The table is named
dbo.Table_1, as highlighted in Figure 40-11. Click the OK button to close the Link
Tables dialog box.

dbo is shorthand for database owner and is the default prefix for all objects within a
SQL Server database. A full explanation of SQL Server authentication, security, and

ownership is well beyond the scope of this chapter. For the meantime, it’s enough to understand that
SQL Server supports multiple users, each of whom is identified by a name. When a user creates a SQL
Server object, he creates the object with either his own name prefix, or with the default dbo prefix,
depending on how SQL Server security is configured.

16. Click OK.

The next screen shows the fields to select from the table called Table_1. We’ve selected
both fields, which are highlighted as shown in Figure 40-12.

NOTENOTE

1234

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1234

FIGURE 40-11

Selecting tables from a SQL Server database

FIGURE 40-12

Selecting fields from a table, from a SQL Server database

17. Click OK.

The result is a table linked from Access, into a SQL Server database. That data is shown
in Figure 40-13, listing the contents of the table from within the Access 2007 graphical
user interface (GUI).

1235

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1235

FIGURE 40-13

A table linked from Access 2007 to SQL Server is entitled dba_<tablename> by
default.

As you can see, connecting from Access 2007 to a SQL Server database is really quite simple, even
if quite a number of steps are involved.

SQL Server security
SQL Server security works as many other large scale relational database do, with one small addi-
tional difference. Many relational databases such as Oracle Database authenticate by validating
usernames and passwords, which are stored in the Oracle database as separate user definitions.

SQL Server can also validate in this manner, allowing a connection to a SQL Server database using
a SQL Server username and password, stored within a SQL Server database. The additional factor
with SQL Server is that it can authenticate a connection to a SQL Server with a local or even a net-
work Windows username and password. Thus, if you’ve already logged in to Windows using a
network username and password, you’re essentially already connected in both the operating
system and the SQL Server installation. In other words, when connecting to SQL Server using
Windows authentication, the connection tool automatically uses the Windows username and
password to connect to SQL Server, without any need to enter a username and password. This is
perhaps the easiest and least obtrusive approach to connecting Access databases to SQL Server.

Oracle also supports connections through an operating-system-level username and password, but
the process is not quite as seamless and transparent as with SQL Server and Windows. The obvious
reason for that is because SQL Server and the Windows operating system are both produced by the
same company — Microsoft. Oracle, on the other hand, operates on a variety of operating systems

1236

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1236

and does not benefit from a homogenous environment as SQL Server does. One of the major bene-
fits of Microsoft software is its inherent integration with all types of software tools and kits.

Comparing Access 2007 and SQL Server Security
How is security in Access 2007 comparable with SQL Server? There is much in the way of security
within Access. This includes security features such as trusted zones, trusted Web sites, trusted
objects, and restrictions on who can view or change specific documents. When using the .mdb file
format, Access allows creation of users, plus granting and revoking of a minimum number of privi-
leges to those users. Access users and privilege details are added to a workgroup information file
(.mdw filename extension), where workgroups are groups of users.

An Access workgroup is much the same as a role in SQL Server. And an Access user is much the
same as a SQL Server user. Access allows authentication of users with passwords. SQL Server does
the same.

The only real difference is that the privileges allowed for allocation to users in Access are few.
Privileges in relational databases such as SQL Server and Oracle Database number in the hundreds
and are divided into system and object privileges. A system privilege allows access to metadata, such
as creating a new table. An object privilege allows access to data, such as adding new records to a
table.

Access (when using the .mdb format with workgroup security configured) pretty much parallels
Oracle and SQL Server security. Unlike Access, however, SQL Server and Oracle security is gener-
ally applied to data, while Access workgroup security applies to data and the user interface. Data
security restricts or allows access to data. From the perspective of data in a SQL Server database,
you secure the content of applications, rather than the actual objects or front-end customer facing
parts of an application.

SQL Server security is very comprehensive. Data stored in SQL Server is secured not only by
the SQL Server database engine, but also by the Windows operating system, as well is whatever
security has been applied to the network system on which SQL Server operates. In addition,
because a SQL Server database is normally located on a dedicated server computer, the database
itself is inaccessible to users. There is very little chance that a user would be able to download a
SQL Server database and carry it away on a removable disk.

When it comes to object security, there is some crossover between Access and SQL Server with the
advent of object-relational databases (including objects into relational databases). For example, the
types of objects that can be stored in a database include things like Word documents, XML docu-
ments, images, audio files, and so on. At the data level, SQL Server security can restrict access to
specific objects.

With respect to Access being also an application tool, something like an XML document can be exe-
cuted from within a browser. So, you can effectively secure something like an XML document in both
a database and an application, or even both. Even for the scenario of combined features between
Access and SQL Server, there is still a distinct difference between database-level security and applica-
tion security, because a database stores data and an application consumes that data. Again, there is

1237

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1237

crossover, such as with stored procedures in SQL Server, because stored procedures in a relational
database can operate functionally on data. An application operates functionally on data.

Access DDL Security Commands
Access 2007 allows execution of the following Data Definition Language (DDL) commands within
Access. These commands cannot be executed from within Access onto another database such as
SQL Server. Similar DDL commands can be executed in SQL Server directly, regardless of any com-
municating Access 2007 database. These DDL commands are allowed in Access 2007:

n CREATE USER: Create one or more users with username and password:

CREATE USER <user> <password> [, ...]

n ALTER USER: Change an existing Access user’s password:

ALTER USER <user> PASSWORD <new> <old>

n CREATE GROUP: Create one or more groups with group name and personal identifier for
a person or group of persons (a person is an Access user):

CREATE GROUP <group> <pid> [, ...]

A group allows you to group privileges together (like a role in SQL Server). Then you can
subsequently add users to that group, granting all the privileges assigned to the group to
any user added to that group.

n ADD USER: Add one or more existing Access users into an existing group:

ADD USER <user> [, ...]

n ALTER DATABASE PASSWORD: Change the password for an entire Access database:

ALTER DATBASE PASSWORD <new> <old>

n GRANT and REVOKE: Grant privileges to, and revoke privileges from, a user or a group:

GRANT <privilege> [,...] ON {TABLE <table>|OBJECT <object>}
TO <user>|<group>

REVOKE <privilege> [,...] ON {TABLE <table>|OBJECT <object>}
FROM <user>|<group>

Some of the more interesting allowed privileges are as follows:

n SELECT: Read data from a table.

n INSERT: Add new records into a table.

n DELETE: Delete records from a table.

n UPDATE: Change existing records in a table.

n CREATE and DROP: Create or drop an object, respectively, such as creating a new table.

n SELECTSECURITY and UPDATESECURITY: Read and change security, respectively,
such as user and password changes.

n DBPASSWORD: Change the password for an entire Access database.

1238

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1238

n DROP: The DROP command has different variations allowing dropping of users and groups:

DROP USER <user> [, ...]
DROP USER <user> [,...] FROM GROUP
DROP GROUP <group> [, ...]

Working with SQL Server
Objects from Access
SQL Server contains all sorts of things that Access does not, in addition to standard relational
tables.

The term relational tables implies that both Access and SQL Server contain tables and
indexes, as well as primary and foreign keys with enforced referential integrity.

SQL Server also supports database objects such as stored procedures, functions, and triggers.
Whatever is linked from SQL Server (not imported) can be utilized from Access tables linked to the
underlying SQL Server objects.

Everything is SQL Server–based because Access 2007 can do one of two things:

n Import tables (with data) from SQL Server as a copy of the SQL Server table. Any
changes to the copy in Access will not be reflected in SQL Server. And any changes to the
same tables in SQL Server will require a refresh in Access, which in this case means a full
and complete re-import of an entire table.

n Link to tables that remain within SQL Server. Linked Access tables can update SQL
Server data because the table and data actually reside in SQL Server, not in Access. In
fact, the interaction between an Access table linked to SQL Server is so seamless that
most users are unaware that they’re working with remote data.

Data types and a comparison between Access 2007 and SQL Server data types are cov-
ered in Chapter 41. The precise meshing of tables between Access and SQL Server is

more relevant there. The chapter covers upsizing, which is essentially converting from Access and
SQL Server. The data types in SQL Server are much more comprehensive. This chapter deals with top-
level objects, such as tables and views, not the structure of those objects (the fields within tables). The
real task of this chapter at this point, in explaining SQL Server as an Access 2007 companion, is to
show which SQL Server objects can be accessed from Access 2007.

Using SQL Server tables from Access
The Access 2007 .accdb database looks as shown in Figure 40-14.

CROSS-REFCROSS-REF

NOTENOTE

1239

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1239

FIGURE 40-14

The Access 2007 tables in the Chapter40.accdb database

As shown in Figure 40-14, some tables have been imported from SQL Server, and some tables are
linked. The Region table is an imported table, which means the table and its data reside in Access.
The data of the Region table are shown in Figure 40-15.

As you can see in Figure 40-15, a new record is being added, for the region of The Planet Mars.
Obviously, the population is 0. The area is set to 1,000 just for fun. Some points need to be made here:

n The copied Region table has had a new record added in Access as soon as the record is
entered and the focus of the Access interface is moved off the row.

n The new record is not present in the SQL Server database because the table resides within
Access.

n There is no way to copy the new record into the SQL Server database. Refresh can only be
performed by copying from SQL Server to Access once again, thus removing the new
record because it is added in Access.

1240

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1240

FIGURE 40-15

Adding a new record to an Access 2007 copied table

There is no refresh for imported tables in either direction.

Linked tables allow data refresh because the data is maintained in one place. The way that changes
are sent back into SQL Server are as shown in Figure 40-16.

As shown in Figure 40-16, changes to tables linked to Access do not appear to be real-time
refreshed into SQL Server. Changes are refreshed on command. This method actually makes sense
with respect to the difference in the functionality and purposes of Access 2007, as compared with
SQL Server 2005.

You could, of course, refresh the other way around and execute a command like this in the SQL
Server database. Figure 40-17 shows a script executed in the query window of the SQL Server
management studio tool, adding a new record, and then displaying it on the screen.

1241

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1241

FIGURE 40-16

Access e-mails changes to SQL Server

FIGURE 40-17

Making changes directly into SQL Server tables

1242

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1242

This is the script used in Figure 40-17:

use test
go
insert into region(region_id,region,population,area)
values(14,’The Planet Jupiter’,0,1000);
go
select * from region;
go

After running this short script and reopening the Access 2007 database, the linked table
(dbo_Region) contains the record just added in SQL Server (see Figure 40-18).

In Figure 40-18, the imported table (Region) does not contain the new record added to SQL
Server, because the copied table has not been recopied.

FIGURE 40-18

SQL Server changes are automatically reflected only in linked Access tables.

Views in SQL Server
Another object used in larger relational databases such as SQL Server and Oracle is called a view. A
view is really a stored query that joins tables and filters data. Essentially, when you create a form in
Access, you’re creating a query behind that form. A SQL Server view object creates a query which
exists only as a chunk of SQL code. When a client application references the view, SQL Server exe-
cutes the SQL statements, producing a table-like view of the data.

The result is that an Access query can be executed against a SQL Server view, as if the view were a
table. When the view is accessed in a SELECT command, the records are retrieved from tables
underlying the view and the records returned to the client. The view itself can include query com-
mand adjustments such as filtering and re-sorting.

1243

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1243

Figure 40-19 shows the creation of a view object in SQL Server. This view object is a join of
regions and countries, returning only the region and country names, all in alphabetical order by
the name of the country, showing a resort of the data by jumbling up the regions. The query and
result are both shown in Figure 40-19.

The code used for the view creation in Figure 40-19 is as follows:

use test
go
create view countries as
select r.region, c.country from region r join

country c on(c.region_id = r.region_id)
go
select * from countries order by country;
go

The view appears as any other SQL Server table when you ask Access 2007 to link to SQL Server
data, as shown in Figure 40-20.

FIGURE 40-19

Creating a view in SQL Server

1244

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1244

FIGURE 40-20

A view is the same as a table with respect to Access 2007.

Also, shown in the bottom-right corner is an extra window brought up by Access when linking to
the SQL Server view, requesting a unique identifier (what amounts to a primary key), to identify
each record. This is obviously the combination of, or composite of, the region and country names.

The unique identifier is needed so that, when data in the view is changed in Access, Access can tell
SQL Server which row has been updated. Without a unique identifier, it would be impossible for
Access to reliably update SQL Server data.

Stored procedures, functions, and triggers
Traditionally, a stored procedure is an addition to the relational database model, allowing for some
processing inside a relational database. The original intention of stored procedures was as a chunk
of SQL code acting solely on data in a database. In recent years, some relational databases have
made stored procedure languages powerful enough that they can perform number-crunching
processing and calculations, often performing tasks that have nothing to do with data stored in a
database.

Stored procedures, functions, and triggers are not queries. A stored procedure is a block
of SQL statements that are executed as a single entity.

One use of stored procedures is as a handy container for storing all of the SQL statements that you
use throughout an application. Instead of writing SQL statements in your application code, you
can store them in the database as stored procedures, calling them from your code in much the

NOTENOTE

1245

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1245

same way that you call a function stored in an Access module. Some of the many benefits of stored
procedures are as follows:

n They can contain multiple SQL statements.

n They can call another stored procedure.

n They can receive parameters and return a value or a result set.

n They’re stored in a semi-compiled, interpretive state on the database server, so they
execute faster than if they were embedded in your code. In other words, stored proce-
dures are typically not compiled into a relational database as binary code, but they are
usually pre-parsed, and partially pre-executed, making for faster execution.

n They’re stored in a common container in your application so that others can main-
tain them more easily because there is less database access code.

n After a stored procedure has been added to a SQL Server database, it is accessible
to any client application using that database. This means that an Access 2007 desktop
database application will execute the exact same logic as a Web application written with
Visual Studio .NET, if they both use the same stored procedure to access data.

Some disadvantages of stored procedures are as follows:

n Overuse of stored procedures tends to place too much business logic into a data-
base. This can sometimes make number-crunching-type business logic execute in a data-
base very slowly. Some types of processing are best left to application coding, which is
often much better suited to intense calculations.

n Overuse of stored procedures for data access can sometimes cause serious issues
with network performance.

Let’s begin by creating a stored procedure in an Access .accdb file (not connected to SQL Server),
and then execute that same stored procedure in Access. Follow these steps:

1. Open the Access .accdb database for this chapter.

2. Click the Create ribbon tab and select Query Design from the Other group on the
Access ribbon.

3. When you see the Show Table dialog box, click Close because you’re going to create
the query by writing SQL statements, not by using existing tables in the database.

4. At the top-left, click SQL View icon at the left side of the Access ribbon.

This gets you into the query text editor. Experiment by running a query such as this:

SELECT * FROM REGION;

5. Click the Run icon in the Results group at the left end of the Access ribbon.

6. Click the view icon at the top-left, and click the SQL View option.

This returns you to the text editor.

1246

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1246

7. Type in the following CREATE PROCEDURE command:

CREATE PROCEDURE JumbledCountries () AS
SELECT r.region,c.country
FROM region r JOIN country c
ON(c.region_id=r.region_id);

Unfortunately, the preceding statement cannot be verified because Access 2007 refuses
to recognize the CREATE PROCEDURE statement. A CREATE TABLE error is also

produced when attempting to execute the preceding CREATE PROCEDURE statement.

Parameters can be passed to a stored procedure by including them in the procedure’s definition
as follows:

CREATE PROCEDURE (<parameter> [,...]) AS ...

An Access 2007 stored procedure can be executed using the EXECUTE command:

EXECUTE <procedure> [<parameter> [, ...]]

You cannot create a function or a trigger in Access 2007. You also cannot access SQL Server proce-
dures, functions, or triggers from an Access 2007 .accdb, but they can be useful in SQL Server.
(These SQL Server objects can be accessed from the .adp file format.)

Now let’s create the same two stored procedures in SQL Server, but directly in SQL Server, and see
if we can execute them through a link with Access. This is the same procedure used previously, but
this time it’s created in SQL Server:

use test
go
CREATE PROCEDURE JumbledCountries () AS
SELECT r.region,c.country FROM region r JOIN country c
ON(c.region_id=r.region_id);
go

A function is an expression because it returns a value, and an expression can be part of another
expression. So, a function can call another function, and so on. The following is a function:

use test
go
CREATE FUNCTION Density(@population AS INT, @area AS INT)
RETURNS INT
AS
BEGIN
RETURN @population/@area;

END;
go

NOTENOTE

1247

SQL Server as an Access Companion 40

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1247

A trigger is a bit of SQL code that executes when some action occurs on a table in a database.
Typically, triggers execute as before (FOR in SQL Server), after (AFTER in SQL Server), and as
instead of (INSTEAD OF in SQL Server) triggers. As the name implies, a before trigger fires before
data is changed in the table, while an after trigger fires after the data has changed.

Another important point about triggers is that they cannot contain transaction termination com-
mands such as COMMIT and ROLLBACK, because other INSERT, UPDATE, DELETE commands,
which are changing data, cause the trigger to execute. Allowing a transaction to terminate inside a
trigger (triggered by a part of a calling transaction) is completely pointless because it negates the
transactional aspect of the calling transaction. The biggest danger with triggers is that they can call
themselves over and over, sometimes recursively, such that serious performance problems result
with what can amount to an extremely large uncommitted transaction (a trigger can’t contain a
COMMIT or ROLLBACK command).

Using triggers to implement and enforce referential integrity is not a recommended
practice for reasons mentioned earlier.

Creating a trigger is very similar to a procedure or a function. This one creates an entry in a log file
every time new product is added:

use test
go
CREATE TRIGGER LogEntries ON Products
FOR INSERT
INSERT INTO LogFile(id,event)
VALUES(<autocounter>,’New Product added’);

go

Summary
This chapter has taken a look at some of the capabilities possible when Access is partnered with
SQL Server. Although some of the techniques used to access SQL Server have changed in Access
2007 the same capabilities are available as in previous versions of Access. Many features require
you to use the Access 2000 .adp format instead of the Access 2007 .accdb file type.

In many ways, Access is the ideal interface tool for SQL Server data. SQL Server provides a high
level of data security, the ability to service thousands of simultaneous users, and advanced data
management tools such as stored procedures, views, and triggers. Also, the storage capacity of SQL
Server installations is practically unlimited. Many SQL Server installations manage billions of
records, making that data available to qualified client applications such as Access 2007.

CAUTION CAUTION

1248

Access as an Enterprise PlatformPart V

48_046732 ch40.qxp 11/21/06 9:09 AM Page 1248

The Access 2007 Upsizing Wizard provides a quick and easy way to
upsize Access data to a SQL Server database. Either SQL Server 2005
Express or full SQL Server can be the target of an Access upsizing

process. The SQL Server database file is exactly the same, regardless of which
edition of SQL Server is used.

SQL Server 2005 Express is a free download from the
Microsoft MSDN Web site (http://msdn.microsoft

.com/vstudio/express/sql/). SQL Server 2005 Express is a somewhat
downsized version of SQL Server Enterprise and contains exactly the same
core code as all SQL Server editions. The data file format, Transact-SQL syntax,
security architecture, and other specifications are the same in SQL Server 2005
Express and SQL Server 2005 Enterprise. The primary differences between
these database engines is that SQL Server 2005 Express does not include sev-
eral of the more advanced features (such as full text searches) that SQL Server
Enterprise includes. Also, SQL Server 2005 Express supports databases up to
4GB in size (SQL Server Enterprise supports terabyte databases). However,
SQL Server Express includes SQL Server Management Studio and SQL Server
Reporting Services. Furthermore, unlike the Microsoft Database Engine
(MSDE) that preceded SQL Server Express, the Express edition does not con-
tain the performance throttle that inhibited more than a few connections to
MSDE. Consult the SQL Server 2005 Express pages on the Microsoft Web site
for more details. SQL Server 2005 Express is the ideal database engine for
small workgroups and individuals wanting to make the leap into client-server
architecture. And the price is definitely right.

The Upsizing Wizard automatically creates an Access Data Project (a special
type of Access data file that allows you to work directly with a SQL Server
database). In Chapters 16 and 40 you saw the simplest and quickest method
of upsizing Access data to SQL Server: simply linking SQL Server data to an

NOTENOTE

1249

IN THIS CHAPTER
Understanding the Access ADP
data file type

Working with the Access 2007
Upsizing Wizard

Upsizing an Access application
to SQL Server

Comparing Access and SQL
Server data types

Upsizing Access Databases
to SQL Server

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1249

existing Access application (presumably, the SQL Server data was imported into SQL Server using
SQL Server Integration Services [SSIS]). Although this option moves your data to a client-server
architecture, it takes you only part of the way. Even though the data now resides in a client-server
database, the linked tables in the existing Access front end (the forms, reports, and data-access
pages) continue to use the Microsoft Jet database engine to retrieve information from the database.

Access Data Projects (ADPs) are frequently used to create and maintain SQL Server 2005 databases
(from here on usually referred to simply as SQL Server). You can also use an Access Data Project to
create the user-interface objects and forms, reports, macros, and modules, which get their data
from SQL Server. The ADP user interface looks very much like the standard Access database win-
dow you are already accustomed to. In fact, creating the user-interface objects is virtually the same
as creating them in Access.

This chapter uses the database named Chapter41.accdb on this book’s CD. If you
haven’t already copied it onto your machine from the CD, you’ll need to do so now.

You’ll also need access to some version of SQL Server (Standard, Enterprise, or Express) if you intend
to practice upsizing Access databases to SQL Server.

Before beginning this chapter in earnest, you need to keep in mind a few things about transferring
data to SQL Server. When upsizing an Access database to SQL Server, SQL Server takes over data-
management tasks. All of the tables, queries, and other data-oriented objects are contained within
the SQL Server database. An Access .adp file is not much more than an interface to the SQL
Server database and contains the forms, reports, VBA code, and other user-interface components.

The good news is that if you’re moving from an existing Access front end to SQL Server, you don’t
have to build these objects from scratch. The Access Upsizing Wizard does most of the work for
you, preserving the work you’ve already invested in the user interface of your Access application.

Using linked SQL Server tables in an Access front end can be an acceptable solution for many
small-workgroup environments. However, for environments with large numbers of users or where
large volumes of data are processed, you need a solution that utilizes client-server architecture in
both the front-end and back-end databases.

Although this chapter focuses on upsizing an Access database to SQL Server, a very
common technique for using SQL Server data in an Access application is to use ODBC

to link to SQL Server tables. Chapter 40 discusses this process and shows how to access SQL Server
data from a standard Access 2007 .accdb file. The .adp file created by the Upsizing Wizard is actu-
ally an Access 2000 format data file, but it features all of the user-interface enhancements seen in the
.accdb data file type.

Upsizing Access and the Upsizing Wizard
Today, many organizations are becoming more and more dependent on their database applications
to manage everyday business operations, and these applications are growing both in volume of
data and number of users. Applications that you may have developed using Microsoft Access even

NOTENOTE

ON the CD-ROMON the CD-ROM

1250

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1250

in the past year or two may be starting to strain the organization’s network. At the same time,
client-server databases like SQL Server are becoming more popular, even with smaller businesses,
because these databases become easier to install, use, and maintain.

You may be among those who have been recently advised of a new mandate that all new applica-
tions must conform to client-server technology only: No file-server database management allowed.
Having already invested a significant amount of your budget into the Access applications that
you’ve developed, you’re naturally concerned that the move to client-server architecture may
require a major rewrite.

Fortunately, with Access 2007 and its Upsizing Wizard, you can provide a relatively simple and
inexpensive solution that retains a significant amount of the original development effort while pro-
viding a database that conforms to client-server methodology.

You can automatically convert the tables stored in an existing Microsoft Access database (.accdb
or mdb) to a client-server database using the Microsoft Access Upsizing Wizard. The Upsizing
Wizard takes an Access Database Engine (formerly called Microsoft Jet database engine), and cre-
ates an equivalent SQL Server database with the same table structures, data, and many other attrib-
utes of the original database. The Upsizing Wizard re-creates table structures, indexes, validation
rules, defaults, autonumbers, and relationships, and takes advantage of the latest SQL Server func-
tionality wherever possible.

Before upsizing an application
You should perform these steps prior to converting an application using the Upsizing Wizard:

n Back up your database. Although the Upsizing Wizard doesn’t remove any data or data-
base objects from your Access database, it’s a good idea to create a backup copy of your
Access database before you upsize it.

n Ensure that you have adequate hard-drive space. At a minimum, you must have
enough hard-drive space to store the new SQL Server database. Plan to allow at least
twice the size of your Access database to allow room for future growth. If you expect to
add a lot of data to the database, make the multiple larger.

n Set a default printer. You must have a default printer assigned, because the Upsizing
Wizard creates a report snapshot as it completes the conversion.

SQL Server should be started automatically by the SQL Server Express installation. If SQL Server is
not currently running, use the SQL Server Management Studio Express that was installed along
with SQL Server Express to start SQL Server. The upsizing process needs a running SQL Server
installation.

If, on the other hand, you’re using a SQL Server instance running on another computer on the net-
work, it is almost surely up and running, and there is nothing more for you to do.

1251

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1251

Running the Upsizing Wizard
After you’ve completed the steps to prepare for the conversion, you’ re ready to upsize your appli-
cation. First, open the Microsoft Access database that you want to convert. This example upsizes
the database for this chapter (Chapter41.accdb— make sure you use the original copy). Keep
in mind that the result of the upsizing wizard is a brand-new Access .adp file already linked to the
SQL Server database created by the Upsizing Wizard. Your original .accdb file remains
unchanged:

1. Open the Access database for this chapter (Chapter41.accdb).

2. Select the Database Tools tab.

3. Select the SQL Server option from the Move Data section.

The first dialog box of the Upsizing Wizard is shown in Figure 41-1.

FIGURE 41-1

Upsizing from Access 2007 to SQL Server 2005

Notice that the Create New Database option has been selected in this dialog box.
Selecting the Use Existing Database option requires an existing SQL Server database as
the target of the upsizing process. For the purposes of this demonstration, the assumption
is that you’re upsizing an Access database to take advantage of the features provided by
SQL Server, and you’re creating a brand-new SQL Server database to use as the data
source for an existing Access application.

4. The second dialog box of the Upsizing Wizard asks for the location of the SQL
Server installation you want to use.

In Figure 41-2, a SQL Server 2005 Express database has been selected running on a com-
puter named “DELL6000.” The Upsizing Wizard create a new database on the selected
server, containing replicates of all of the database objects (except for forms, reports, mod-
ules, and macros) in the current database.

1252

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1252

FIGURE 41-2

Specifying the SQL Server installation to receive the new database

5. The third dialog box (shown in Figure 41-3) allows you to select which tables to
export to the SQL Server database.

Again, our scenario is to completely upsize an Access application to SQL Server, so all
tables have been selected in this dialog box.

FIGURE 41-3

Selecting tables for the upsizing operation

6. The next screen (shown in Figure 41-4) asks for a lot of details on the table attrib-
utes that you want to upsize.

1253

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1253

Generally speaking, if you’ve added an index or validation rule to an Access table, you
want the same attributes in a corresponding SQL Server table. Therefore, all of the
options are selected on this dialog box by default.

FIGURE 41-4

Specifying the table details for the upsizing process

7. The next screen (shown in Figure 41-5) allows you to either specify a new Access
.adp file, or simply link the upsize SQL Server tables to the current database.

Because our scenario is to completely upsize an Access application to SQL Server, and
because we want to use the SQL Server application for managing the tables and other
database objects on SQL Server, Figure 41-5 shows the Creating New Access Client/Server
Application option selected. The default name for the upsized .adp file is the same as the
current Access database with a CS suffixed.

You could just as easily have decided to simply upsize the tables without making any
changes to the current Access database file. This might be a good option if the intent is to
create copies of the Access tables in SQL Server so that other users, working with other
SQL Server client-side applications can use the same data. However, because the data is
copied to SQL Server, there will be no connection between the data remaining in the
Access application and the data seen by other users.

The SQL Server database created by the Upsizing Wizard is accessible to any qualified
SQL Server user. Just because the data came from Access does not mean that the data can
only be used in an Access context. Other users will be able to access the upsized Access
data using applications written in Visual Studio .NET, Web pages built with ASP .NET,
and any other application able to consume SQL Server data (like SharePoint).

1254

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1254

FIGURE 41-5

Choosing how you want your Access application upsized

8. The final dialog box of the Upsizing Wizard (shown in Figure 41-6) asks whether
you want to (in this case, at least) open the new .adp file.

If, instead of upsizing and creating a new .adp file, we had chosen to upsize the tables
and link them back to the current database, we would be returned to the database. But,
for the purposes of this demonstration, we will go ahead and open the new .adp file.

FIGURE 41-6

The final Access Upsizing Wizard dialog box

1255

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1255

If, instead of upsizing all of the Access tables to SQL Server, you had chosen Link SQL Server
Tables to Existing Application, the Upsizing Wizard would have modified your Access database to
work with the new SQL Server database. Queries, forms, reports, and data-access pages are auto-
matically linked to the data in the new Microsoft SQL Server database. The Upsizing Wizard
renames the tables to be upsized with the suffix _local and leaves them intact. For example, if
you upsize a table called Customers, the table is renamed Customers_local in your Access
database. Then, the Upsizing Wizard creates a linked SQL Server table named Customers.

Upsizing the entire Access application to an Access project connected to a SQL Server database
converts your application to a true client-server implementation. However, if you’ve been develop-
ing only Access databases until this point, you’ll find client-server development is quite different.
The Upsizing Wizard takes you only part of the way. The Upsizing Wizard doesn’t make any
changes to modules and macros. You may also need to make changes to your tables and queries to
reach full functionality in the new architecture.

The conversion process itself should take no more than a few minutes to complete. A message box
displays the progress of the conversion, as shown in Figure 41-7

FIGURE 41-7

Waiting for the Upsizing Wizard to complete the conversion process

An error message will be displayed if the Upsizing Wizard encounters referential
integrity errors during the conversion process. You can click Yes to proceed with the

conversion if you encounter an error message. Any problem data is not converted to the new data-
base. If you don’t want to omit the problem data, you must click No to cancel the conversion process.

When the conversion process completes, the Upsizing Wizard automatically displays a report snap-
shot of the upsizing process. An example of the report snapshot is shown in Figure 41-8. The
report snapshot includes information about each step of the conversion process for your applica-
tion. The Upsizing Wizard report contains information about the following:

n Database details, including database size

n Upsizing parameters, including what table attributes you chose to upsize and how you
upsized

NOTENOTE

1256

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1256

n Table information, including a comparison of Access and SQL Server values for names,
data types, indexes, validation rules, defaults, triggers, and whether or not timestamps
were added

FIGURE 41-8

The Upsizing Wizard report

n Any errors, including database or transaction log full; inadequate permissions; device or
database not created; table, default, or validation rule skipped; relationship not enforced;
query skipped (because it can’t be translated to SQL Server syntax); and control and
record source conversion errors in forms and reports

The report snapshot is stored in the same folder as your application so that you can
refer to it later.

Working with an Access ADP file
After you’re finished reviewing the report, close it. When you close the report, the Upsizing Wizard
automatically loads the new Access project. The Access Upsizing Wizard migrates the native Access
objects into their corresponding objects in the new Access project. Although Access projects are
organized into the same object groupings (tables, queries, forms, reports, and so on), Access Data
Project objects differ significantly in how they work compared to native Access. The similarities
and differences are outlined below:

n Tables: Individual tables are converted to SQL Server tables. Data types are converted to
their corresponding SQL Server data types.

TIPTIP

1257

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1257

Refer to the next section, “Comparing Access 2007 to SQL Server data types,” for a list-
ing of SQL Server data types and how they compare to native Access data types.

n Queries: Queries are converted into views, stored procedures, and functions according to
the following rules:

n Select queries that don’t have an ORDER BY clause or parameters are converted to
views.

n Action queries are converted to stored procedure action queries. Access adds SET
NOCOUNT ON after the parameter declaration code to make sure the stored proce-
dure runs.

n Select queries that use either parameters or an ORDER BY clause are converted to user-
defined functions. If necessary, the TOP 100 PERCENT clause is added to a query that
contains an ORDER BY clause.

n Parameter queries that use named parameters maintain the original text name used in
the Access database and are converted either to stored procedures or inline user-
defined functions.

n Forms and Reports: Converted with no changes.

n Data Access Pages: The Upsizing Wizard changes the OLE DB connection and the data
binding information in the Microsoft Office data source control to work with the new
SQL Server database, and it copies the page’s corresponding HTML file to the same loca-
tion as the Access project, renaming the HTML file with a _CS suffix. The new pages in
the Access project retain the original name, so that hyperlinks between the Access project
pages continue to work.

n Command Bars: Converted with no changes.

n Macros and Modules: Converted with no changes.

To take full advantage of SQL Server and an Access project, you need to make some fairly signifi-
cant changes to your newly converted application. Although the Upsizing Wizard tries to make its
best guess as to the most efficient conversion approach, you should review the table and query
designs and revise them as necessary. Record sources and control sources for forms and reports are
converted without any changes. In an implementation with a large number of users, you don’t
want to bind forms and reports directly to a table or even a query.

If you’re converting an application created in an earlier version of Access, you may also
need to manually convert code from Data Access Objects (DAO) to ActiveX Data

Objects (ADO) in your modules.

It is important understand that an Access .adp file does not contain linked tables. The tables in an
Access .adp file are equivalent to any Access table. The only difference is that the table’s data are
provided by SQL Server and not by the Access Database Engine. And, because the tables are hosted
by SQL Server, the data types available to you are somewhat different than in a native Access data-
base. Figure 41-9 shows the user interface of the Access ADP created earlier in this chapter. Notice
how similar it is to any Access 2007 application.

NOTENOTE

CROSS-REFCROSS-REF

1258

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1258

FIGURE 41-9

An Access 2007 ADP looks like any other Access 2000 application.

Comparing Access 2007 to SQL Server data types
Opening an upsized .adp table in Design View quickly reveals a significant difference between
Access and SQL Server. In Figure 41-10, the Contacts table has been open in Design View.
Notice that SQL Server provides many more different field data types and that the properties at the
bottom of the table designer include items such as Precision, Scale, and Identity. These
are all SQL Server constructs, yet they’re accessible from within the Access user interface.

FIGURE 41-10

SQL Server field data types are considerably different than in Access.

1259

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1259

The data types available in Access 2007 are described as in Table 41-1.

TABLE 41-1

The Details of Access 2007 Data Types

Data Type Used to Store Limitations/Restrictions

Text Alphanumeric data Stores up to 255 characters.
(text and numbers)

Memo Alphanumeric data Stores up to 2GB of data (the size limit for all Access
(text and numbers) databases), if you fill the field programmatically.

Remember that adding 2GB of data causes your
database to operate slowly.
If you enter data manually, you can enter and view a
maximum of 65,535 characters in the table field and in
any controls that you bind to the field.
When you create databases in the Access 2007 file
format, Memo fields also support rich-text editing.

Number Numeric data Number fields use a Field Size setting that controls the
size of the value that the field can contain. You can set
the field size to 1, 2, 4, 8, or 16 bytes.

Date/Time Dates and times Access stores all dates as 8-byte double-precision integers.

Currency Monetary data Stores data as 8-byte numbers with precision to four
decimal places. Use this data type to store financial
data and when you don’t want Access to round values.

AutoNumber Unique values created Stores data as 4-byte values; typically used in
by Access when you primary keys.
create a new record

Yes/No Boolean (true or false) data Access uses –1 for all Yes values and 0 for all No values.

OLE Object Images, documents, graphs, Stores up to 2GB of data (the size limit for all Access
and other objects from databases). Remember that adding 2GB of data causes
Office and Windows-based your database to operate slowly. OLE Object fields
programs create bitmap images of the original document or other

object, and then display that bitmap in the table fields
and form or report controls in your database.
For Access to render those images, you must have an
OLE server (a program that supports that file type)
registered on the computer that runs your database. If
you don’t have an OLE server registered for a given file
type, Access displays a broken image icon. This is a
known problem for some image types, most notably
JPEG images.
As a rule, you should use Attachment fields for your
.accdb files instead of OLE Object fields. Attachment
fields use storage space more efficiently and are not
limited by a lack of registered OLE servers.

1260

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1260

Data Type Used to Store Limitations/Restrictions

Hyperlink Web addresses Stores up to 1GB of data. You can store links to Web
sites, sites or files on an intranet or local area network
(LAN), and sites or files on your computer.

Attachment Any supported type of file New to Access 2007 .accdb files. You can attach images,
spreadsheet files, documents, charts, and other types of
supported files to the records in your database, much like
you attach files to e-mail messages. You can also view and
edit attached files, depending on how the database
designer sets up the Attachment field. Attachment fields
provide greater flexibility than OLE Object fields, and they
use storage space more efficiently because they don’t
create a bitmap image of the original file.

Table 41-2 shows the equivalent SQL Server data type for each Access data type.

TABLE 41-2

Comparison of Access 2007 and SQL Server Data Types

Microsoft Access Data Type SQL Server Data Type

Yes/No Bit

Number tinyint, smallint, int, bigint: Very small integers up to very large integers.
Smaller data types use less bytes and occupy less physical space.

real, float: Real numbers and floating-point numbers are the same thing.

decimal[(18,0)]: A decimal defaults to 2 decimal places but can be sized up
to 18 bytes with no decimals.

numeric[(18,0)]: Can be a specified length as for decimal.

Currency money, smallmoney

Date/Time datetime, smalldatetime, timestamp

AutoNumber int (with identity property defined)

Text char(10), varchar(50), varchar(n), varchar(MAX): ASCII character set string
variables.

nchar(10), nvarchar(50), nvarchar(n), nvarchar(MAX): Unicode character set
string variables.

char: Fixed-length string, usually short and known sizes, where string is
padded up to fixed length regardless of value.

varchar(50-n): Variable length strings where no padding added for shorter strings.

MAX: Used for extremely large values.

continued

1261

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1261

TABLE 41-2 (continued)

Microsoft Access Data Type SQL Server Data Type

Memo text and ntext: Large variable text strings stored in binary form. ntext stores
unicode character set.

OLE Object Image: Intended specifically for storing images in binary form.

Attachment No equivalent.

Hyperlink No equivalent.

Lookup Wizard...: based No equivalent.
on a query or multiple
literal values

(no equivalent) binary(50), varbinary, varbinary(50), varbinary(MAX)

(no equivalent, used for uniqueidentifier
replication before
Access 2007)

(no equivalent) xml: XML data type for storing both content and functionality of
XML documents.

(no equivalent) sql_variant: A variable data type except does not allow text, ntext, image,
or timestamp.

Although the Upsizing Wizard maps Access data types to SQL Server data types, there are other
conversion issues you’ll need to be aware of. If the Upsizing Wizard Report indicates that a table
has been skipped, examine the field names in each of the Access tables to ensure that they adhere
to the following constraints:

n The first character must be a letter or the @ sign.

n The remaining characters may be numbers, letters, the dollar sign ($), the number sign
(#), or the underscore (_).

n Spaces are allowed, but the Upsizing Wizard will insert brackets ([]) around the field
name.

n The name must not be a Transact-SQL keyword. SQL Server reserves both the uppercase
and lowercase versions of keywords.

To verify SQL Server reserved words, go to http://msdn.microsoft.com, and
search for Transact-SQL Reference and SQL-Server Language Reference. Be aware that

both content and location of these Web pages may change from the time of writing this book.

If any field name in an Access table fails to follow these guidelines, the Upsizing Wizard is not able
to upsize the table. The Upsizing Wizard Report informs you that the table has been skipped.
However, the wizard does not always provide the reason the table was skipped. When you review
the report, you can refer back to this section to review the field naming rules.

ON the CD-ROMON the CD-ROM

1262

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1262

In addition to field-name constraints, the Upsizing Wizard also fails to upsize a table if it encoun-
ters any of these situations:

n If the field size between two fields participating in an Access relationship are not exactly
the same for both fields.

n No unique index.

n A unique index on a field and Required property is set to No.

n More than two foreign keys defined on a single table.

n Invalid values for a date/time field values must be >=1/1/1753.

After you’re finished reviewing the report, close it. When you close the report, the Upsizing Wizard
displays the modified Access application.

You may notice that all Access text data types are upsized to SQL Server nvarchar
columns. This may cause a problem in some situations. The nvarchar data type supports

Unicode (16-bit) character sets (as does Access 2007), which means every character requires 16 bits
(2 bytes) of data storage, instead of 8 bits (1 byte). Upsizing very large Access tables containing lots of
text fields could, conceivably, overwhelm the 4GB limit on the SQL Server 2005 Express database file.
However, because an Access 2007 database is limited to 2GB, this is, at best, a remote possibility.

Figure 41-11 shows the upsized SQL Server database open in Management Studio Express. The
column properties of the Contacts table are displayed in the Summary tab of the Management
Studio interface, showing the data types the Upsizing Wizard selected for each field in the original
Contacts table.

FIGURE 41-11

Viewing the tables in the upsized database from within SQL Server Management Studio Express

NOTENOTE

1263

Upsizing Access Databases to SQL Server 41

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1263

Summary
This chapter has surveyed the process of upsizing Access 2007 applications to SQL Server, using
the Access .adp data file format as upsized database output. SQL Server alleviates many issues
that have long vexed Access developers, such as database corruption, record lock contention, and
poor performance when more than a few users make simultaneous updates.

Furthermore, upsizing to SQL Server immediately makes Access data accessible to any application
connecting to SQL Server, including Web sites and Microsoft SharePoint Services. It’s hard to overem-
phasize how important this aspect of the upsizing process is to Access developers. The data that your
users input into their desktop Access applications is instantly accessible anywhere in the world, to
anyone with access to SharePoint or another application connected to the SQL Server database.

This chapter also discussed the SQL Server 2005 Express Edition. SQL Server 2005 Express is a
free download from Microsoft’s Web site and, outside minimal registration requirements, can be
used by anyone wanting to take advantage of the SQL Server database architecture and features.
Unlike MSDE, which preceded SQL Server 2005 Express, the Express edition does not include the
performance throttle that inhibited more than five or six connections to MSDE. This means that
SQL Server 2005 Express is the ideal upgrade path for workgroup applications that have outgrown
the Access Database Engine’s capabilities.

1264

Access as an Enterprise PlatformPart V

49_046732 ch41.qxp 11/21/06 9:09 AM Page 1264

Appendixes

We conclude the Access 2007 Bible with several
appendixes to serve as reference material as you
work with Microsoft Access 2007. These appendixes

cover information such as the limits (database size, number of
database objects, maximum number of rows in an Access table,
and so on), and a description of the contents of the book’s CD.

The last appendix is an analysis of the new features in Access
2007. This version of Access includes more changes than any
other previous version of Microsoft Access, both in the user
interface and in challenges facing developers, and we analyze
many of these changes for you in Appendix C.

IN THIS PART
Appendix A
Access 2007 Specifications

Appendix B
What’s on the CD-ROM

Appendix C
What’s New in Access 2007

50_046732 pt06.qxp 11/21/06 9:10 AM Page 1265

50_046732 pt06.qxp 11/21/06 9:10 AM Page 1266

This appendix shows the limits of Microsoft Access database files,
tables, queries, forms, reports, and macros.

Microsoft Access Database
Specifications

1267

Access 2007 Specifications

IN THIS APPENDIX
Identifying the Access 2007
specifications and limits

Looking at limits for Access
2007 tables, queries, forms,
and reports

Reviewing limits for SQL Server
2005 Standard Edition and SQL
Server 2005 64-bit Standard
Edition

51_046732 appa.qxp 11/21/06 9:11 AM Page 1267

TABLE A-1

Databases

Attribute Maximum

ACCDB or MDB file size, including 2GB, minus space needed for system objects
all database objects and data. (Because your database can include attached

tables in multiple files, its total size is limited
only by available storage capacity.)

Total number of objects in a database (tables, 32,768
queries, forms, reports, and so on)

Number of modules, including modules attached to 1,000
forms and reports

Number of characters in object names 64

Number of characters in a database password 14

Number of characters in a username or group name 20

Number of concurrent users 255

TABLE A-2

Tables

Attribute Maximum

Number of characters in a table name 64

Number of characters in a field name 64

Number of fields in a record or table 255

Number of open tables 2,048, including system tables opened by
Microsoft Access internally

Table size 2GB (minus space needed for system objects)

Number of characters in a Text field 255

Number of characters in a Memo field 65,535 when entering data through the user
interface; 1GB when entering data
programmatically

Size of OLE object field 1GB

Number of indexes in a record or table (including 32
composite indexes, primary key indexes, and
other indexes)

Number of fields in an index 10

Number of characters in a validation message 255

1268

AppendixesPart VI

51_046732 appa.qxp 11/21/06 9:11 AM Page 1268

Attribute Maximum

Number of characters in a validation rule (including 2,048
punctuation and operators)

Number of characters in a table or field description 255

Number of characters in a record 4,000 (excludes Memo and OLE Object
fields)

Number of characters in a field property setting 255

TABLE A-3

Queries

Attribute Maximum

Number of tables in a query 32

Number of enforced relationships 32 per table, minus indexes that are on the
table for the fields or combinations of fields
that are not involved in the relationship

Number of fields in a record set 255

Dynaset size 1GB

Sort limit 255 characters in one or more fields

Number of levels of nested queries 50

Number of characters in a cell of the design grid 1,024

Number of characters in a parameter name for a 255
parameterized query

Number of ANDs in a WHERE or HAVING clause 99

Number of characters in a SQL statement 64,000 (approximately)

TABLE A-4

Forms and Reports

Attribute Maximum

Number of characters in a label 2,048

Number of characters in a text box 65,535

Form or report width 22 inches (55.87 cm)

Section height 22 inches (55.87 cm)

continued

1269

Access 2007 Specifications A

51_046732 appa.qxp 11/21/06 9:11 AM Page 1269

TABLE A-4 (continued)

Attribute Maximum

Height of all sections plus section headers in design view 200 inches (508 cm)

Number of levels of nested forms or reports 7 (form-subform-subform)

Number of fields/expressions you can sort or group 10
on (reports only)

Number of headers and footers in a report 1 report header/footer, 1 page header/footer,
10 group headers/footers

Number of printed pages in a report 65,536

Number of characters in a SQL statement that is the 32,750
Recordsource or Rowsource property of a form,
report, or control (both .mdb and .adp)

Number of controls or sections you can add over the 754
lifetime of the form or report

Number of characters in a SQL statement that serves as 32,750
the RowSource property of a form or report, or the
ControlSource property of a control

TABLE A-5

Macros

Attribute Maximum

Number of actions in a macro 999

Number of characters in a condition 255

Number of characters in a comment 255

Number of characters in an action argument 255

Number of modules (including all forms and 1,0000
reports with HasModule property set to True)

1270

AppendixesPart VI

51_046732 appa.qxp 11/21/06 9:11 AM Page 1270

Access Data Projects (ADP) Specifications

TABLE A-6

Access Project

Attribute Maximum

Number of objects in a Microsoft Access project (.adp) 32,768

Modules (including forms and report modules) 1,000

Number of characters in an object name 64

Number of columns in a table 1,024 (MS SQL Server 2000 and 2005)

TABLE A-7

Forms and Reports

Attribute Maximum

Number of characters in a label 2,048

Number of characters in a text box 65,535

Form or report width 22 inches (56 cm)

Section height 22 inches (56 cm)

Height of all sections plus section headers in 200 inches (508 cm)
design view

Number of levels of nested forms or reports 7 (form-subform-subform)

Number of fields/expressions you can sort or group on 10 (reports only)

Number of headers and footers in a report 1 report header/footer, 1 page header/footer,
10 group headers/footers

Number of printed pages in a report 65,536

Number of characters in a SQL statement that is the 32,750
Recordsource or Rowsource property of a form,
report, or control (both .mdb and .adp)

Number of controls or sections you can add over the 754
lifetime of the form or report

1271

Access 2007 Specifications A

51_046732 appa.qxp 11/21/06 9:11 AM Page 1271

TABLE A-8

Macros

Attribute Maximum

Number of actions in a macro 999

Number of characters in a condition 255

Number of characters in a comment 255

Number of characters in an action argument 255

Microsoft SQL Server 2005 Database
Specifications
The capacities of SQL Server 2000 databases are the same as SQL Server 2005. With the exception
of database size, the values in this table apply equally to Microsoft SQL Server 2005 Express
Edition. The maximum size of a SQL Server 2005 Express database is 4GB.

The maximum size of data managed by SQL Server 2005 is practically unlimited because of SQL
Server’s ability to be configured as clustered database servers.

TABLE A-9

Microsoft SQL Sever 2005 Capacities

SQL Server 2005 Database Engine Object Maximum Sizes/Numbers Maximum Sizes/Numbers
for SQL Server 2005 (32-bit) for SQL Server 2005 (64-bit)

Batch size 65,536 × Network Packet Size 65,536 × Network Packet Size

Bytes per short string column 8,000 8,000

Bytes per GROUP BY, ORDER BY 8,060 8,060

Bytes per index key 900 900

Bytes per foreign key 900 900

Bytes per primary key 900 900

Bytes per row 8,060 8,060

Bytes in source text of a stored Lesser of batch size or 250MB Lesser of batch size or 250MB
procedure

Bytes per varchar(max), 1,073,741,823 1,073,741,823
varbinary(max), xml, text,
or image column

1272

AppendixesPart VI

51_046732 appa.qxp 11/21/06 9:11 AM Page 1272

SQL Server 2005 Database Engine Object Maximum Sizes/Numbers Maximum Sizes/Numbers
for SQL Server 2005 (32-bit) for SQL Server 2005 (64-bit)

Characters per ntext or 536,870,910 536,870,910
nvarchar(max) column

Clustered indexes per table 1 1

Columns in GROUP BY, ORDER BY Limited only by number Limited only by number
of bytes of bytes

Columns or expressions in a GROUP 10 10
BY WITH CUBE or WITH ROLLUP
statement

Columns per index key 16 16

Columns per foreign key 16 16

Columns per primary key 16 16

Columns per base table 1,024 1,024

Columns per SELECT statement 4,096 4,096

Columns per INSERT statement 1,024 1,024

Connections per client Maximum value of Maximum value of
configured connections configured connections

Database size 1,048,516TB 1,048,516TB

Databases per instance of SQL Server 32,767 32,767

File groups per database 32,767 32,767

Files per database 32,767 32,767

File size (data) 16TB 16TB

File size (log) 2TB 2TB

Foreign key table references per table 253 253

Identifier length (in characters) 128 128

Instances per computer 16 16

Length of a string containing SQL 65,536 × Network packet size 65,536 × Network packet size
statements (batch size)

Locks per connection Maximum locks per server Maximum locks per server

Locks per instance of SQL Server Up to 2,147,483,647 Limited only by memory

Nested stored procedure levels 32 32

Nested subqueries 32 32

Nested trigger levels 32 32

continued

1273

Access 2007 Specifications A

51_046732 appa.qxp 11/21/06 9:11 AM Page 1273

TABLE A-9 (continued)

SQL Server 2005 Database Engine Object Maximum Sizes/Numbers Maximum Sizes/Numbers
for SQL Server 2005 (32-bit) for SQL Server 2005 (64-bit)

Nonclustered indexes per table 249 249

Parameters per stored procedure 2,100 2,100

Parameters per user-defined function 2,100 2,100

REFERENCES per table 253 253

Rows per table Limited by available storage Limited by available storage

Tables per database Limited by number of Limited by number of
objects in a database objects in a database

Partitions per partitioned table or index 1,000 1,000

Statistics on nonindexed columns 2,000 2,000

Tables per SELECT statement 256 256

Triggers per table Limited by number of Limited by number of
objects in a database objects in a database

UNIQUE indexes or constraints 249 nonclustered and 249 nonclustered and
per table 1 clustered 1 clustered

User connections 32,767 32,767

XML indexes 249 249

1274

AppendixesPart VI

51_046732 appa.qxp 11/21/06 9:11 AM Page 1274

This appendix provides you with information on the contents of the
CD that accompanies this book. For the latest and greatest informa-
tion, please refer to the ReadMe file located at the root of the CD.

This appendix provides information on the following topics:

n System Requirements

n Using the CD

n Files and software on the CD

n Troubleshooting

System Requirements
Make sure that your computer meets the minimum system requirements
listed in this section. If your computer doesn’t match up to most of these
requirements, you may have a problem using the contents of the CD.

n Windows Vista, Windows XP, or Windows 2000 or later. Microsoft
Office 2007only works with these operating systems.

n A PC with a fast processor running at 500 MHz or faster (800 MHz
for Windows Vista).

n At least 256MB of total RAM installed on your computer (512MB
RAM for Windows Vista). For best performance, we recommend a
minimum of 512MB for all versions of Windows.

n 2GB of free disk space (for installation of Microsoft Office 2007).

n A CD-ROM drive.

1275

What’s on the CD-ROM

IN THIS APPENDIX
Using the CD-ROM

Knowing what’s included
on the CD

Solving common problems

52_046732 appb.qxp 11/21/06 9:11 AM Page 1275

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

A window appears displaying the License Agreement.

2. Press Accept to continue.

Files and Software on the CD
The following sections provide more details about the software and other materials available on
the CD.

Example files for the Access 2007 Bible
These files will be installed into a directory named Access 2007 Bible, or you can choose any
directory in which to install these files. Below this directory will be 41 subdirectories named
Chapter_01, Chapter_02, and so on through Chapter_41. Each subdirectory contains all of the
files necessary to follow the examples in the corresponding chapter.

A few chapters have no examples, and do not have a corresponding folder on the book’s CD. Most
chapters contains a single Access 2007 database file with an .accdb extension, such as
Chapter30.accdb, while some folders contain multiple Access database files and auxiliary files
used for the chapter’s examples.

Also, a few chapters include Access 2000–format .mdb data files to demonstrate Access 2007 fea-
tures that are only supported in the older database file formats.

Many chapters also use additional database files, graphics, document files, or help files as found in
each chapter subdirectory and explained at the beginning of each chapter.

eBook version of Access 2007 Bible
The complete text of the book you hold in your hands is provided on the CD in Adobe’s Portable
Document Format (PDF). You can read and quickly search the content of this PDF file by using
Adobe’s Acrobat Reader, also included on the CD.

1276

AppendixesPart VI

52_046732 appb.qxp 11/21/06 9:11 AM Page 1276

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD, try the follow-
ing solutions:

n Turn off any antivirus software that you may have running. Installers sometimes
mimic virus activity and can make your computer incorrectly believe that it is being
infected by a virus. (Be sure to turn the antivirus software back on later.)

n Close all running programs. The more programs you’re running, the less memory is
available to other programs. Installers also typically update files and programs; if you
keep other programs running, installation may not work properly.

n Reference the ReadMe: Please refer to the ReadMe file located at the root of the
CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD, please call the Customer Care phone number: 800-762-2974.
Outside the United States, call 1-317-572-3994. You can also contact Customer Service via the
Web at www.wiley.com/techsupport. Wiley Publishing, Inc., will provide technical support
only for installation and other general quality-control items; for technical support on an applica-
tion, consult the program’s vendor.

1277

What’s on the CD-ROM B

52_046732 appb.qxp 11/21/06 9:11 AM Page 1277

52_046732 appb.qxp 11/21/06 9:11 AM Page 1278

When we first opened Access 2007, we spent the first ten minutes
looking for a “Switch to Classic View” button and never found it.
The user interface is a radical departure from previous versions.

You’ll find a completely new interface that eventually proves faster and some-
what easier but most definitely has a learning curve. Many additional fea-
tures have also been added that make the developer’s job easier and more
enjoyable than ever. Some changes however are not as welcome.

The User Interface
Microsoft has gone to great length to change the look and feel of Access 2007.
To get an idea of how great these changes are, take a look at Figure C-1.

1279

What’s New in Access 2007

IN THIS APPENDIX
Reviewing the changes and
enhancements for the developer
in Access 2007

Looking at what’s new in table
design

Understanding the new form
and report options

Learning the importance of
SharePoint integration

53_046732 appc.qxp 11/21/06 9:12 AM Page 1279

FIGURE C-1

The Access interface is completely revamped for 2007.

As you can see, our old friend Northwind has an entirely new look. The biggest of the changes to
the interface itself is the removal of the traditional nested menus in favor of a more tabular, every-
thing-in-front-of-you, system called the ribbon. The hardest part of the ribbon is finding the file
menu! After you locate it (it’s the circle in the top left with the Microsoft Office logo), you’ll be
pleasantly surprised with its location as well as its easy jump-to Options and general database utili-
ties like Backup or Compact and Compare. The vastly improved File menu (which Microsoft has
renamed the Office menu!) is shown in Figure C-2.

The ribbon is designed to be contextual so that everything you need is there when you need it.
Functions such as Font, Records, and Sort & Filter are grouped together and make the ribbon a
welcome change. The downside of the ribbon is that creating a custom one requires external XML
code as well as a somewhat-strange “callback” model for the VBA procedures that provide the rib-
bon with its intelligence. The lack of a simpler method within Access itself to create and work with
ribbons is a real drawback.

1280

AppendixesPart VI

53_046732 appc.qxp 11/21/06 9:12 AM Page 1280

FIGURE C-2

The complicated set of nested menus and dialog boxes is greatly simplified.

Another organizational feature for the user interface is the use of a tab system for open objects
(tables, forms, queries, and so on) instead of independent, floating windows. No more looking for
an object through various task bar and menu items. Each open object occupies a tab for easy refer-
ence. Figure C-3 shows four different objects open in the tabbed workspace. Even though the
Customer List form is currently displayed in the tabbed area, any of the other open objects (Home,
Order list, and Customer Address Book) is quickly access through its corresponding tab.

The Navigation Pane has also been enhanced to allow the user to view objects by create date,
modified date, dependencies, or custom groups. The Navigation Pane docks at the left side of the
screen so that you have more room to work. You can also collapse the Navigation Pane by clicking
on the left-pointing arrows in the upper-right corner, if you need more room to work on a form or
report. Figure C-4 shows some of the options available for viewing database objects in the Access
2007 Navigation Pane.

1281

What’s New in Access 2007 C

53_046732 appc.qxp 11/21/06 9:12 AM Page 1281

FIGURE C-3

The new tabbed interface is a welcome change.

FIGURE C-4

The new Navigation Pane replaces the old Database window.

1282

AppendixesPart VI

53_046732 appc.qxp 11/21/06 9:12 AM Page 1282

Tables
A table is a table is a table, but new features make life easier and faster. Tables now support rich-
text formatting in memo fields, multivalue fields, and automatic formatting of data pasted from
Excel. If you paste an Excel date field into a new table, Access recognizes it and formats the field as
the Date/Time data type. It’s a simple change but it really does help with initial table design.

Another welcome addition is the alternating color option. Creating a “green bar” look for your
datasheets is now a snap and makes reviewing data and forms that much easier and appealing for
the end user. Another welcome addition to tables is the Attachment data type. Now all types of
documents and binary files can be included in your application without database bloat.

Datasheet View
Datasheet view is now an excellent tool to review, modify, or verify your data. The new enhance-
ments embed filtering and simple math as part of the view itself.

Filtering is now contextual to the field type you choose and many new point-and-click sorts are
available. Figure C-5 shows the filters Access supports for date fields. Similar filters are available
for numeric and text data, as well.

FIGURE C-5

Datasheet view supports a number of powerful filtering and sorting options.

1283

What’s New in Access 2007 C

53_046732 appc.qxp 11/21/06 9:12 AM Page 1283

You can also click on the field name itself and get additional sort-and-filter options based on the
field content. Figure C-6 shows a few of the filtering options for text data.

Along with filtering, you can now get totals for a column right from Datasheet view. These totals
will also apply as you filter down through the records — very cool! Figure C-7 shows the Totals
row added to the bottom of a datasheet. Notice that the Totals row appears below the data con-
tained within the datasheet, and does not interfere with the datasheet’s data.

Fields can easily be added from Datasheet view and there is now a Field Template pane from which
you can choose a field complete with name, data type, length, and prepopulated properties. You
can also set up your own field templates and standard definitions to share with a workgroup or
department.

FIGURE C-6

The Datasheet view’s right-click menu contains additional filtering options.

1284

AppendixesPart VI

53_046732 appc.qxp 11/21/06 9:12 AM Page 1284

FIGURE C-7

Clicking on the Totals ribbon button adds a Totals row to Datasheet view.

Forms
With the expanded field list task pane, you can now add fields that are part of the recordset, as
well as fields from other tables that are not. Access will automatically set up any relationships that
are required as you drag the field onto the form. A new split view is available to show both the
Form view and Datasheet view on the same form. The datasheet can be placed top, bottom, left, or
right side of a split form. Form design has been greatly enhanced with a new view called Layout
view. With Layout view, you can perform many of the most common form edit tasks while looking
at the data on the form itself as opposed to the standard form design option, which does not dis-
play the recordset.

If you’re tired of the same old colors and options, you’ll really enjoy the new format and color
options. Access now has 25 standard color option templates and also includes the ability to create
your own style options. The color palettes supported by Access 2007 are shown in Figure C-8.

1285

What’s New in Access 2007 C

53_046732 appc.qxp 11/21/06 9:12 AM Page 1285

FIGURE C-8

Access 2007 comes with a wide variety of built-in color and font styles for forms and reports.

If that is not enough, there is a new updated color selector as well as the old blend box. Figure C-9
shows the new color selector added to Access 2007.

FIGURE C-9

Access finally supports a full color palette for controls, forms, and reports.

1286

AppendixesPart VI

53_046732 appc.qxp 11/21/06 9:12 AM Page 1286

A completely new option on forms is the ability to embed macros within forms and controls. These
are traditional Access macros that become part of the form, report, or control object just like a
form’s module. Embedded macros are somewhat limited in their functionality but are trusted by
the new security features of Access. Interestingly enough, macros are now being encouraged more
than in the past.

Also added is a calendar date selector for all date/ time formats.

Reports
Reports offer all the new features of forms but also include additional group, sort, and total fea-
tures. Sorting and grouping can be applied and automatically viewed in Report view. Simple group
totals and sums can be added to a section by selecting the section and selecting a Sum Field
option. No need to create a calculated control. Figure C-10 shows the new sorting and grouping
area, and how you set up a report group in Access 2007.

FIGURE C-10

Access 2007 reports come with a number of built-in summary and other totals controls.

1287

What’s New in Access 2007 C

53_046732 appc.qxp 11/21/06 9:12 AM Page 1287

Macros
Microsoft is placing a large emphasis on macros in Access 2007. Much of this has to do with the
new security model. Certain macro actions, such as opening forms and reports, are considered
“safe” and are permitted to run without any adjustments to the default Access security settings.
These macros may be embedded in forms, reports, and controls to automate many common data-
base operations. Macros now include error handling, better debugging, and the ability to assign
values to the variables. This is a big change over previous versions of Access and may be difficult
for many advanced developers to embrace. One neat feature of the new macros is the ability to
schedule them to run through Outlook. This is a neat feature for automatic imports, exports, or
report generation.

Security
User-level security has been removed from this version of Access in favor of the new trusted secu-
rity model that relies on trusted folders and sandbox mode for any other applications. The
enhanced macro functionality is further designed to allow users most functionality through it. In a
nutshell, the plan is to implement most or all of your application’s logic as the new embedded
macro so that the application will be trusted and run under the new model. This may prove diffi-
cult to implement in certain environments.

For users who require user-level security, Access 2007 works with older-format .mdb files without
conversion or enabling. This means you can continue to use an Access 2000, 2002, or 2003 .mdb
file, complete with user-level security, in Access 2007 without changes.

SharePoint
SharePoint Services are being used to provide functionality to enterprise applications over a
SharePoint Server for functionality such as revision history, permission setting, and recovery of
deleted records. SharePoint data residing on distant Web servers is available to local Access appli-
cations with no special requirements other than a fast Internet connection. Access users (with the
appropriate security credentials) are able to view, update, and add to SharePoint data as if the data
resided on their desktop computer, no matter where the SharePoint server is hosted.

SharePoint is sure to grow in importance and prominence in environments where instant access to
remote data is a high priority.

1288

AppendixesPart VI

53_046732 appc.qxp 11/21/06 9:12 AM Page 1288

Summary
Access 2007 represents a large number of new and changed features, all of which present chal-
lenges for Access developers. The new interface requires some adjustments to your way of think-
ing, but it’s considerably more efficient for many common tasks.

In spite of the new features, the loss of user-level security, replication, and the fact that ribbons com-
pletely replace toolbars and menus prove to be an obstacle for some developers. Ribbons are consid-
erably more difficult to build than previous toolbars and menus, and — at least, at the time of this
writing — there were not a lot of examples of ribbons available to guide development efforts.

Overall, though, the new interface and new features are welcome changes in Access 2007. We hope
you’ll find Access 2007 as interesting and productive as we have.

1289

What’s New in Access 2007 C

53_046732 appc.qxp 11/21/06 9:12 AM Page 1289

53_046732 appc.qxp 11/21/06 9:12 AM Page 1290

Symbols and Numerics
` (accent grave) not allowed in field names, 43
& (ampersand)

concatenation operator, 167–168
in custom Text or Memo formats, 61
in input mask strings, 64

* (asterisk)
for adding all fields to query, 133–134, 149
in custom format specifiers, 57
in datasheets, 209
Like operator wildcard, 169, 183, 184, 186–187, 873
multiplication operator, 163
search wildcard, 215
SQL wildcard, 475

@ (at sign)
in custom Text or Memo formats, 61
starting field names in SQL Server, 1262

\ (backslash)
in custom format specifiers, 57
in input mask strings, 64
integer division operator, 164

! (bang). See ! (exclamation mark)
[] (brackets)

Like operator expressions using, 169, 170, 183, 186,
187

for names containing spaces, in SQL queries, 474, 475
not allowed in field names, 43
for referencing fields in queries, 181
for SQL Server field names containing spaces, 1262
in standard Access notation for expressions, 163
surrounding identifiers, 447, 448, 449, 450

^ (caret) exponentiation operator, 164
: (colon)

in custom Date/Time formats, 59
in input mask strings, 64

, (comma)
in custom Date/Time formats, 60
in custom numeric formats, 58
with GetObject function (VBA), 729
in input mask strings, 64

#Const compiler directive, 378, 379, 509, 510
- (dash or minus sign)

for datasheet line styles, 227
in input mask strings, 64
subtraction operator, 163–164

/decompile command-line option, 858–859
$ (dollar sign) in custom numeric formats, 58
. (dot). See . (period)
“ (double quotes)

in custom Date/Time formats, 60
in custom format specifiers, 57
in custom Yes/No field formats, 62
for fields with no values in delimited text files, 563
with Like operator, 186
not allowed in Access project file names, 44
surrounding names, 447
surrounding text in expressions, 448, 449, 450

= (equals sign) in relational operators, 143, 165, 166–167
#Error printed in reports, 663, 677
! (exclamation mark)

in custom format specifiers, 57
identifier operator, 451–453
in input mask strings, 64
Like operator wildcard, 169, 183, 186, 187
not allowed in field names, 43

/ (forward slash)
in custom Date/Time formats, 59
division operator, 164
in input mask strings, 64

> (greater than symbol)
in custom Text or Memo formats, 61
in relational operators, 143, 166–167

#If...#Then...#Else...#End If compiler directive,
378, 509

∞ (infinity symbol) for one-to-many relationships, 146
< (less than symbol)

in custom Text or Memo formats, 61
in input mask strings, 64
in relational operators, 143, 166

- (minus sign). See - (dash or minus sign)

1291

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1291

() (parentheses)
ending functions, 456
order of precedence for, 175

% (percent sign) in custom numeric formats, 58
. (period)

with asterisk wildcard in SQL, 475
in custom numeric formats, 58
for datasheet line styles, 227
identifier operator, 451, 453–454
in input mask strings, 64
not allowed in field names, 43
for specifying table names with fields, 148, 163, 179, 474

+ (plus sign)
addition operator, 163
concatenation operator, 163, 168
in Locals window, 517

(pound sign)
around date/time values in expressions, 448, 449, 450
for conditional compilation directives, 509
in custom numeric formats, 58
delimiting date values in queries, 143
in input mask strings, 63
Like operator wildcard, 169, 183, 186
search wildcard, 215

? (question mark)
in input mask strings, 63
Like operator wildcard, 169, 183, 186
for returning values in Immediate window, 513
search wildcard, 215

“ (quotation marks). See “ (double quotes)
; (semicolon)

in custom Yes/No field formats, 62
ending SQL statements, 480
in input mask strings, 64
separating sections in custom formats, 58, 59, 61, 63

slash. See \ (backslash); / (forward slash)
[] (square brackets). See [] (brackets)
_ (underscore) VBA continuation character, 358, 386–387
0 (zero)

in custom numeric formats, 58
divide-by-zero error, 1152–1153
in input mask strings, 63
leading, not stored in numeric fields, 47
zero-length strings in Text or Memo fields, 68–69

1NF (first normal form)
always needed, 92
example, 91–92
limitations of, 92
rule for, 90
violated by flat-file approach, 90–91

2NF (second normal form)
breaking the rules, 96
decomposition for, 93–94
foreign key in, 95
overview, 92–93
rule for, 92

3NF (third normal form), 96
9 in input mask strings, 63

A
A or a in input mask strings, 64
About box, 1129–1130
AboutTemplateA About box template (on the CD), 1130
Abs() function, 462
absolute speed. See also performance

compacting database for, 837
defined, 836
form and report optimization for, 842–844
indexing tables for, 838–840
module optimization for, 844–849
network performance for, 849
opening database exclusively for, 836–837
query design for, 840–841
system tuning for, 838

.accdb files. See also Chapter files on the CD-ROM
.accde files not convertible to, 828, 829
ADP files versus, 1224
converting older databases to, 27–29, 827
converting to .accde format, 828–829, 1086
database objects residing in, 5
Database1.accdb as default name, 26
decrypting, 943
encrypting, 942–943
maintaining to avoid runtime errors, 502, 803–804
.mdb files versus, 826–827

.accde files. See also distributing applications
Access objects in, 5
creating, 828–829
for demo versions of databases, 828
for library databases, 1081, 1085, 1086
not convertible to .accdb format, 828, 829
restrictions on, 828
VBA code protected by, 945

.accdr file extension, 916, 1125
accent grave (`) not allowed in field names, 43
Access 2007 Bible ebook version, 1276
Access 2007 specifications

ADP specifications, 1271–1272
databases, 1268

1292

IndexS&N

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1292

forms and reports, 1269–1270
macros, 1270
queries, 1269
tables, 1268–1269

Access Auto Auctions database. See also specific objects
AutoNumber fields used for primary keys, 74
comparing data from contact, sales, and line item

information, 17–18
contact information report, 13
creating the database, 26–27
custom ribbon, 1095–1096
customer data for reports, 14–15
data-entry forms, 21
deleting related records in multiple tables, 492–495
file format for, 27
files on the CD-ROM, 29
line item information for invoices, 16–17
lookup tables in, 46
main tables with keys, 19–20
needs analysis for, 12
protecting Visual Basic code, 944–945
referential integrity in, 107
relationships in, 100, 105
report design, 13–14
sales data for reports, 15–16
sales invoice report, 13
switchboard for, 431–433
tasks automated by, 12

Access Data Project files. See ADP (Access Data Project) files
acSysCmdInitMeter constant, 852, 905
acSysCmdRemoveMeter constant, 853
acSysCmdUpdateMeter constant, 852–853
action queries. See also specific kinds

append, creating, 613–614
cautions for using, 611
delete, creating, 614–615
described, 126, 609
make-table, creating, 612
not reversible, 611
running, 131, 615
saving, 615
scoping criteria for, 611
troubleshooting, 615–616
types of, 609–610
update, creating, 611–612
viewing results of, 610–611

actions for macros
ClearMacroError, 1154
Echo, 1138, 1140
Hourglass, 1138, 1139

MsgBox, 1135–1136, 1139, 1147, 1148, 1154
multiple actions in conditions, 1146
OnError, 1153–1155
OpenForm, 1141, 1142–1143
OpenQuery, 1138, 1140
OpenReport, 1144–1145, 1146, 1149, 1150
RemoveAllTempVars, 1146
RemoveTempVar, 1146, 1147, 1148, 1149, 1150, 1154
RunMacro, 1154
SetTempVar, 1146, 1147, 1148, 1149, 1150, 1153
SetWarnings, 1138, 1139

Activate event, 422
Activate method of Word object, 737
Activate report event, 438
ActiveX controls

bound versus unbound objects, 770–771
creating graphs or charts, 782–783
editing embedded objects, 772, 779–780
embedding bound objects, 777–778
embedding graphs in forms, 783–791
embedding unbound objects, 773–777
image controls, 770
linking objects, 780–782
Microsoft Office integration, 792–799
objects overview, 769–772

ActiveX Data Objects. See ADO
ADD USER command (DDL), 1238
add-in databases, opening for read-only access, 835
addition operator

overview, 163
in queries, 176–177

AddLibraryReference sub, 1084
AddNew method (ADO), 490–491
AddStartupProperty() function, 900–901
Admin user

as default, 921–922
password for, 920
removing permissions from, 910, 932

Administer permission, 934
Admins group, 926
ADO (ActiveX Data Objects)

adding records using, 490–491
AddNew method, 490–491
ADO.NET versus, 1179
CancelUpdate method, 486
Close method, 486
cursor values, 483, 484–485
DAO features incorporated into, 483
DAO versus, 546, 686, 1179
Delete method, 491–492

1293

Index A

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1293

ADO (ActiveX Data Objects) (continued)
deleting records using, 491–492
deleting related records in multiple tables, 492–495
described, 482
errors, Errors collection for, 811–812
not needed with SQL Server, 1190
Open method, 483–485, 691, 706
opening database exclusively using, 691
recalculating fields after updating or adding records,

486–488
Recordset data type, 483
Update method, 485
updating fields using, 481–486
XML generated by, 1179

ADO.NET, 1179, 1190
ADOTest sub, 811–812
ADP (Access Data Project) files

.accdb files versus, 1224
described, 5
form events, 425–426
native Access files versus, 1257–1258
specifications, 1271–1272
uses for, 1250
working with, in SQL Server Express, 1257–1259

AfterBeginTransaction event, 426
AfterCommitTransaction event, 426
AfterDelConfirm event, 422, 424
AfterDelConfirm event procedure, 489–490
AfterFinalRender event, 425
AfterInsert event, 422, 424
AfterLayout event, 425
AfterRender event, 425
AfterUpdate event

bookmark added behind, 867–869
cboBuyerID AfterUpdate event procedure, 406–408
FindRecord method for, 865–867
recalculating field after updating or adding records,

486–488
updating fields using ADO, 481–486
when triggered, 422, 424, 427

aggregate expressions in subforms, 625
aggregate queries. See also total queries

in Design View, 593–595
filtering with criteria, 597–598
grand totals in, 595
for number of records in table or query, 585
performance issues, 841
Query Wizard for, 592
subtotals in, 595–597

aliases
for API functions, 958, 959
for fields, 137–138

aligning
controls, 256–258, 293
data in datasheet columns, 228
label controls, 676
page numbers in reports, 671–672

ALL predicate (SQL), 476
Allow Additions form property, 289
Allow Datasheet View form property, 283, 285
Allow Deletions form property, 288
Allow Edits form property, 288
Allow Filters form property, 288
Allow Form View form property, 283, 284
Allow Layout View form property, 283, 285
Allow PivotChart View form property, 283, 285
Allow PivotTable View form property, 283, 285
Allow Zero Length field property

overview, 56, 68
Required property with, 67, 68–69

AllowBypassKey property, 898–900
AllowBypassKeyDemo objects (on the CD), 900
ALTER DATABASE PASSWORD command (DDL), 1238
ALTER USER command (DDL), 1238
ampersand (&)

concatenation operator, 167–168
in custom Text or Memo formats, 61
in input mask strings, 64

AM/PM, am/pm and AMPM Date/Time format specifiers, 60
And operator

for complex criteria selection, 177–180
complex query on different lines, 199–200
general usage in queries, 176–177
with Or across fields in a query, 196
with Or in different fields, 199
overview, 170–171, 193
resultants, 170–171, 180
specifying criteria across fields of a query, 197
specifying range using, 193–194

animating controls on forms, 627–628
anomalies

deletion, 97
insertion, 97
overview, 96–97
update, 94–95, 97

anonymous partial replication, 1029
A/P and a/p Date/Time format specifiers, 60
API (application program interface). See Windows API
API Demo form (on the CD), 962, 963

1294

IndexA

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1294

Append Data to Existing Table paste option, 83, 84
append queries. See also action queries

creating, 613–614
described, 609
multiaction macro using, 1138–1140
viewing results of, 610–611

application servers, 1216–1217
applications in client/server architecture

Access not suitable for, 1222
overview, 1211–1212

application-specific integrity rules, 121–122
ApplyFilter event, 424, 638
arguments

command-line, 383–384, 858–859
conditional compilation, 382, 510–511
function, prefixes for, 956
MsgBox() function, 435–436
named, for procedures, 415–416
passing data to events through, 1073

arithmetic operators. See mathematical operators
AS clause for variable declarations, 395
asterisk (*)

for adding all fields to query, 133–134, 149
in custom format specifiers, 57
in datasheets, 209
Like operator wildcard, 169, 183, 184, 186–187, 873
multiplication operator, 163
search wildcard, 215
SQL wildcard, 475

at sign (@)
in custom Text or Memo formats, 61
starting field names in SQL Server, 1262

AttachExcel() function, 547–549
attaching labels to controls, 260–261
Attachment controls, 246. See also controls
Attachment data type or field

described, 46
overview, 50, 85–86, 1261
storage requirements, 46

attributes
GetLabel (XML), 1102, 1103
identifier operators for, 453–454
OnAction (XML), 1099
onLoad (XML), 1114

audio files in OLE objects, 274–275
Auto Center form property, 285
Auto Data Tips option, 380, 506, 517
Auto List Members feature, 364, 380, 505, 506
Auto Quick Info feature, 365, 380, 505–506

Auto Resize form property, 285
Auto Syntax Check option, 379, 499–500, 504
auto-closing forms, 629
AutoCorrect option for names, 36
AutoIndent option, 379
AutoIndex on Import/Create option, 70
auto-joins, 152, 153
AutoKeys macro, 893
Automation

closing an object instance, 730
creating an object instance, 727–728
creating references, 724–727
described, 723, 724
early binding an object, 724–725, 727
getting an existing object instance, 728–729
late binding an object, 725–727
reference libraries for, 725
Word example using, 730–740
working with objects, 729–730

Automation servers, 727
AutoNumber data type or field

controls displaying, not editable, 274
converting, 54, 55
in datasheets, 210
described, 44, 46
fields not editable in datasheets, 218
New Values property, 55
overview, 50, 1260
for primary keys, 73–74, 111, 114
in replica sets, 1010–1011
Required property not applicable to, 67
SQL Server equivalent, 1261
storage requirements, 46
in tblContacts table, 51

Avg() function, 460, 595
Ayers, Danny (Beginning XML), 1171

B
back office

database, 1212–1214
overview, 1212
Web servers and application servers, 1214–1217

BackColor control property, 620
back-end database. See also splitting databases

defined, 28
file location scenarios, 687, 696
for multiuser applications, 687
reasons for using, 28

1295

Index B

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1295

background pictures for forms, 636–637
backing up

before converting to Design Master, 990–991
replicas, avoiding, 1013
before upsizing to SQL Server, 1251

backslash (\)
in custom format specifiers, 57
in input mask strings, 64
integer division operator, 164

bang. See exclamation mark (!)
basAPIFunctions module (on the CD), 962
basAttachExcel module (on the CD), 547
basLinkText module (on the CD), 550
basSalesFunctions module, 409
basTestLinks module (on the CD), 553
BeepWarning procedure, 362–363, 374
BeforeBeginTransaction event, 426
BeforeCommitTransaction event, 426
BeforeDelConfirm event, 422, 424, 489
BeforeInsert event, 422, 424
BeforeQuery event, 425
BeforeRender event, 425
BeforeScreenTip event, 422, 425
BeforeUpdate event, 422, 424, 426, 427
BeginBatchEdit event, 426
Beginning XML Databases (Powell), 1171
Beginning XML (Hunter, Watt, Rafter, Duckett, Ayers, Chase,

Fawcett, Gaven, and Patterson), 1171
Between...And operator

overview, 172–173
in queries, 176–177, 194

billboards, 850
blank forms, creating, 238, 243
blank lines, adding to reports, 668–670
bookmarks

locating records using, 867–869
marking records using, 848–849
performance improvements from, 848
in Word Automation example, 731, 732–733, 736–738

BOOKS_Author table (on the CD), 1193
BOOKS_EDITION table, 1196
Books.xml document, 1187–1190
Boolean data type (VBA), 396
Boolean (logical) operators

And, 170–171, 177–180, 193–194, 196–197, 199–200
for complex criteria selection, 177–180
in expressions, 445
general usage in queries, 176–180
list of, 170
Not, 172, 187–188

Or, 171, 177–180, 190–192, 196, 198–200
precedence, 174

Border Style property
of controls, 330
of forms, 285, 642

bound controls. See also controls
adding using Field List, 249–250, 251–252
bound controls, 64
bound forms required for, 282
Bound Object Frame controls, 246, 246–247, 249–250,

778
field properties with, 250
naming in expressions, 340
overview, 247
Record Source form property required for, 282
unbound controls versus, 251

bound forms
creating, 282
defined, 282, 714
unbound forms versus, 714–715

Bound Object Frame controls. See also controls
adding picture to, 778
adding using Field List, 249–250
described, 246
Use Control Wizards command for, 246–247

bound objects
described, 770
editing embedded objects, 772, 779–780
embedding, 777–778
unbound objects versus, 770–771

brackets ([])
Like operator expressions using, 169, 170, 183, 186, 187
for names containing spaces, in SQL queries, 474, 475
not allowed in field names, 43
for referencing fields in queries, 181
for SQL Server field names containing spaces, 1262
in standard Access notation for expressions, 163
surrounding identifiers, 447, 448, 449, 450

branching constructs
branching, defined, 369
If...Then...Else...End If, 369–370
performance optimization, 846
Select Case...End Select statement, 371–372

Break on All Errors option, 380, 504
breakpoints

described, 513
removing, 513
setting, 513–515, 805
stepping through code using, 515–517
Stop statements as alternatives, 515

1296

IndexB

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1296

B2B (Business-to-Business) data transfer, 1175
bullet characters for reports, 658–660
bulletproofing applications. See also debugging; error

handling; perceived speed; security
adding logging, 906–908
bulletproofing defined, 878
characteristics of bulletproof applications, 878–879
checking for hardware errors, 884–885
considering user skill and training requirements,

882–883
developing to a specification, 880, 895–897
disabling startup bypass, 890, 898–902
displaying one form at a time, 893
for distribution, 1130–1132
documenting code, 880
documenting the application, 880–881, 1132
forms, 893–894
going beyond code, 879–885
Help system for, 1132
hiding the Navigation Pane, 892–893
improving the product continually, 885
keeping users informed, 894
login form for, 889–890
maintaining usage logs, 894–895
making the application easy to start, 886, 887
principles of, 885–895
providing Access runtime module to users, 882
providing user feedback, 879, 902–906
Quick Access toolbar customization, 891–892
removing dangerous ribbon commands, 891
removing menus, 892–893
securing the environment, 897
separating tables from code objects, 1131
splash screens for, 890
startup options for, 886–889, 897–898
switchboards for, 891
trapping errors, 1130
trapping unwanted keystrokes, 893
understanding user motivations, 884
using professional installation tools, 881–882
validating user input, 894

Burmeister, Mary (HTML 4 For Dummies), 1167
business rules, 121–122
Business-to-Business (B2B) data transfer, 1175
Button controls. See also controls

assigning macro to onClick event, 1136–1137
for bulletproofing applications, 893–894
callbacks for, 1102
described, 246

for dialog box forms, 644–645
embedded macros in, 1157
events (on the CD), 430–431
pictures for, 1130
Use Control Wizards command for, 246–247

ByRef keyword (API), 960
Byte data type (VBA), 396
ByVal keyword (API), 960–961

C
C and C++ languages

data types compared to VBA, 954–955
most DLLs written in, 953
Struct compared to VBA Type statement, 957
Windows API documentation based on, 954

c Date/Time format specifier, 59
C in input mask strings, 64
CalcExtension() function

called by CalcTax() function, 414
calling and passing parameters, 411–413
private version, 409
public version, 410
testing in Immediate window, 411

CalcTax() function, 413–414
calculated controls. See also controls

creating, 295
not editable, 274
overview, 247

calculated fields. See also total queries
concatenation in, 168
creating in queries, 200–201, 581–584
denormalization for including, 97
Expression Builder tool for, 583–584
mathematical operators for, 162–165
multiple tables for, 584
in nested queries, avoiding, 841
not allowed for tables in 3NF, 96
not editable in datasheets, 218
not updateable, 150
recalculating after deleting records, 489–490
recalculating after updating or adding records, 486–488
in tables, avoiding, 17
for total number of records, 585

calculations. See also expressions
queries for performing, 127
totals, queries for, 592–598

Call Stack window, 521
Call statement, 404

1297

Index C

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1297

call tree for procedures
defined, 824
memory demands due to, 824
possible extent of, 824
pruned with load on demand feature, 825–826
third-party tools for visualizing, 826

Callback API function, 957
callbacks (VBA). See also specific callbacks

for Button controls, 1102
for Check Box controls, 1101–1102
for DropDown controls, 1111
for label controls, 1102–1103
overview, 1098–1099
writing routines for custom ribbons, 1101–1103

calling or running
functions, and passing parameters, 411–413
overview, 403–404
procedures, 404–405
procedures versus modules, 360
queries, 131, 134, 615
VBA code in Immediate window, 512–513

Can Grow control property, 331–332
Can Shrink control property, 331–332
Cancel control property, 645
CancelUpdate method (ADO), 486
Caption property

for controls, 266, 620, 640
for fields, 56, 65–66
for forms, 281–282, 284

captions for label controls, 250, 266
capturing custom events, 1071–1073
Car2.xls file (on the CD), 780
caret (^) exponentiation operator, 164
Cartesian product

creating, 159–160
for unjoined tables, 156

cascading deletes, 120, 222
cascading updates, 120
case

Access not sensitive to, 44, 143
matching in searches, 216
in naming conventions, 36, 44
in variable names, 390, 391
VBA variables not sensitive to, 391
XML sensitive to, 1168

cboBuyerID combo box, 406–408
CDate() function, 458
CD-ROM drive, required for the CD, 1275

CD-ROM with this book. See also Chapter files on the
CD-ROM

AboutTemplateA About box template on, 1130
Access 2007 Bible ebook version on, 1276
AccessAutoAuctions.accdb file on, 29
AccessAutoAuctionsData.accdb file on, 29
AllowBypassKeyDemo objects on, 900
basAPIFunctions module on, 962
BOOKS_Author table on, 1193
Car2.xls file on, 780
clsProduct1 class module on, 1042
Contacts_CSV.txt file on, 542
CONTACTS.dbf file on, 536
Contacts_FixedWidth.txt file on, 542
CustomerTypes.html file on, 540
event examples on, 430–431
example files on, 1276
frmAPIDemo form on, 962, 963
frmEmployees form on, 715–722
frmMessageDemo form on, 882–883
frmMsgBoxDemo form on, 905
frmProductExampleStart form on, 772
frmProductUnbound form on, 1046–1049
frmSysCmdDemo form on, 905
frmTabControl2 form on, 640–641
installing items from, 1276
mcrBackupContactsAndProducts macro on,

1138–1140
MyDM.mdb file on, 988
Products.xls file on, 537
progress meter examples on, 851, 853
qryBooks query on, 1179
qryProductParameterQuery query on, 871
rptGapsEvery5th report on, 668
rptUserName report on, 666
rptVerticalLines report on, 668
sample buttons created with Command Button Wizard,

355
SplashScreenTemplateSimple on, 1128
system requirements, 1275
tblContacts _Backup table on, 1138
tblProducts _Backup table on, 1138
Thanks.dotx Word template on, 723
troubleshooting, 1277
USysRibbons table on, 1089

centering report titles, 676
Change event, 427
change of focus. See focus changes

1298

IndexC

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1298

ChangeDatabasePassword sub, 915
ChangeFileOpenDirectory method (VBA), 729–730
Chapter files on the CD-ROM

about, 29
basAttachExcel module on, 547
basLinkText module on, 550
basTestLinks module on, 553
Chapter02.accdb, 38, 76
Chapter03.mdb, 87
Chapter04.accdb, 123
Chapter05Start.accdb, 161
Chapter06.accdb, 203, 208
Chapter07.accdb, 237
Chapter08.accdb, 269
Chapter09.accdb, 297, 307
Chapter10.accdb, 355, 360, 381, 384
Chapter11.accdb, 398, 416
Chapter12.accdb, 417, 430
Chapter13.accdb, 443
Chapter14.accdb, 471, 494
Chapter15.accdb, 498
Chapter16.accdb, 525, 533, 547, 550, 553
Chapter16_Link.accdb, 533, 534
Chapter17_1.accdb, 555, 562, 564, 569, 570, 571,

572
Chapter17_2.accdb, 555, 571
Chapter18.accdb, 581, 582
Chapter19.accdb, 618, 640
Chapter20.accdb, 647, 666, 668
Chapter21.accdb, 715
Chapter22.accdb, 723, 726
Chapter23.accdb, 749
Chapter24.accdb, 769
Chapter26.accdb, 850, 851
Chapter27.accdb, 863, 871
Chapter28.accdb, 882
Chapter29.mdb, 909, 912, 916
Chapter30.accdb, 962
Chapter31.mdb, 988
Chapter32.accdb, 1038, 1042
Chapter33.accdb, 1080
Chapter33.accde, 1080
Chapter34.accdb, 1089, 1095
Chapter35.accdb, 1117, 1128, 1130
Chapter36.accdb, 1133, 1138
Chapter37.accdb, 1165, 1175, 1179
Chapter38.accdb, 1192, 1202
Chapter39.accdb, 1209

Chapter40.accdb, 1223
Chapter41.accdb, 1250
Chap26.mdb, 900
Chap28.mdb, 905

Chart controls, 246. See also controls
Chart Wizard, 784–789
charts. See graphs
Chase, Nicholas (Beginning XML), 1171
Check Box controls. See also controls

adding using Controls group, 248
adding using Field List, 249
callbacks for, 1101–1102
changing control type, 251, 262
for custom ribbons, 1101–1102, 1109–1110
described, 246
tallying True or False values in, 626–627

checking spelling, 791–792
Choose() function, 464
class modules. See also OOP (object-oriented programming)

adding custom events, 1067–1076
adding to databases, 1043–1044
basics, 1040–1042
Class_Initialize event procedure, 1065–1066
Class_Terminate event procedure, 1066–1067
clsProduct1 example, 1042–1049
clsProduct2 example, 1059–1065
compared to stored procedures, 1213
creating properties, 1044–1045
events, 1065–1067
interface revealed by Object Browser, 1050–1051
naming, 1040, 1043–1044
never revealing user interface components from, 1053
as object definitions, 1041
preserving interface when updated, 1053–1054
read-only properties, 1055
simple example, 1042–1049
viewing code associated with properties, 1052
write-only properties, 1055

Class_Initialize event procedure, 1065–1066
Class_Terminate event procedure, 1066–1067
Clear All Sorts command, 230
ClearMacroError action, 1154
Click event

cmdExit_Click() sub for, 357–358
described, 357, 420
opening a form, 432–433
when triggered in controls, 427
when triggered in forms, 423

1299

Index C

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1299

Click property, 359
client/server architecture

Access in, 1219–1222
Access not suitable for server, 1213–1214
applications, 1211–1212
back office, 1212–1217
defined, 1209–1210
historical view of, 1209
Internet as, 1210
multitier, 1217–1218
OLTP in, 1218–1219
system layout illustrated, 1210

clipping pictures in OLE controls, 275
Close Button form property, 286
Close event

for forms, 422, 433
for reports, 438

Close method
ADO, 486
object method, 730

closing
Automation object instance, 730
forms automatically, 629
forms, dialog box, 645
forms, order of event firing, 428
forms, running event procedure upon, 433
invalidating custom ribbons, 1114–1115

clsProduct1 class module (on the CD)
adding to a database, 1043–1044
creating a Product object, 1047
creating methods, 1045–1046
creating properties, 1044–1045
Discount method, 1043, 1046
overview, 1042–1043
properties, 1042
Sell method, 1043, 1045–1046
using, 1046–1049

clsProduct2 class module
overview, 1059
ProductID property, 1060–1062
Property Get procedure, 1060, 1062–1063
Property Let procedure, 1060–1062, 1063
retrieving product details, 1059–1060
SaveProduct method, 1063–1065
SupplierName property, 1062–1063

clusters and grids, 1219
cmdAddProperty_Click() sub, 901
CmdBeforeExecute event, 425
cmdCancel_Click event procedure, 875, 1074
CmdChecked event, 425

cmdDelete_Click() event procedure, 434–435
CmdEnabled event, 425
CmdExecute event, 425
cmdExit_Click() sub, 357–358
cmdIncrementMeter_Click() sub, 905
cmdInitMeter_Click() sub, 905
cmdOK_Click event procedure, 875, 1074
cmdOpenDialogForm_Click event procedure, 1075
cmdProducts button, 432–433
cmdRunQuery_Click() sub, 643–644
cmdSell sub, 1049
Code window or editor

compiling procedures, 365
continuation character, 358, 386–387
Object drop-down list, 362, 388
overview, 362, 386–388
saving modules, 365
setting options for, 387–388
text colors, 387
toolbar, 362

collaborative applications and databases, 1200, 1206
colon (:)

in custom Date/Time formats, 59
in input mask strings, 64

colors
for alternate rows in datasheets, 226–228
in Code window or editor, 387
of control text, 258, 259
of controls, changing dynamically, 620
in custom format specifiers, 57

Column Headings query property, 591
columnar reports

adding vertical lines between columns, 666–668
overview, 298–299
Ranking column for, 656–658

columns in databases. See fields
columns in QBE grid, resizing, 136–137
columns of datasheets

aligning data in, 228
changing display width, 223–224
changing order of, 222–223
fields as, 205
filtering indicators for, 232
freezing and unfreezing, 229
hiding and unhiding, 228–229

Combo Box controls. See also controls
adding unbound, 863–865
adding using Field List, 249
changing control type, 251
changing Text Box to, 278

1300

IndexC

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1300

described, 246
displaying report objects in, 672–673
FindRecord method for unbound control, 865–867
locating records using bookmarks, 867–869
for Lookup Wizard data type, 51
multiple-column, 630–631
performance optimization, 843–844
SQL for faster refresh, 628
unbound, performance slowed by, 844
Use Control Wizards command for, 246–247, 278
using, 278

Combo Box Wizard, 278
comma (,)

in custom Date/Time formats, 60
in custom numeric formats, 58
with GetObject function (VBA), 729
in input mask strings, 64

comma separated or comma-delimited files. See CSV (comma
separated values) files

Command Button controls. See Button controls; controls
Command Button Wizard, 354–356
command-line arguments

/decompile, 858–859
overview, 383–384

compacting data files
after compiling, 508
before converting to Design Master, 991
in large databases, 857
performance increased by, 837
process of, 803–804
runtime errors avoided by, 502, 803–804
before synchronizing replicas, 1035

comparison operators. See relational (comparison) operators
compatibility, default database format for, 27. See also

portability
Compile on Demand option

call tree pruned by, 825–826
checking status of, 825
described, 380, 505
deselecting, avoiding, 825

compiled state
advantages of, 830
defined, 829
for large databases, 860–861, 862
losing, 831–832
overview, 829–830
putting applications in, 830–831
for queries, 841

compiling applications, 830–831
compiling large databases, 857, 860–861, 862

compiling procedures
call tree for, 824–826
checking if compiled, 507
compacting after, 508
Conditional Compilation Arguments, 382, 510–511
conditional compilation directives, 377–379, 509–511,

515
ensuring compilation with .accde files, 828–829
as module-level process, 824, 826, 830
overview, 365, 506–508

composite (multiple-field) indexes, 78–79, 839–840
composite primary keys, 74–75, 113
compound controls, 256
concatenation

addition operator (+) for, 163, 168
calculated field creation using, 581
in calculated fields, 168
concatenation operator (&) for, 167–168
converting numbers or dates to strings, 167
null values for operands, 168
PrepareOutput() function for, 415–416

concurrency, 1213
Conditional Compilation Arguments, 382, 510–511
conditional compilation constants, 378, 379, 509, 510
conditional compilation directives

#Const, 378, 379, 509, 510
for debugging, 509–511
defined, 377
#If...#Then...#Else...#End If, 378, 509
with Stop statements, 515

conditional execution
branching, defined, 369
If...Then...Else...End If construct, 369–370
overview, 369
performance optimization, 846
Select Case...End Select statement, 371–372

conditional watches, 520
conditions for macros, 1143–1146
conflict tables in replication, 1001–1003
Connect event, 425
Connect property

AttachExcel() function using, 547–549
LinkText() function using, 550–552
for ODBC data sources, 549
overview, 546–547

connection strings
components of, 1225–1226
SQLCMD utility for, 1226–1227

#Const compiler directive, 378, 379, 509, 510

1301

Index C

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1301

constants
for built-in progress meter, 852–853
conditional compilation, 378, 379, 509, 510
in expressions, 446
MsgBox() function, 436–437, 903
for Response argument of Error event procedures, 809

Contact Log form (frmContactLog), 21
Contact Log table (tblContactLog), 19–20, 100
ContactID field, 72, 73
Contacts form (frmContacts), 21, 638–639
Contacts report (rptContacts), 13
Contacts table. See tblContacts (Contacts table)
Contacts_CSV.txt file (on the CD), 542
CONTACTS.dbf file (on the CD), 536
Contacts_FixedWidth.txt file (on the CD), 542
continuation character, 358, 386–387
Control Box form property, 285, 645
control menu, removing from forms, 645
control properties

for blank report lines, 669
Border Style, 330
Can Grow and Can Shrink, 331–332
Caption, 266, 620, 640
changing settings, 264–266, 291, 330–331, 619–624
Control Source, 267, 282, 659, 662, 666, 864
Control TipText, 894
default values, customizing, 619
dynamic assignment at runtime, 620–623
GetProperty() function for, 623–624
Name, 266–267
overview, 617–618
Property Sheet for, 263–264
reading, 623–624
RowSource, 620, 628, 791, 864, 865
SetProperty() function for, 621–623
Size Mode, 275, 330, 776–777, 791
StatusBarText, 894
for Subform controls, 626
for tab controls, 640–641
toggling values with Not, 629
usefulness of, 251

Control Source control property
adding bullet characters, 659
adding user’s name to bound report, 666
for bound controls, 267, 282
hiding page headers, 662
for unbound Combo Box, 864

Control TipText control property, 894

controls. See also ActiveX controls; control properties; specific
types

adding page numbers and dates to forms, 632–633
adding to custom ribbons, 1107–1111
adding using Controls group, 247–248, 251–252
adding using Field List, 249–252, 294–295
adjusting space between, 258
aligning, 256–258, 293
animating on forms, 627–628
attaching labels to, 260–261
best-fit sizing, 255, 325
bound, 247
bound versus unbound, 251
calculated, 247, 295
changing appearance of multiple, 329
changing text appearance, 258–259, 293, 323–324
changing type of, 251, 262, 278
compound, 256
Controls group versus Field List for, 251–252
copying, 261
default names for, 452
defined, 21, 237, 245
deleting, 260
deselecting, 253
embedded macros in, 352
events, 426–427
Format Painter for, 635
grouping, 259–260
handles, 252, 254–255, 256
hiding with Format event, 440–441
identifier operators for, 453
Layout tab, 254
morphing, 634
moving, 252, 255–256, 259, 328–329, 335–336
naming conventions, 266–267
new for ribbons, 1092–1095
not editable, in forms, 274
order of event firing, 428–431
overview, 245
placing on reports, 321–322
removing from tab order in forms, 626
resizing, 260, 325–326, 676–677
resizing using commands, 255
resizing using handles, 252, 254–255
selecting, 252–253, 260
Snap to Grid feature, 257–258
ToolTips for, 245, 635–636
transparent, 637

1302

IndexC

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1302

types available, 21, 245
unbound, 247
ungrouping, 260
unique names for, 677
Use Control Wizards command, 246–247, 277, 278
Validation Rule field property for, 67
variables for referencing, 846–847

conversion functions, 456, 457–459
converting. See also upsizing Access databases to SQL Server

.accde files not convertible to .accdb format, 828,
829

bypassing using concatenation, 167
conversion functions for, 456, 457–459
data types, 54–55, 456, 457–459
database to Design Master, 990–991, 992, 994,

1017–1020
database to nonreplicable status, 1035–1036
databases from earlier Access versions, 27–29, 827
databases to .accde format, 828–829, 1086
dates when importing text files, 566, 568–569
from dBASE data types, 575
forms to reports, 296
macros to VBA modules, 352–354, 1160–1162
.mdb files to .mde format, 829
from Paradox data types, 575

copying
from Access to SharePoint, 1193–1196
controls, 261
forms before changing, 244
paste options for datasheet values, 219
paste options for tables, 83–84
tables in a database, 83–84
tables to another database, 84
values, and pasting, 219

corrupt forms, fixing, 857
corruption of data, 808
Count() function

Count(*) function versus, 841
overview, 595
two-pass report processing for, 684

Count property of Errors collection, 811
Count(*) function

Count() function versus, 841
finding number of records using, 585
for grand total aggregation, 595

Counter data type, 188–189
CREATE GROUP command (DDL), 1238
Create tab, 38, 39

CREATE USER command (DDL), 1238
CreateFilter() function, 1030–1031
CreateObject function (VBA), 727–728
CreatePartial() function, 1029–1030
CreditLimit field, 66, 71
criteria strings, creating, 868
cross-platform compatibility. See portability
cross-product. See Cartesian product
crosstab queries

Crosstab Query Wizard for, 600–601
described, 127
not updateable, 150
TRANSFORM and PIVOT commands for, 599–600
uses for, 599

CSTR() function, 458
CSV (comma separated values) files. See also text files

fields with no values, 563
Import Specification window for, 567–569
importing, 561–563
linking to, 542
overview, 541

Currency data type or field
built-in formats, 57
converting, 54
custom formats, 58–59
Decimal Places property, 56
Default Value property for, 56
described, 44, 46
format examples, 58
Format property for, 57–59
overview, 50, 1260
properties’ effect on data entry, 212
query criteria for, 188–189
SQL Server equivalents, 1261
storage requirements, 46

Currency data type (VBA), 396
Currency number format, 57, 58
Current Database options

Application Options section, 1119–1121
designating default form, 919
for distributing applications, 1118–1124
Navigation Options section, 1121–1123
overview, 917–919, 1118
specifying custom ribbon, 1106
Startup dialog box replaced by, 1118
Toolbar Options section, 1123–1124

Current event, 422
cursor types (ADO), 483, 484–485

1303

Index C

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1303

custom events
creating, 1069–1070
exploiting, 1073–1076
passing data through arguments, 1073
trapping, 1071–1073
triggering or raising, 1070–1071
WithEvents keyword, 1072, 1075–1076

custom formats
for Date/Time fields, 59–60
global format specifications for, 57
numeric, 58–59
for Text and Memo fields, 61–62
for Yes/No fields, 62

Custom Ribbon ID form property, 290
custom ribbons

for Access Auto Auctions database, 1095–1096
adding controls, 1107–1111
adding XML to USysRibbons table, 1104–1105
basic XML for, 1106–1107
Check Box controls for, 1101–1102, 1109–1110
controls, in ribbon hierarchy, 1100
creating the USysRibbons table, 1103–1104
default Access ribbon not customizable, 1095
designing and building XML for, 1101
DropDown controls for, 1110–1111
enabling error reporting, 1099
examples online, 1095
group objects, 1100
hierarchical structure of, 1100
image references for, 1108
invalidating, 1114–1115
label controls for, 1102–1103, 1108
loading, 1115
managing, 1114–1115
OnAction attribute for, 1099
removing, 1115–1116
separators for, 1108–1109
specifying the property, 1106
steps for creating, 1098
tab objects, 1100
VBA callbacks overview, 1098–1099
Visual Web Developer 2005 Express for, 1091,

1112–1114
writing callback routines, 1101–1103

Customer table. See tblContacts (Contacts table)
customers. See users
CustomerTypes.html file (on the CD), 540
Cycle form property, 289

D
d through dddddd Date/Time format specifiers, 59–60
DAO (Data Access Objects). See also programming replication

ADO as replacement for, 482–483
ADO versus, 546, 686, 1179
checking links, 552–554
in code modules for qryBooks query, 1180–1187
Connect property, 546–547
connecting to Excel spreadsheet, 547–549
connecting to text files, 550–552
for library database object references, 1088
opening database exclusively using, 691–692
SourceTableName property, 547
transactions, 688–689

dash or minus sign (-)
for datasheet line styles, 227
in input mask strings, 64
subtraction operator, 163–164

data. See also external data; linking external data
corruption of, 808
described, 5, 1167
metadata versus, 1167
order of event firing for changes, 429
separating from interface objects, 28
static versus dynamic, 1201

Data Access Objects. See DAO
Data Definition Language (DDL), 1238–1239
data definition queries, 604, 608
data design, 14–17
data sources. See also specific data sources

for multiuser applications, 688–689
ODBC, for SQL Server connection, 1227–1236
ODBC, linking to, 533, 536, 549
ODBC, performance reduced with, 688
ODBC, transactions for, 688–689
SharePoint as, 1192

data structures (user-defined types), 957
data types (Access). See also specific data types

action query errors, 615
assigning to fields, 44–45, 46–51
automatic validation for, 211
changing for fields, 54–55
converting, 54–55
converting from dBASE, 575
converting from Paradox, 575
in Grouping intervals list box, 304
grouping variable declarations by, 503–504
import errors for, 576–577
for indexing fields, 47

1304

IndexC

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1304

join condition for, 146
list of, 44
performance impacts of, 844–846
properties, 6, 41, 55–70
property variable, 1058
reflecting field data, 47
report considerations, 48
rules for choosing, 47–48
SharePoint Lists as, 754
for sorting fields, 47, 48
SQL Server data types compared to, 1239, 1259–1262,

1263
storage requirements, 46, 47
table summarizing, 46, 1260–1261
VBA data types compared to, 397

data types (API)
data structures (user-defined types), 957
declaring for function return value, 961
in function documentation, 955–956
prefixes for function arguments, 956
VBA data types compared to, 954–955

data types (SQL Server), 1239, 1259–1262, 1263
data types (VBA)

Access data types compared to, 397
C (API) data types compared to, 954–955
conversion functions for, 456, 457–459
default for variables, 397–398
for function return values, 358
overview, 395–397
table summarizing, 396

data types (XML), 1179
data validation

automatic for data types, 211
business rules for, 121–122
designing data-entry rules, 45
in effect in datasheets, 134
OOP benefits for, 1039
for user input, 894
Validation Rule property, 56, 66–67, 71
Validation Text property, 56, 66, 67

Database Documenter, 81–82
database objects. See objects
database replication. See replication
database repository, using Access for, 1220–1221
Database Splitter Wizard, 28, 696–698
Database Tools ribbon tab, 81, 911
Database window

copying tables in a database, 83–84
copying tables to another database, 84

deleting tables, 83
renaming tables, 82–83

Database1.accdb file, 26
databases. See also designing databases

Access 2007 specifications, 1268
adding class modules to, 1043–1044
adding new tables to, 38–41
back office, 1212–1214
back-end, 28
compacting, 502, 508, 803–804, 837
converting from earlier Access versions, 27–29, 827
creating, 26–27
decrypting/decoding, 943–944
default file format for, 27
default name for new, 26
defined, in Access, 5
defined, in general, 4
encrypting/encoding, 942–943
exporting objects to, 577–578
file extensions for, 5
importing from other Access databases, 557–558
large, working with, 856–862
linking to other Access database tables, 533–536
local versus back-end, 28
maintaining to avoid runtime errors, 502, 803–804
manual, 5, 124
Native XML, 1177–1179
opening exclusively, 690–692, 836–837, 912
overview, 4–5
owner of, 931
repairing, 502, 803–804
securing for distribution, 933–934
setting permissions for, 933
splitting, 28, 533, 542–543, 692–698

DataChange event, 425
data-entry forms. See also form design; forms

collecting data with Outlook, 740–747
controls, 21
designing data-entry rules, 45
examples created in this book, 21
modeling on printed forms, 21
overview, 9–10
trapping unwanted keystrokes, 893

DataSetChange event, 425
datasheet forms, creating, 242–243
Datasheet ribbon

Clipboard group, 207, 219
Find group, 208, 215, 220
Font group, 208, 225–226, 228

1305

Index D

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1305

Datasheet ribbon (continued)
Records group, 208, 221, 224, 228, 229
Rich Text group, 208
Sort & Filter group, 208, 229–233
Views group, 207

Datasheet View
Add New Field column, 38–39
creating tables in, 38–39
Design View versus, 39
ID column, 38
illustrated, 204
navigating, 206
Navigation buttons, 206–207, 214
new features in Access 2007, 1283–1285
overview, 205
for queries, 125, 130, 134–135
search box, 217
switching between Design View and, 33
switching between Form View and, 278–279
switching between Query Design window and, 131
Undo button, 219

Datasheet window. See Datasheet View
datasheets. See also QBE grid; recordsets

adding records, 85, 208–210, 221
aliases for fields in, 137–138
aligning data in columns, 228
alternate row colors for, 226–228
AutoNumber fields in, 210
changing display fonts, 225–226
changing field display width, 223–224
changing field order, 222–223
changing record display height, 224–225
Clear All Sorts command, 230
Datasheet Formatting dialog box, 227
deleting characters, 217
deleting current record, 217
deleting selected records, 221–222
described, 5, 205
displaying cell gridlines, 226–228
Dynasets, 135
editing existing values, 217
editing techniques, 218
empty, 208–209
entering data, 208–210
Filter by Form, 233
Filter by Selection, 230–232
finding specific values, 215–217
freezing and unfreezing columns, 229
hiding and unhiding columns, 228–229
hiding rows, 225

inserting characters, 217
line styles for, 227–228
linked tables in, 544
moving between records, 214
navigating, 206, 214–217
opening, 208
overview, 8, 203–204
printing records, 233–235
properties’ effect on data entry, 212–214
for queries, 134–135
record pointers, 210
replacing values, 217, 220–221
saving layout changes, 229
saving records, 210, 229
specifying form view as, 282
tables permanently changed by updates, 9
viewing for queries, 125
viewing table contents in, 205

Date data type (VBA), 396
Date() function, 459
date interval groups in reports, 654–655
Date Picker, 276–277
DateAdd() function, 456, 460
DateDiff() function, 459–460
DatePart() function, 460
Date/Time data type or field

built-in formats, 59
converting, 54
custom formats, 59–60
data entry in forms, 276–277
Date Picker for, 276–277
described, 44, 46
Format property for, 59–60
import errors for, 576
importing text files with, 566, 568–569
input masks for, 65
overview, 49, 1260
properties’ effect on data entry, 212
selection criteria for queries, 143–144
SQL Server equivalents, 1261
storage requirements, 46
Text data type versus, 48
Validation Rule property for, 66–67

date/time functions, 456, 459–460
date/time values

in expressions, 448, 449, 450
miscalculated, logical errors from, 501, 802

DAvg() function, 465
Day() function, 459
.db files, linking to, 537

1306

IndexD

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1306

dBASE tables
converting data types from, 575
file extensions for, 536
importing, 574–576
limitations of linked data, 533
linking to, 536

.dbf files, linking to, 536
DblClick event

described, 420
when triggered in controls, 427
when triggered in forms, 423

DCount() function, 465
DDB() function, 460
DDL (Data Definition Language), 1238–1239
Deactivate event

for forms, 422
for reports, 438

dead code, eliminating, 849
Debug window. See Immediate window
debugging. See also error handling

avoiding errors, 502–504
Call Stack window for, 521
categorizing bugs, 1124–1125
compiler directives for, 509–511
conditional watches for, 520
Debug.Print for, 511
before distributing applications, 1124–1125
example code on the CD, 498
Immediate window for, 456–457, 511, 512–513
library databases, 1087
Locals window for, 517–518
logical errors, 501, 802, 805–806
macros, 1156–1157
MsgBox() function for, 508
need for, 497
overview, 498–499
runtime errors, 501–502, 802–806
setting breakpoints for, 513–515
setting watches for, 518–520
stepping through macros, 1156
stepping through VBA code, 515–517
syntax errors, 499–501, 506–507
testing as ongoing process, 498
when compiling code, 506–507

Debug.Print, 511
Decimal data type (VBA), 396
Decimal Places field property, 56
Declare statement (API)

AliasName parameter, 959
ArgumentList parameter, 959–961

As DataType parameter, 961
ByVal versus ByRef in, 960–961
FunctionName parameter, 958
Function/Sub parameter, 958
LibraryName parameter, 958–959
prototype, 958

declaring API functions or subs
common argument prefixes, 956
Declare statement for, 958–961
SDK reference for, 955–956
VBA declaration example, 956

declaring events, 1069–1070
declaring procedures, 402–403
declaring variables

AS clause for, 395
avoiding errors, 502–504
Dim statement for, 389, 393–394, 401
explicit declaration, 392
forcing explicit, 399
grouping by data types, 503–504
implicit declaration, 391
implicit versus explicit, 363, 392–393, 397–398
Option Explicit directive for, 363, 380, 399
Private keyword for, 395, 401
Public keyword for, 394, 401
scope determined by, 401

declaring VBA subs, 406
/decompile command-line option, 858–859
decompiling. See uncompiling code
decomposition

cautions for, 94
defined, 94
example, 93–94
foreign key for, 95

decrypting/decoding databases, 943–944
Default Value field property, 55, 56
Default View property

of forms, 282–283, 284
of queries, 590

defaults. See also properties
bound control name, 340
case sensitivity, 143
control names, 452
control property values, customizing, 619
database file format, 26, 827
dialog box form button, 644–645
error handling, 804–805, 807, 808
form view, 283
join type, 156–157
name for new database, 26

1307

Index D

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1307

defaults (continued)
names, avoiding, 880
Navigation Pane option, 32
object permissions, 932–933
printer for upsizing to SQL Server, 1251
values in effect in datasheets, 134
workgroup information file, 910

defragmenting hard drives, 838
Delete Data permission, 934
Delete event, 422
Delete method (ADO), 491–492
delete queries, 610, 614–615. See also action queries
deleting or removing

Admin user permissions, 910, 932
breakpoints, 513
cascading deletes, 120, 222
characters in datasheets, 217
control menu from forms, 645
controls, 260
controls from tab order in forms, 626
database password, 914
delete queries for, 610, 614–615
deletion anomalies, 97
fields, 53
fields after table is built, avoiding, 38
fields in QBE grid, 137
Group Header or Group Footer, 334
group members, 928–929
groups (user), 927
joins, 155–156
labels from text box controls, 326–327
linked table from object list, 544–545
menus from applications, 892–893
progress meter, 853
record source for corrupt forms, 857
records, checking status of, 489–490
records, event procedure confirming, 434–435
records from datasheets, 217, 221–222
records, recalculating fields after, 489–490
records using ADO, 491–492
related records in multiple tables, 492–495
relationships, 121
ribbon commands, 891
ribbons, 1115–1116
rows in tables, 42
table from database, 83
tables from queries, 129, 147
text box controls from labels, 327
user accounts, 923

deletion anomalies, 97

delimited text files. See CSV (comma separated values) files;
tab-delimited files

denormalization, 97–98
descending index, 840
Description query property, 590
descriptions for fields, 51
deselecting controls, 253
Design Master. See also replication

backing up original database before converting to,
990–991

changes to database objects in, 1005–1011
changing structure of, 1011–1014
controlling replica creation, 1011–1013
converting database to, 990–991, 992, 994, 1017–1020
database structure changes supported only by, 988, 995
defined, 988
local objects in, 999–1000
replicas of, 988
reverting to nonreplicable status, 1035–1036
transferring to another database in the replica set,

1023–1024
Design ribbon tab

Controls group, 243–244, 246, 247–248, 251–252, 261
Delete Rows button, 42
Indexes button, 43
Insert Row button, 42
Primary Key button, 42
Property Sheet button, 42–43

Design View. See also Form Design window; Query Design
window

creating primary keys in, 74, 114–115
creating tables in, 39–41
Datasheet View versus, 39
field entry area, 41
field properties area, 41
hiding and showing fields in, 587–588, 589
Lookup Property window, 71–72
modifying imported table elements, 576
switching between areas, 41
switching between Datasheet View and, 33
switching between Normal View and, 33
viewing objects in, 34

designing databases. See also form design; report design; table
design

consistent look and feel for, 1126–1127
data design, 14–17
denormalization, 97–98
five-step method for, 10–22
flat-file approach, 91, 98–99, 103
flowchart, 11

1308

IndexD

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1308

integrity rules, 106–109, 118–120, 121–122
normalization, 18, 89–97
overall system design, 11–12
primary key, 110–115
table relationships, 98–106, 115–118, 120–121
using multiple tables, 7–8, 88–89

DesignMasterID property, 1023
Dest Connect Str query property, 591
Destination DB query property, 591
Destination Table query property, 591
detail queries, Query Wizard for, 592
Detail section of reports

adding emphasis at runtime, 660–662
avoiding empty reports, 663
for blank line every n records, 670
changing picture properties, 340–341
overview, 314, 316

Detail0_Format event procedure, 440–441
development

command-line arguments for, 383–384
Editor tab in Options dialog box for, 379–380
Project Properties dialog box for, 380–382
RAM requirements for, 823
replication issues, 1005
to a specification, 880, 895–897

DFirst() function, 465
dialog box forms

Cancel button for, 645
closing, 645
default button for, 644–645
interactive, 874–876
linking to another form, 875–876
overview, 641–642
properties, 642
removing the control menu, 645
Run Query button for, 643–645
SQL statement for, 643–644

digital certificates, 947–948
Dim statement

avoiding errors, 502–504
origin of name, 401
overview, 389, 393–394, 401

directives
conditional compilation, 377–379, 509–511, 515
Option Explicit, 353, 380, 399

Dirty event, 422, 427
disabled fields

not editable in datasheets, 218
not editable in forms, 274

disabling
Compile on Demand option, avoiding, 825
error handling, 816–817
hourglass cursor, 851
startup bypass, 890, 898–902
user-level security, 920
View System Objects option for replicable tables, 1035

Disconnect event, 425
Discount method, 1043, 1046
disk space. See hard drive
Display on SharePoint Site form property, 290
displaying. See queries; viewing
DisplayMessage() function, 883
display-only forms, 10. See also form design; forms
DISTINCT predicate (SQL), 476
DISTINCTROW predicate (SQL), 477
distributing applications

.accde files for, 828–829, 945
adding common professional components, 1127–1130
bulletproofing your application, 1130–1132
consistent look and feel for, 1126–1127
creating library reference for, 835–836
Current Database options settings for, 1118–1124
DLLs for smaller footprint, 953
library database for, 833–836
need for, 1117
polishing your application, 1126–1130
professional installation tools for, 881–882
securing database for, 933–934
source code for, 832
testing before, 1124–1125
uncompiled versions for, 830, 832–833

divide-by-zero error, 1152–1153
Dividing Lines form property, 285
division operators

integer division (\), 164
mod (modulus division), 165, 463, 470–471
normal (/), 164
in queries, 176–177

DLLs (dynamic link libraries). See also Windows API
(application program interface)

advantages of, 952–953
common codebase provided by, 953
in Declare statement, 958–959
distribution sizes smaller with, 953
documentation, 953–957
dynamic linking overview, 952
ease of use, 953
portability aided by, 953

1309

Index D

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1309

DLLs (dynamic link libraries) (continued)
proprietary, 954
tested code provided by, 953

DLookUp() function
overview, 466
using for lookup tables, 467–469
using for table not included in query, 467

DMax() function, 466
DMin() function, 466
DoCmd object, 350
DoCmd.Close statement, 350, 645
DoCmd.OpenForm statement, 350
Document Object Model (DOM), 1171–1173
Document Type Definition (DTD) standard, 1177–1178
documenting

applications, 880–881, 1132
code, 880
online Help for, 881, 884, 1132

dollar sign ($) in custom numeric formats, 58
Do...Loop statement

endless loops, 373, 806
Exit Do statement, 373
overview, 372–373
Until clause, 373
While clause, 372, 373

DOM (Document Object Model), 1171–1173
domain functions

overview, 465–466
using DLookUp() for lookup tables, 467–469

dot (.). See period (.)
Double data type (VBA), 396
double quotes (“)

in custom Date/Time formats, 60
in custom format specifiers, 57
in custom Yes/No field formats, 62
for fields with no values in delimited text files, 563
with Like operator, 186
not allowed in Access project file names, 44
surrounding names, 447
surrounding text in expressions, 448, 449, 450

downloading. See also Internet resources
SQL Server Express, 1223, 1224, 1249
VWD, 1091, 1112

dragging. See also moving
columns in datasheets, 222–223
fields to forms, 249–250
fields to queries, 131–134

drivers for connecting to SQL Server, 1227–1228
DROP command (DDL), 1239

DropDown controls
callbacks for, 1111
for custom ribbons, 1110–1111
overview, 1092–1093
SplitButton controls compared to, 1093

DSN configurations for ODBC, 1228
DSum() function, 466
DTD (Document Type Definition) standard, 1177–1178
Duckett, Jon (Beginning XML), 1171
duplicate records, finding, 601–603
Dykes, Lucinda (XML For Dummies), 1171
dynamic data, 1201
dynamic link libraries. See DLLs
dynamic linking

early binding (static linking) versus, 952
late binding an object, 725–727
of libraries, DLLs for, 952
overview, 952

Dynasets, 135. See also datasheets

E
E- or e- and E+ or e+ in custom numeric formats, 58
early binding

dynamic linking (late binding) versus, 952
of libraries (static linking), 952
of objects, 724–725, 727

ebook version of Access 2007 Bible, 1276
Echo action, 1138, 1140
editing

controls not editable in forms, 274
embedded objects, 779–780
embedded OLE objects, 772
fields not editable in datasheets, 218
procedures, 367
unbound form data, 720–722
values in datasheets, 217–218
values in forms, 273–278

Editor tab in Options dialog box, 379–380, 504–506
elements (XML). See tags (XML)
embedding objects

benefits of, 771
bound objects, 777–778
changing image display, 776–777
defined, 770
editing embedded objects, 772, 779–780
graphs in forms, 783–791
inserting image-type objects, 773–775
linking versus, 770, 771–772

1310

IndexD

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1310

macros, 352, 1157–1159
modifying objects using source application, 771
by pasting, 773
unbound objects, 773–777

emplist.xls file, importing, 560–561
empty reports, avoiding, 663
Enabled control property, 620
enabling

AutoCorrect option for names, 36
error reporting for custom ribbons, 1099
hourglass cursor, 851
obsolete databases, 29
sandbox mode, 946–947
user-level security, 920

encapsulation
benefits of, 1038
defined, 1038
library databases for, 1081
Property Let procedure example, 1060–1062

encrypting/encoding databases, 942–943
end users. See users
endless loops, 373, 806
Enter event, 427
entities. See also tables

normalization to one per table (2NF), 21, 92–95
tables as, 5

entity integrity, 72, 110
entry (natural) order, 75–76
equals sign (=) in relational operators, 143, 165, 166–167
equi-joins. See inner joins (equi-joins)
Eqv operator, 170
erasing. See deleting or removing
Err object (VBA), 703, 812–813
Err.Number property, 812–813
Error event

overview, 809
typical Form_Error event procedure, 809–810
when triggered, 424, 438

error handling. See also debugging; On Error statements;
record-lock error handling

basic error trap, 807–808, 814
in bulletproof applications, 878, 879
for bulletproofing applications, 1130–1131
choosing which errors to trap, 806
DataErr argument for returning error codes, 809, 810
default, in Access, 804–805, 807, 808
disabling, 816–817
Err object for, 703, 812–813
Error event for, 438, 809–810

Errors collection for ADO errors, 811–812
GoToLabel statement for, 807–808
handled errors, 805
If...Then...Else...End If construct for, 813
labels for, 807–808, 815–816, 819–820
for library database references, 1084
for macros, 1151–1156
need for, 801–802, 808–809
Response argument of Error event procedures, 809
Resume statements for, 817–820
Select Case...End Select statement for, 810,

812–813
template for, 807
terminating error handlers, 817
three-step process for, 807
types of errors, 802–806
for unanticipated errors, 806
untrapped errors, 805
when converting macros to VBA modules, 354
when creating a Word object instance, 736

error messages and warnings. See also debugging; error
handling

for action queries, 615–616
bypass Error 3270, 899
confirming record deletion, 434–435
for custom ribbons, 1099
for data type validation, 211
DataErr argument for returning error codes, 809, 810
for deleting parent records, 222
for deleting records from datasheets, 221
for empty reports, 663
enforcing referential integrity, 119
Err.Number property for determining errors, 812–813
import errors, 576–577
for primary key duplicate values, 210
providing for users, 882–883
record-locking Error 3021, 704
record-locking Error 3186, 704, 709–711
record-locking Error 3188, 711–712
record-locking Error 3197, 704–705, 712–714
record-locking Error 3260, 705–709
record-locking Error 3421, 705
for Required property, 67
for runtime errors, 804–805
for synchronization errors, 1004
update Error 7787, 810
update Error 7878, 810
for Validation Rule property, 66, 67

#Error printed in reports, 663, 677

1311

Index E

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1311

ErrorRoutine() function
for Error 3186, 704, 711
for Error 3197, 704–705, 714
for Error 3260, 705, 708–709
overview, 703–705
ParseError() sub called by, 711–712

Errors collection for ADO errors, 811–812
Euro number format, 58
even-odd page printing, 670–672
event procedures. See also procedures; subs (subroutines or

subprocedures)
adding to forms or reports, 419–420
aligning page numbers in reports, 671–672
for class events, 1065–1067
confirming record deletion, 434–435, 489–490
for controls, 426–427
creating behind unbound combo box, 865–867
creating for AfterUpdate event, 407–408
defined, 357
for Error event, 809–810
in form or report modules, 359
for forms, 421–426
opening forms with, 431–433
opening templates for, 419–420
overview, 359
recalculating control after deleting records, 489–490
recalculating field after updating or adding records,

486–488
for report sections, 439–441
for reports, 438–439
running when closing a form, 433
running when opening reports, 438–439
as subs, 357
updating fields using ADO, 481–486
VBA callbacks versus, 1098

event properties
attaching procedures to, 357
defined, 455
in frmProducts, 418–419

events. See also form events; specific events
assigning macros to, 1136–1137
categories of, 418
of class modules, 1065–1067
common to many Access objects, 420–421
custom, adding to class modules, 1067–1076
deciding which to program, 428
defined, 455
examples on the CD, 430–431
need for, 1068–1069
order of firing, 428–431

overview, 357, 417–418, 1068
passing data through arguments, 1073
report, 438
report section, 439
trapping custom events, 1071–1073
triggering or raising, 1070–1071
WithEvents keyword, 1072, 1075–1076

Excel (Microsoft)
Access macros not portable to, 352
connecting to named range in spreadsheet, 547–549
importing spreadsheet data, 558–561
limitations of linked data, 532
linking objects, 780–782
linking to spreadsheets, 537–539
macros in, 351
spreadsheets in OLE objects, 274–275

exclamation mark (!)
in custom format specifiers, 57
identifier operator, 451–453
in input mask strings, 64
Like operator wildcard, 169, 183, 186, 187
not allowed in field names, 43

executing. See calling or running
Exit event, 427
exiting. See closing
explicit variable declaration

forcing, 399
implicit versus, 363, 392–393, 397–398
Option Explicit directive for, 363, 380, 399
overview, 392

exponentiation operator, 164
exporting

from Access to SharePoint, 1193–1196
changed objects to large databases, 861
file types supported by Access, 526–527, 556
HTML documents, 570–571
objects to other Access databases, 577–578
ODBC drivers for, 578
reports, functionality exclusive to, 579
SharePoint Lists, 767–768
XML documents, 569–570

Expression Builder tool
creating calculated fields using, 583–584
creating expression using, 450–451

expressions. See also operators (Access)
aggregate, in subforms, 625
bound control names in, 340
characters automatically inserted for, 448, 450
constants in, 446
creating, 447

1312

IndexE

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1312

described, 443
entering date/time values in, 450
entering in text box control, 324–325
entering object names in, 449
entering text in, 449
evaluation of, 444
example form using, 447
example query using, 444–445
Expression Builder tool for, 450–451, 583–584
functions in, 445–446
in Group Header of report, 339–340
identifier operators, 451–454
literal values in, 446
object names or identifiers in, 445
operators in, 445
overview, 443–444
parts of, 445–446
standard Access notation for, 163
for Validation Rule property, 66
VBA operators for, 390
Zoom box for viewing, 448

eXtensible Markup Language. See XML
external data. See also importing; linking external data

file types supported by Access, 526–527
linking versus importing, 527–529
methods of working with, 527–529
types of, 526
in unsupported programs, 529

F
Fail on Error query property, 591
Fast Laser Printing form property, 290
fatal errors, 803
Fawcett, Joe (Beginning XML), 1171
feedback, providing to users, 879, 902–906. See also

perceived speed
Fetch Defaults form property, 289
Field List window

adding all fields to query, 133–134
adding controls to forms, 249–252, 294–295
adding controls to reports, 321–322
adding multiple fields to query, 132–133
adding single field to query, 131–132
asterisk in, 133–134
described, 130
inserting field in QBE grid from, 137
moving, 147
opening for forms, 249
Record Source form property required for, 251

removing tables from queries, 147
resizing, 130, 147

field locking. See locked fields
field properties

Allow Zero Length, 56, 68–69
with bound controls, 250
Caption, 56, 65–66
common properties, 55–57
Decimal Places, 56
Default Value, 55, 56
described, 6, 41, 55
in effect in datasheets, 134
effect on data entry, 212–214
Field Size, 55
Format, 55, 57–63
Hide Duplicates, 649–650
IME Mode, 56, 57
IME Sequence Mode, 56, 57
Indexed, 56, 69–70
Input Mask, 56, 63–65
Lookup Property window, 71–72
New Values, 55
Required, 56, 67, 68–69
Smart Tags, 56
for tblContacts fields, 71–72
Unicode Compression, 56
Validation Rule, 56, 66–67
Validation Text, 56, 67

Field Size field property, 55
fields. See also calculated fields; columns of datasheets

added to replicable tables, 1009–1010
adding in Datasheet View, 39
adding to queries, all, 133–134
adding to queries, from multiple tables, 148–149
adding to queries, in multiples, 132–133
adding to queries, one at a time, 131–132
aliases for, 137–138
attaching files to, 85–86
changing data type, 54–55
changing display width in datasheets, 223–224
changing in tables, avoiding, 38
changing location of, 53
changing order in datasheets, 222–223
changing order in QBE grid, 136
changing size of, 54
columns as, 5, 6
data type assignment for, 44–45, 46–51
in datasheets, 205
deleting, 53
described, 5, 6

1313

Index F

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1313

fields (continued)
design tips for updating in queries, 151
grouping in reports, 303
hidden, sorting on, 135, 139
hiding and showing in Design View, 587–588, 589
hiding and showing in QBE grid, 138–139
inserting in QBE grid, 137
inserting in tables, 52
moving between, in forms, 272
naming in Access, 43–44
naming in SQL Server, 1262
not editable, in datasheets, 218
properties, 6, 41, 55–70
in records, 205
referencing in queries, 181
removing in QBE grid, 137
renaming, 38, 44, 53, 588–589
report layout for, 13
selecting for reports, 302–303
selecting in QBE grid, 135–136
showing in QBE grid, 138–139
sorting on hidden field, 135
unused, saving queries having, 139
variables for referencing, 847–848

File button, 25. See also File menu or Office menu
file extensions. See also specific file extensions and types of files

for Access databases, 5, 26
for dBASE tables, 536
for Paradox tables, 537
for runtime mode, 916, 1125

File menu or Office menu
New button, 26
opening, 25
overview, 25
Print button, 234, 279
Save button, 82

files. See also specific files and kinds of files
attaching to fields, 85–86
location for multiuser applications, 686–687, 689, 696

filing systems, 5, 124
FillForm sub, 1048
FillPartial() function, 1033–1034
Filter event, 424, 638
Filter on Load form property, 288
Filter property

of forms, 288, 870–871
of queries, 591

filtering
aggregate queries, 597–598
datasheet records, by form, 233

datasheet records, by selection, 230–232
forms, events for, 638
forms, interactive dialog box for, 874–876
forms, properties for, 288, 869–871
forms, queries for, 871–876
for partial replication, 1030–1031

FilterOn form property, 870–871
financial functions, 456, 460–462
Find Duplicates queries, 601–603
Find Unmatched queries, 601, 603–604
FindFirst method

criteria string for, 868
FindRecord method versus, 869
locating records using bookmarks, 868–869

finding. See queries; searching
FindNext method, 848
FindRecord method

described, 865
FindFirst method versus, 869
indexed fields for improving efficiency, 848
for selecting specific record, 865–867

First() function, 595
first normal form (1NF)

always needed, 92
example, 91–92
limitations of, 92
rule for, 90
violated by flat-file approach, 90–91

five-step design method. See also designing databases
flowchart, 11
overview, 10–11
step 1: overall system design, 11–12
step 2: report design, 13–14
step 3: data design, 14–17
step 4: table design, 17–21
step 5: form (user interface) design, 21–22
time spent on each step, 11

Fix() function, 462
Fixed number format, 57, 58
fixed-width text files

importing, 564–566
linking to, 542
overview, 540

flat-file databases, 91, 98–99, 103
FlexFormat() function, 674
focus changes

Access error messages after, 448
characters inserted in expressions upon, 448
defined, 448

1314

IndexF

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1314

order of event firing, 428–429
SetFocus statement for, 866

fonts
adding emphasis to reports at runtime, 660–662
changing for controls, 258, 259, 293, 323–324
changing in datasheets, 225–226
Format Painter for, 635

footer
adding page numbers and dates to forms, 632–633
adding to forms, 290–291
Group Footer report section, 314, 317, 332–333, 334
Page Footer report section, 314, 317, 341–343, 671–672
Report Footer section, 314, 317, 665

For Each statement, 376–377
Force New Page section property, 337
ForeColor control property, 620
foreign keys

defined, 19
referential integrity rule for, 108–109
in second normal form (2NF), 95
in table design process, 19–20

form design
adding ToolTip help, 635–636
animating controls, 627–628
background pictures, 636–637
closing forms automatically, 629
combo box techniques, 630–631
determining if form is open, 631–632
in five-step design method, 21–22
Format Painter for, 635
modeling on printed forms, 21
on-screen objects for, 21
performance optimization, 842–844
removing controls from tab order, 626
selecting data for overtyping, 628–629
SQL for faster combo box refresh, 628
tabbed pages, 638–641
tallying check boxes, 626–627
toggling control properties with Not, 629

Form Design window
deleting controls, 260
overview, 243–244
resizing the form area, 244

form events
ADP, 425–426
data, 423–424
defined, 421
for filtering, 638
mouse and keyboard, 423
order of firing, 428–431

PivotTable, 424–425
primary, 421–422

Form keyword, 454
form modules. See also modules

defined, 358
event procedures in, 359
overview, 359
public variables not allowed for, 394

form properties
Allow Datasheet View, 283, 285
Allow Form View, 283, 284
Allow Layout View, 283, 285
Allow PivotChart View, 283, 285
Allow PivotTable View, 283, 285
Caption, 281–282, 284
data properties, 288–289
Default View, 282–283, 284
for dialog boxes, 642
displaying, 618–619
Filter, 288, 870–871
FilterOn, 870–871
format properties, 284–288
“other” properties, 289–290
overview, 280
Record Selectors, 284, 285
Record Source, 251, 282, 288
Tab Stop, 626
TimerInterval, 627
ViewsAllowed, 893
Visible, 851

Form ribbon, 271–272
form selector, 280, 281
Form View

Form ribbon, 271–272
illustrated, 270
navigating between fields, 272
navigating between records, 273
overview, 269–270
scrolling, 270
status bar, 270
switching between Datasheet View and, 278–279
using, 269–270

Form Wizard, 241–242
Form_AfterUpdate procedure

recalculating field after updating or adding records,
486–488

updating fields using ADO, 481–486
Format field property

for Date/Time fields, 59–60
for Hyperlink data, 63

1315

Index F

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1315

Format field property (continued)
Input Mask property overridden by, 64
for Number and Currency fields, 57–59
overview, 55, 57
symbols in custom format specifiers, 57
for Text and Memo fields, 61–62
for Yes/No fields, 62

Format() function
displaying data from query using, 458–459
FlexFormat() function using, 674
overview, 456, 458

Format Painter, 635
Format report section event

using, 440–441
when triggered, 439

Form_Close event procedure, 433
FormClosing event, 1074–1075
Form_Error event procedure, 809–810
Form_Load sub, 1048–1049
Form_Open sub, 716–717
forms. See also controls; form design; form properties; specific

types
Access 2007 specifications, 1269–1270
adding controls, 247–252
adding header or footer, 290–291
adding page numbers and dates, 632–633
adjusting space between controls, 258
ADP specifications, 1271
aligning controls on, 256–258
basing on queries, 127
bitmaps on, 842–843
blank, creating, 238, 243
bound, creating, 282
bound, in multiuser environments, 714–722
bound versus unbound, 714–715
building using SharePoint data, 1196–1198
bulletproofing, 893–894
Caption property for field labels, 56, 65–66
changing layout, 291–295
closing, 428, 433, 629
converting to reports, 296
copying before changing, 244
corrupt, fixing, 857
creating using the Form Wizard, 241–242
creating using the ribbon, 237–241, 269
datasheet, creating, 242–243
Date field data entry, 276–277
described, 8
determining if open, 631–632

dialog box, 641–645
displaying one at a time, 893
editing techniques, 274
embedded macros in, 352
embedding graphs in, 783–791
embedding unbound objects in, 773–777
filtering using events, 638
filtering using interactive dialog box, 874–876
filtering using properties, 288, 869–871
filtering using queries, 871–876
grid, hiding and displaying, 257
hiding during Print Preview, 675
importing, 571
linking, 875–876
login, 889–890
Memo field data entry, 276
minimizing complexity and size, 842
modal, 893
moving controls on, 252, 255–256
Multiple Items, 237
multiple-items, 237, 240–241
naming conventions, 36–37
navigating, 272–273
new features in Access 2007, 1285–1287
object type value, 673
as objects, 1076
OLE objects in, 274–275
opening with event procedures, 431–433
overview, 9–10
PivotChart, 237, 282
PivotTable, 282
prefix for names, 36
printing, 279–280
progress meter using pop-up form, 853–855
reports versus, 300–301
resizing the area, 244
ruler, hiding and displaying, 257
saving, 244
separating tables from, 1131
specifying view for, 282–283
split, 237, 239–240, 282
subforms, 246–247, 624–626
switchboards, 237, 431–433, 891, 1128–1129
tab order for, 292–293, 626
as top-level objects, 8
trapping unwanted keystrokes, 893
types of, 237–238
updating table data using, 480–481
uses for, 237

1316

IndexF

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1316

Forms keyword
defined, 454
identifier operator for, 452–453
syntax, 454

For...Next statement
alternate form, 374
in BeepWarning procedure, 374
overview, 374
With statement in, 376–377

forward slash (/)
in custom Date/Time formats, 59
division operator, 164
in input mask strings, 64

FoxPro tables, linking to, 536
freezing datasheet columns, 229
frmAnimation form, 627–628
frmAPIDemo form (on the CD), 962, 963
frmButtonWizardSamples form (on the CD), 355
frmCommandLine form (on the CD), 384
frmContactLog (Contact Log form), 21
frmContacts (Contacts form), 21, 638–639
frmEmployees form (on the CD)

editing data, 720–722
Form_Open sub, 716–717
moving through records, 718–720
Open event, 716–718
overview, 715
Tag property, 716
UnboundDisplay() function, 717–718
UnboundMoveFirst() function, 718
UnboundMoveLast() function, 718
UnboundMoveNext() function, 718–719
UnboundMovePrevious() function, 718, 719
UnboundSave() function, 721–722
UnboundSearch() function, 719–720

frmFilterProducts form, 874–876
frmImplicitTest form (on the CD), 398
frmIndexTest form, 76–77
frmMessageDemo form (on the CD), 882–883
frmMsgBoxDemo form (on the CD), 905
frmNamedArguments form (on the CD), 416
frmProductExampleStart form (on the CD)

changing image display, 776–777
copying onto your machine, 772
editing embedded objects, 779–780
embedding graph in, 784–791
inserting image-type objects, 773–775
linking objects, 781–782

frmProducts (Products form)
described, 21
event properties in, 418–419
running an event when closing, 433

frmProductsExample1 form
FindRecord method for, 865–867
unbound combo box, 863–865

frmProductsExample2 form, 867–869
frmProductUnbound form (on the CD)

cmdSell sub, 1049
creating a Product object, 1047
described, 1046–1047
FillForm sub, 1048
Form_Load sub, 1048–1049
referencing Product object properties and methods,

1048
SetObjectProperties sub, 1048

frmSales (Sales form)
CalcExtension() function with, 412
CalcTax() function for, 412
cboBuyerID AfterUpdate event procedure, 406–408
cmdDelete_Click() event procedure, 494–495
described, 21
recalculating txtTaxAmount control value, 486–490
tables updated by, 480–481
updating fields using ADO, 481–486

frmSplashScreen form (on the CD), 850
frmSwitchboard form, 919
frmSysCmdDemo form (on the CD), 905
frmTabControl2 form (on the CD), 640–641
FROM clause (SQL), 473
front-end database. See also splitting databases; upsizing

Access databases to SQL Server
file location scenarios, 687, 696
for multiuser applications, 687
replica not needed for, 991

functions (API). See also specific functions
aliases for, 958, 959
basAPIFunctions module examples (on the CD), 962
for controlling applications with the Registry, 980–986
data type for return value, 961
declaring, 955–956, 958–961
DLL advantages for, 952, 953
dynamic linking, 952
general-purpose, 972–975
hwind parameter, 962
for manipulating application settings, 975–980
naming in declarations, 958

1317

Index F

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1317

functions (API) (continued)
passing arguments by value versus by reference, 960–961
for retrieving system information, 964–972
saving work frequently, 962
subs versus, 958
wrapper functions, 961–962

functions (VBA or Access). See also procedures; specific
functions

Access, examples of, 456
for calculated fields, 581
calling, 358
calling and passing parameters, 411–413
conversion, 456, 457–459
creating, 409
data type for return value, 358
date/time, 456, 459–460
defined, 324, 350, 455
domain, 465–469
in expressions, 445–446
financial, 456, 460–462
grouped and stored in modules, 357
handling parameters, 409–411
Immediate window for checking results, 456–457
as library database entry points, 1085
mathematical, 456, 462–463
overview, 358
as procedures, 349, 357
procedures versus, 404
programming, 464–465
in queries, 181
in query criteria, avoiding with linked tables, 544
for reading control properties, 623–624
for reusable code, 414
for setting properties, 621–623
string manipulation, 456, 463–464
types of, 456
uses for, 455–456
values returned by, 404

FV() function, 461

G
Gallery controls, 1093–1094
Gaven, Tom (Beginning XML), 1171
General Date format, 59
General Number format, 57, 58
GenerateXML1 sub, 1180–1181
GenerateXML2 sub, 1181–1182
GenerateXML3 sub, 1182–1183
GenerateXML4 sub, 1185–1187

Gen_Notes field, 1009
Gen_Photos field, 1009
GetClassNameA API function, 973–974
GetCommandLineA API function, 964
GetComputerNameA API function, 968
GetDiskFreeSpaceA API function, 970–971
GetDriveTypeA API function, 968–970
GetIndent() function, 1184–1185
GetLabel attribute (XML), 1102, 1103
GetObject function (VBA)

class parameter, 729
new instances not created by, 727
pathname parameter, 728
syntax, 728

GetOption method, 901–902
GetParent API function, 972–973
GetPrivateProfileIntA API function, 977–978
GetPrivateProfileStringA API function

ease of use, 953
overview, 976–977
SDK reference for, 955–956
VBA declaration for, 956

GetProfileStringA API function, 978
GetProperty() function, 623–624
GetSystemDirectoryA API function, 972
GetTab() function, 1182
GetTempPathA API function, 965–966
GetUserNameA API function, 967–968
GetVersionExA API function, 966–967
GetVolumeInformationA API function, 971–972
GetWindowsDirectoryA API function, 964–965
GetWindowTextA API function, 973
global partial replication, 1029
global procedures, 360
global variables, 402
globally unique IDs (GUIDs), 1005–1006
GotFocus event, 422, 427
GoToLabel statement, 807, 808
grandparent-grandchild relationships, 105–106
GRANT command (DDL), 1238
graphs

assembling the data, 783–784
creating from queries, 127
creating, methods for, 782–783
creating using toolbox, 783
customizing, 791
embedding in forms, 783–791
frames for, 790
report type, 298

1318

IndexF

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1318

greater than symbol (>)
in custom Text or Memo formats, 61
in relational operators, 143, 166–167

Grid X form property, 287
Grid Y form property, 287
Group Footer section of reports

creating, 332–333
overview, 314, 317
removing, 334

Group Header section of reports
for alphabetical headings, 652–653
creating, 332–333
creating expression in, 339–340
for date interval groups, 654–655
overview, 314, 316
removing, 334
starting new page number for each group, 664

Group On report property, 651, 654
grouping

controls, 259–260
records by field value, 841
report data, 303–304, 650–655

GroupInterval report property, 651
groups (user)

Admins group, 926
assigning members, 928
creating, 926–927
deleting groups, 927
deleting members, 928–929
overview, 925–926
replication issues, 998–999

groups/totals reports. See tabular reports
GUIDs (globally unique IDs), 1005–1006

H
h and hh Date/Time format specifiers, 60
handling errors. See error handling
hard drive

compiled versus uncompiled applications on, 830
database backup space requirements, 991
defragmenting, 838
memory errors from running out of space, 885
as slow components, 823
space requirements for the CD, 1275
space requirements for upsizing to SQL Server, 1251
for swap file, 838, 885

hardware errors, checking for, 884–885
hardware failure, runtime errors from, 501–502, 803

Has Module form property, 290
header. See also Group Header section of reports

adding page numbers and dates to forms, 632–633
adding to forms, 290–291
Page Header report section, 314, 315–316, 338–339,

662–663
Report Header section, 314, 315

Height control property, 621
Help Context ID form property, 290
Help File form property, 290
Help, online, 881, 884, 1132
hidden fields

sorting on, 135, 139
unused, saving queries having, 139

Hide Duplicates field property, 649–650
HideHeader() function, 662–663
hiding

controls with Format event, 440–441
controls with Visible property, 620, 623
datasheet columns, 228–229
dialog box forms, 645
fields in Design View, 587–588, 589
fields in QBE grid, 138–139
forms after loading, 851
forms during Print Preview, 675
Navigation Pane, 892–893
object names from users, 37
repeating information on reports, 648–650
rows in datasheets, 225
sections of reports, 335

Hourglass action, 1138, 1139
hourglass cursor, 851
HTML 4 For Dummies (Tittel and Burmeister), 1167
HTML (Hypertext Markup Language)

complex example, 1166–1167
DOM structure, 1173
exporting files, 570–571
further information, 1167
importing files, 570
limitations of linked data, 533
linking to files, 539–540
overview, 1166
simple script example, 1166
XML versus, 1167–1168

HTML Wizard, 539–540
HTML, XHTML, and CSS Bible (Pfaffenberger, Karow, White,

and Schafer), 1167
Hunter, David (Beginning XML), 1171
hwind parameter (API), 962

1319

Index H

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1319

Hyperlink controls, 246. See also controls
Hyperlink data type or field

described, 44, 46
Format property for, 63
overview, 50–51, 1261
rules for updating queries with, 150
storage requirements, 46

Hypertext Markup Language. See HTML

I
icons

for applications, custom, 888, 889
for applications, establishing, 886, 887
image references for custom ribbons, 1108
for linked tables, 530, 535
for reference libraries, 725–727
for startup in runtime mode, 916

identifier operators in expressions
dot (.), 451, 453–454
exclamation mark (!), 451–453
overview, 451

identifiers or object names
brackets surrounding, 447, 448, 449
defined, 445
entering in expressions, 449
for GoToLabel statement, 807–808
identifier operators for, 451–454
names versus, 447

#If...#Then...#Else...#End If compiler directive,
378, 509

If...Then...Else...End If construct
And clause, 370
Else clause, 370
ElseIf clause, 370
error handling using, 813
Or clause, 370
overview, 369–370
for updating progress meter, 855

Ignore Nulls index property, 79
IIF() function

for avoiding null values, 664
for calculated fields, 583
overview, 464, 583

Image controls (Access). See also controls
described, 246
performance advantages of, 633–634
Size Mode property, 330
Unbound Object Frame controls versus, 843

image controls (ActiveX)
changing image display, 776–778
described, 770
inserting unbound objects, 773–775
as unbound objects, 770

image references for custom ribbons, 1108
images. See pictures
IME (Input Method Editor) field properties

IME Mode, 56, 57
IME Sequence Mode, 56, 57

Immediate window
Debug.Print for output to, 511
opening, 457, 512
overview, 368, 512
running code from, 512–513
testing CalcExtension() function in, 411
testing code or functions in, 456–457
viewing variable values at breakpoints, 514–515

Imp operator, 170
impdelim.txt file, importing, 562–563
impfixed.txt file, importing, 564–566
implicit variable declaration

explicit versus, 363, 392–393, 397–398
overview, 391

Import Errors table, 577
Import Specification window

for fixed-width text files, 565–566
using, 567–569

Import Spreadsheet Wizard, 560–561
Import Text Wizard

for delimited text files, 562–563
for fixed-width text files, 564–566

importing. See also external data; linking external data
Access objects other than tables, 571
advantages of, 528–529
from another Access database, 557–558
AutoIndex on Import/Create option, 70
automating, 529
data from unsupported programs, 529
database objects, 571, 858
file types supported by Access, 526–527, 556
HTML documents, 570
linking versus, 527–529
named range of cells from spreadsheet, 558
non-Access, PC-based database tables, 574–576
ODBC drivers for, 572–574
Outlook folders, 572
SharePoint Lists, 561, 767–768
spreadsheet data, 558–561

1320

IndexH

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1320

tables from SQL Server, 1239, 1240, 1241
text files, 561–569
troubleshooting import errors, 576–577
XML documents, 569

In operator
list of values with, 192–193
overview, 173
in queries, 176–177

indenting code
AutoIndent option for, 379
with continuation characters, 386–387

Indexed field property
overview, 56, 69
settings, 69
simple indexes created by, 76
when to index, 70

indexing
AutoIndex on Import/Create option for, 70
choosing fields to index, 839–840
data types not allowing, 47
descending index, 840
fields warranting, 70
finding data, efficient methods for, 848
importance of, 76–78
index, defined, 113
Indexed property, 56, 69–70
maximum indexes per table, 69
.mdb file size increased by, 80
multiple-field (composite) indexes, 78–79, 839–840
need for, 75–76
performance impacts of, 69, 77–78, 79, 80, 838–841
primary key always indexed, 73, 78, 112
primary key used for, 73
setting properties for, 78–79
simple indexes, 76
tblContacts table, 80–81
when to index, 70, 80

infinity symbol (∞) for one-to-many relationships, 146
.ini files, 975–980
Initialize class event, 1065–1066
inner joins (equi-joins)

as default, 156
described, 151
overview, 156–157
records returned by, 158
specifying in SQL FROM clause, 478–479

Input Mask field property
characters used as specifiers, 63–64
ignored by some action queries, 64

Input Mask Wizard for, 64–65
overridden by Format property, 64
overview, 56, 63
sections, 63
for Text and Date/Time fields, 65

Input Method Editor (IME) field properties
IME Mode, 56, 57
IME Sequence Mode, 56, 57

Insert Data permission, 934
inserting

characters in datasheets, 217
fields in QBE grid, 137
fields in tables, 52
insertion anomalies, 97
OLE fields in forms, 275
records using ADO, 490–491
rows in tables, 42
unbound image-type objects, 773–775

insertion anomalies, 97
installing. See also distributing applications

applications, professional tools for, 881–882
distributed installation for multiuser applications, 687
items from the CD, 1276
SQL Server Express, 1223

InStr() function, 463
Int() function, 462
Integer data type (VBA), 396, 397
integer division operator, 164
integrity, entity, 72, 110
integrity, referential. See referential integrity
IntelliSense feature, 364–365, 726, 1051
Internet resources

custom ribbon examples, 1095
Microsoft Office site, 1095
Microsoft SharePoint site, 752–753
ribbon information, 1092
SharePoint sites, 752, 754
SQL Server Express download, 1223, 1224, 1249
SQL Server reserved word references, 1262
Visual Web Developer 2005 Express download, 1091,

1112
Wiley Customer Service, 1277

invalidating custom ribbons, 1114–1115
InvalidSupplierID event

declaring, 1069–1070
raising, 1070–1071
trapping, 1071–1073

Invoice report. See rptInvoice (Sales Invoice report)
Invoice table. See tblSales (Sales table)

1321

Index I

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1321

invoking. See calling or running
Is operator

overview, 173
in queries, 176–177
searching for null data, 195

IsDate() function, 464
IsEven() function, 670–671
IsFormOpen() function, 631–632
IsLocal() function, 1015–1016
IsMissing() function, 464–465
IsNull() function

for calculated fields, 583–584
with Not, to ensure null value in field, 866
overview, 465, 584

IsReplicable() function, 1018–1019

J
Jet security model. See also security

components, 909–910
limitations of, 911
permissions, 910–911
reasons for employing, 910
workgroup information files, 910

join lines
for auto-joins, 153
motion of, 147
for one-to-many relationships, 146
for outer joins, 155
showing referential integrity, 146

joins
auto-joins, 152, 153
automatic for relationships, 156
conditions required for, 146
deleting, 155–156
inner or equi-joins, 151, 156–157, 158, 478–479
left outer, 159, 479
for many-to-many relationships, 104, 105
methods of creating, 152
need for, 152
outer, 154–155, 158–159, 479
performance impacts of, 841
properties of, 117, 118, 157–158, 586
removed from query with tables, 147
right outer, 158–159, 479
selecting tables for, 155
specifying in SQL FROM clause, 478–479
specifying type of, 117–118, 153–155
verifying, 586

K
Karow, Bill (HTML, XHTML, and CSS Bible), 1167
KeepLocal property

IsLocal() function for checking, 1015–1016
SetKeepLocal sub for, 1017

keyboard events
common to many Access objects, 420–421
in controls, 427
in forms, 423
order of firing, 429, 431

KeyDown event
described, 421
when triggered in controls, 427
when triggered in forms, 423

KeyPress event
described, 421
when triggered in controls, 427
when triggered in forms, 423

KeyUp event
described, 421
when triggered in controls, 427
when triggered in forms, 423

keywords. See also reserved words; specific keywords
defined, 349
SQL, basic, 473–474

L
L in input mask strings, 63
label controls. See also controls

adding using Field List, 249–250
aligning, 676
attaching to controls, 260–261
best-fit sizing, 255, 325
callbacks for, 1102–1103
captions for, 250, 266
changing properties, 330–331
in compound controls, 256
for custom ribbons, 1102–1103, 1108
described, 246
moving, 328–329
moving separately from attached control, 256
pasting into report section, 327
removing from text box controls, 326–327
removing text box controls from, 327
resizing, 325–326

labels for error handling (VBA)
with On Error statement, 807–808, 815–816
with Resume statement, 819–820

1322

IndexI

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1322

labels for fields, 56, 65–66
languages, properties for

IME Mode, 56, 57
IME Sequence Mode, 56, 57
Unicode Compression, 56

large databases
changing, exporting changed objects, 861
compiling and compacting, 857
decompiling, 858–859
fixing corrupt forms, 857
growth of, 856–857
importing all objects into new database, 858
keeping in compiled state, 860–861, 862
problems resulting from, 856
rebooting, 857
steps to success for, 859–860

Last() function, 595
late binding. See DLLs (dynamic link libraries); dynamic

linking
Layout for Print form property, 287
layout of datasheets, saving, 229
layout of forms, changing, 291–295
layout of reports

defining, 301, 320–321
for fields, 13
selecting in Report Wizard, 306

Layout ribbon
Control Alignment group, 256–257
Control Layout group, 255, 257, 259
Font group, 258, 259
overview, 254
Position group, 258
Show/Hide group, 257
Size group, 255

LCase() function, 457, 463
Left control property, 621
Left() function, 463
left outer joins, 159, 479
Len() function, 463
less than symbol (<)

in custom Text or Memo formats, 61
in input mask strings, 64
in relational operators, 143, 166

libraries (API). See DLLs (dynamic link libraries)
library databases

.accde format for, 1081, 1085, 1086
Access capabilities for, 1080
basics, 1082
creating, 1085–1087
debugging, 1087

for distributing applications, 833–836
functions as entry points to, 1085
loading, 1087
object references, 1087–1088
overview, 1080
planning exposure of, 833
referencing explicitly, 834–836, 1083–1184
referencing options, 1082
referencing programmatically, 1084–1085
in replica sets, 1086
sharing code between applications with, 1081
uses for, 1080
wizards and add-ins in, 1080

lifetime of variables, 402–403
Like operator

basic syntax, 168
example query creation, 184–186
overview, 168
for parameter queries, 871, 873
in queries, 176–177, 183–187, 874
wildcards with, 168–170, 183–184, 186–187, 873

Line controls, 246. See also controls
Line Items table. See tblSalesLineItems (Sales Line

Items table)
line styles for datasheets, 227–228
Link Child Fields query property, 591
Link Master Fields query property, 591
Link Spreadsheet Wizard, 537–539
Linked Table Manager Wizard, 545
linked tables

basic rules for, 544
changing information for, 545
deleting from object list, 544–545
icons for, 530, 535
moving, avoiding, 532
optimizing, 544
setting relationships for, 544
setting view properties for, 543–544
viewing information for, 545

linking external data. See also external data
Access database tables, 533–536
advantages of, 528, 530–532
checking links, 552–554
DAO for, 546–554
dBASE tables, 533, 536
Excel spreadsheets, 532, 537–539
Excel worksheets, 547–549
file types supported by Access, 526–527
HTML files, 533, 539–540
icons for linked tables, 530, 535

1323

Index L

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1323

linking external data (continued)
importing versus, 527–529
limitations of, 532–533
moving linked tables, avoiding, 532
need for, 529
ODBC data sources, 533, 536, 549
Paradox tables, 533, 537
referencing library databases, 834–836, 1083–1084
SharePoint data for forms, 1196–1198
SharePoint data for reports, 1198–1200
splitting an Access database, 533, 542–543
SQL Server connection using ODBC, 1227–1236
SQL Server connection using SQLCMD utility,

1226–1227
SQL Server tables, 1239, 1240, 1241–1243
text files, 532, 540–542, 550–552
using DAO code, 546–554
working with linked tables, 543–545

linking objects. See also linked tables
benefits of, 771
defined, 770
embedding versus, 770, 771–772
forms, 875–876
modifying objects using source application, 771
overview, 780–782
source application when using, 772

LinkText() function, 550–552
List Box controls. See also controls

adding using Field List, 249
changing control type, 251
described, 246
for Lookup Wizard data type, 51
performance optimization, 843–844
Use Control Wizards command for, 246–247, 278
using, 278

listeners, 1225
literal criteria for queries, 183
literal values in expressions, 446
Load event, 422
load on demand functionality

call tree pruned by, 824–826
Compile on Demand option with, 825–826
described, 823–824
organizing modules for, 824, 826

loading
custom ribbons, 1115
forms and hiding, 851
library databases, 1087
load on demand functionality, 823–826

local objects in replica sets
described, 988–989, 999
IsLocal() function for, 1015–1016
keeping local when programming replication, 1014–1017
setting properties for, 999–1000, 1017

local partial replication, 1029
local tables, defined, 28
Locals window, 514, 517–518
locked fields

not editable in datasheets, 218
not editable in forms, 274
queries not updateable with, 150

locked records. See also record locking; record-lock error
handling

action queries not performed on, 616
controls not editable in forms, 274
fields not editable in datasheets, 218

LogError() function, 906–907, 908
logging

error logs for applications, 906–908
maintaining usage logs, 894–895
replication system table for, 1008
undesirable results from, 906

logical errors, 501, 802, 805–806
logical operators. See Boolean (logical) operators
login form, 889–890
Long data type (VBA), 396
Long Date format, 59
Long Time format, 59
Lookup Property window, 71–72
lookup tables

in Access Auto Auctions database, 46
defined, 45
DLookUp() function for, 467–469
uses for, 45

Lookup Wizard data type or field
described, 45, 46
list boxes or combo boxes created for, 51
overview, 51
storage requirements, 46

looping
defined, 372
Do...Loop statement, 372–373
endless loops, 373, 806
For Each statement, 376–377
For...Next statement, 374, 375–376
performance optimization, 846
With statement, 375–377

LostFocus event, 422, 427

1324

IndexL

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1324

Lotus 1-2-3, importing data from, 558–559
LTrim() function, 464

M
m through mmmm Date/Time format specifiers, 60
Macro Recorder (Microsoft Office), 738–740, 1133
MacroError object, 1155–1156
macros. See also actions for macros; specific macros

Access 2007 specifications, 1270
Access versus Macro Recorder, 1133
ADP specifications, 1272
assigning to events, 1136–1137
compared to stored procedures, 1213
conditions for, 1143–1146
converting to VBA modules, 352–354, 1160–1162
debugging, 1156–1157
described, 8
design window, 1134–1135
embedded, 352, 1157–1159
error handling, 1151–1156
importing, 571
limitations of, 347–348
mcrBackupContactsAndProducts example (on the

CD), 1138–1140
mcrDivision example, 1152–1153
mcrDivisionErrorHandling example, 1153–1155
mcrHelloWorld example, 1134–1137
mcrHelloWorldEnhanced example, 1147–1148,

1160–1162
mcrMainMenu example, 1140–1143
mcrReportMenu example, 1143–1146
mcrReportMenuEnhanced example, 1148–1150
multiaction, 1137–1140
names for, 1140–1143
naming conventions, 36–37
new features in Access 2007, 1288
object type value, 673
overview, 1133–1134
prefix for names, 36
security levels, 947
separating tables from, 1131
temporary variables for, 1146–1151
as top-level objects, 8
VBA versus, 347–348, 351–352, 1159–1160
when to use, 351–352
in Word and Excel versus Access, 351

MacroTools Design ribbon, 1134
mailing-label reports, 298, 299–300

Make ACCDE command, 829
MakeAdditionalReplica sub, 1021
make-table queries. See also action queries

creating, 612
described, 609
viewing results of, 610–611

manual database systems, 5, 124
many-to-many relationships, 104–105
many-to-one relationships, 100. See also one-to-many

relationships
many-to-one-to-many relationships, 150
master-detail relationships. See one-to-many relationships
mathematical functions, 456, 462–463
mathematical operators

addition (+), 163
for calculated fields, 581
division (/), 164
exponentiation (^), 164
in expressions, 445
greater-than-0.5 rule for rounding numbers, 164
integer division (\), 164
list of, 162
modulo (mod), 165
multiplication (*), 163
precedence, 174
in queries, 176–177
subtraction (-), 163–164

Max() function, 595
Max Records query property, 591
mcrBackupContactsAndProducts macro (on the CD),

1138–1140
mcrDivision macro, 1152–1153
mcrDivisionErrorHandling macro, 1153–1155
mcrHelloWorld macro, 1134–1137
mcrHelloWorldEnhanced function, 1162
mcrHelloWorldEnhanced macro, 1147–1148,

1160–1162
mcrMainMenu macro, 1140–1143
mcrReportMenu macro, 1143–1146
mcrReportMenuEnhanced macro, 1148–1150
.mdb files. See also Chapter files on the CD-ROM

.accdb files versus, 826–827
converting to .accdb format, 27–29, 827
converting to .mde format, 829
decoding, 944
encoding, 942–943
maintaining to avoid runtime errors, 502
size increased by indexing, 80
user-level security features retained for, 909

1325

Index M

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1325

.mde files
creating, 829
VBA code protected by, 945

Me property
hiding dialog box forms, 645
overview, 455

Medium Date format, 59
Medium Time format, 59
Memo data type or field

Allow Zero Length property for, 68–69
converting, 54
custom formats, 61–62
data entry in forms, 276
described, 44, 46
format examples, 61–62
Format property for, 61–62
overhead required by, 47
overview, 48, 1260
properties’ effect on data entry, 213
query criteria for, 182–183
report considerations, 48
rules for updating queries with, 150
sorting or indexing not available with, 47, 48
SQL Server equivalents, 1262
storage requirements, 46

memory. See RAM (memory)
Menu Bar property

of controls, 621
of forms, 290

menus
importing custom, 571
removing control menu from forms, 645
removing from applications, 892–893
replaced by ribbons, 1089, 1090–1091
replication-related, 990, 993, 994, 997, 998

MergetoWord() function, 730, 733–735
metadata, 1167
methods. See also specific methods

of clsProduct1 class module, 1043
creating, 1045–1046
of objects, 1042

Microsoft Excel. See Excel (Microsoft)
Microsoft Office Button, 25. See also File menu or Office

menu
Microsoft Office integration. See also specific products

ActiveX controls for, 792–799
checking spelling, 791–792
collecting data with Outlook, 740–747
creating PivotTables, 793–799
GetObject class arguments for components, 729

using Automation, 724–730
using OLE automation, 793
Word example using Automation, 730–740

Microsoft Office Print menu, 233–234
Microsoft Outlook. See Outlook (Microsoft)
Microsoft SharePoint Designer, 1207
Microsoft SharePoint site, 752–753
Microsoft Word. See Word (Microsoft)
Microsoft XML Parser (MSXML), 1179
Microsoft’s System Center Configuration Server (SCCS), 687
Mid() function, 464
Min() function, 595
Min Max Buttons form property, 285
minus sign (-). See dash or minus sign (-)
mod (modulus division) operator

overview, 165, 463, 670
for testing even or odd pages, 670–671

Modal form property, 289, 642
modal forms, 893
Modify Design permission, 934
modules. See also class modules; specific modules

advantages of, 347–348
avoiding naming ambiguities for, 36
compared to stored procedures, 1213
converting macros to, 352–354, 1160–1162
creating, 360–363
data types for, 844–846
Declarations section, 362–363, 395
defined, 350
described, 8, 403
form, 358, 359, 394
importing, 571
load on demand functionality, 823–826
macros compared to, 347–348, 351–352
naming conventions, 36–37
object type value, 673
organizing for load on demand, 824, 826
password-protecting, 944–945
performance optimization, 844–849
prefix for names, 36
private variables declared within, 395, 401
procedures versus, 360
public variables declared within, 394, 401
report, 358, 359, 394
saving, 365
sections for procedures, 362
separating tables from, 1131
standard, 358, 360, 367
sub and function procedures stored in, 357
as top-level objects, 8

1326

IndexM

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1326

types of, 358
when to use, 351–352

modulus division (mod) operator
overview, 165, 463, 670
for testing even or odd pages, 670–671

Month() function, 459
morphing controls, 634
mouse events

common to many Access objects, 420–421
in controls, 427
in forms, 423
order of firing, 420, 431

MouseDown event
described, 420
when triggered in controls, 427
when triggered in forms, 423

MouseMove event
described, 420
when triggered in controls, 427
when triggered in forms, 423

MouseUp event
described, 421
when triggered in controls, 427
when triggered in forms, 423

MouseWheel event
described, 421
when triggered in controls, 427
when triggered in forms, 423

Moveable form property, 287
MoveUp method of Word Selection object, 737
moving. See also dragging; navigating

changing field order in datasheets, 222–223
changing field order in QBE grid, 136
controls, 252, 255–256, 259, 328–329, 335–336
Field List window, 147
linked tables, avoiding, 532
tables to back-end database, 28

MsgBox action
mcrBackupContactsAndProducts macro, 1139
mcrDivisionErrorHandling macro, 1154
mcrHelloWorld macro, 1135–1136
mcrHelloWorldEnhanced macro, 1147, 1148

MsgBox() function
arguments, 435–436
confirming record deletion using, 434–435
constants, 436–437, 903
for debugging, 508
parameters, 902
for providing user feedback, 902–905
return values, 437, 904

MSXML (Microsoft XML Parser), 1179
MSysErrors replication system table, 1004, 1008
MSysExchangeLog replication system table, 1008
MSysGenHistory replication system table, 1009
MSysObjects system table, 672, 673
MSysOthersHistory replication system table, 1009
MSysRepInfo replication system table, 1007
MSysReplicas replication system table, 1008
MSysSchChange replication system table, 1008
MSysSchedule replication system table, 1008
MSysSchemaProb replication system table, 1000–1001,

1008
MSysSidetables replication system table, 1008
MSysTableGuids replication system table, 1008
MSysTombstone replication system table, 1008
MSysTranspAddress replication system table, 1008
multiaction macros, 1137–1140
multiple-field (composite) indexes, 78–79, 839–840
multiple-items forms

creating, 237, 240–241
default view, 283
described, 237

multiplication operator
overview, 163
in queries, 176–177

MultiRow property of tab control, 640
multitier architecture

Access in, 1219–1222
overview, 1217–1218

multiuser applications
data sources, 688–689
database open options, 690–692
database replication for, 689–690
distributed installation, 687
file locations, 686–687, 689, 696
locking issues, 698–702
network issues, 686–690
performance, 686–687
pitfalls of failing to plan, 685
record-lock error handling, 702–714
remote user needs, 689–690
security issues, 685–686
splitting databases for network access, 692–698
unbound forms in, 714–722

multivalued lists or fields, 754
MyAccessAutoAuctions.accdb file, 26–27, 29
MyDM.mdb database

backing up before converting, 990–991
changing the Design Master, 994
changing the replica, 993

1327

Index M

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1327

MyDM.mdb database (continued)
converting to Design Master, 990–991, 992
creating the database, 990
MyDM.mdb file (on the CD), 988
principles illustrated by, 994–995
synchronization, 993–994, 995

N
n and nn Date/Time format specifiers, 60
Name property

of controls, 266–267
of reports, 665

named arguments, 415–416
naming

adding user’s name to bound report, 666
aliases for fields, 137–138
allocating space for names, 41
API functions in declarations, 958
arguments for procedures, 415–416
AutoCorrect option for names, 36
bang-dot notation for, 454
bound controls, 340
changing field names, 38, 44, 53
changing table names, avoiding, 36
class modules, 1040, 1043–1044
controls, 266–267, 677
conventions for, 36–37, 880
default control names, 452
default name for new database, 26
default names, avoiding, 880
fields in Access, 43–44
fields in SQL Server, 1262
hiding object names from users, 37
identifier operators in expressions, 451–454
identifiers versus names, 447
long versus short names, 37
macro names, 1140–1143
mixed-case names, 36
modules created from macros, 353
new databases, 26
object properties and methods, 1045
password naming conventions, 913
prefixes for, 36, 266–267, 391, 400, 956
procedures, 403
projects, 381
property procedures, 1057
renaming fields, 38, 44, 53, 588–589
renaming tables, 82–83

reserved words, 452–453, 1262
same name for different objects, avoiding, 36
spaces in names, avoiding, 37, 179
specifying table names with fields, 148, 163, 179, 474
SQL Server instances, 1233
table names in QBE grid, 148–149
variables, 390–391, 399–400
Windows API function arguments, 956

Native XML database, 1177–1179
natural order, 75–76
natural primary keys, 75, 113–114
navigating

datasheets, 206
between fields in forms, 273
Form Wizard, 242
Query Design window, 130
between records in forms, 273

Navigation Buttons form property, 285, 642
Navigation Caption form property, 288
Navigation Pane

All Tables option, 32
Created Date option, 32
Custom option, 31
default navigation option, 32
described, 29
displaying navigation options, 30–31
Filter By Group option, 32
hiding, 892–893
icons for linked tables, 530, 535
Modified Date option, 32
Modules object button, 357
Navigate To Category option, 32
Object Type option, 31
standard modules stored in Module section, 360
Tables and Related Views option, 31–32
Unrelated Objects option, 32

needs analysis, 12
nesting

queries, avoiding calculated fields in, 626
Subform controls, 626

network bandwidth and SharePoint scalability, 749–750
network database synchronization. See replication
network issues for multiuser applications

data sources, 688–689
file location, 686–687, 696
performance, 686
remote user needs, 689–690

network performance, 686, 849
New button, 26

1328

IndexM

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1328

new features in Access 2007
Datasheet View, 1283–1285
for forms, 1285–1287
for macros, 1288
for reports, 1287
for security, 1288
for SharePoint, 1288
for tables, 1283
user interface, 1279–1282

New keyword (VBA), 727
New Values field property, 55
nine (9) in input mask strings, 63
NoData report event, 438–439
normalization

anomalies avoided by, 94–95, 96–97
data spread among tables by, 123
database for examples, 89–90
decomposition for, 94
denormalization, 97–98
described, 8, 20–21, 89
in design process, 18
first normal form (1NF), 90–92
second normal form (2NF), 92–96
third normal form (3NF), 96

NOT Like operator. See Like operator
Not operator

overview, 172
in queries, 176–177, 187–188
resultants, 172
toggling control properties with, 629

NotInList event, 427
Now() function

described, 456, 459
running in Immediate window, 513

NPV() function, 461
nSquareFeet() function, 358
null values

And operator resultants with, 170–171, 180
for concatenation operands, 168
for fields, checking, 866
for fields, defined, 180
Is Null or Is Not Null for determining, 173, 195
logical errors from, 501, 802
not allowed for fields in composite keys, 113
not allowed for primary keys, 108
Not operator resultants with, 172
Or operator resultants with, 171, 180
referential integrity rule for, 108
relational operator return, 165

Required and Allow Zero Length property
combinations for, 68–69

Required property for preventing, 67, 68
in tabular reports, avoiding, 664–665

NullToZero() function, 664–665
Number data type or field. See also AutoNumber data type

or field; Currency data type or field;
Date/Time data type or field

built-in formats, 57–58
changing field size, 54
converting, 54–55
custom formats, 58–59
Decimal Places property, 56
Default Value property for, 56
described, 44, 46
Field Size property, 49
format examples, 58
Format property for, 57–59
leading zeros not stored for, 47
overview, 49, 1260
properties’ effect on data entry, 212
query criteria for, 188–189
reflecting field data, 47
selection criteria for queries, 143–144
SQL Server equivalents, 1261
storage requirements, 46

numbered lists in reports, 655–658
NZ() function, 465

O
Object data type (VBA), 396
object libraries

described, 724
early binding an object, 724–725, 727
late binding an object, 725–727
required for Automation examples, 725

object-oriented programming. See OOP
objects. See also identifiers or object names; OOP (object-

oriented programming); specific types
basics, 1039–1040
benefits of, 1038–1039
bound versus unbound, 770–771
class modules as definitions of, 1041
creating multiple instances, 1040
defined, 1039
embedding, 772–780
exporting to other Access databases, 577–578
forms as, 1076

1329

Index O

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1329

objects (continued)
importance of design process, 10
importing all into new database, 858
importing (other than tables), 571
local, in replica sets, 988–989, 999–1000, 1014–1017
methods of, 1042
names stored in MSysObjects table, 672, 673
naming conventions, 36–37
not related to a table, viewing, 32
properties of, 1041–1042
referencing in library databases, 1087–1088
related to a table, viewing, 31–32
setting owner for, 929–931
setting permissions for, 931–934
specialized, for client/server architecture, 1214
storable in OLE fields, 275
tabbed user interface for, 33–35
top-level, 8
type values for, 673
types of, 770
using in applications, 1040

obsolete databases
enabling (opening in read-only mode), 29
opening and converting, 27–29

ODBC (Open Database Connectivity)
connect strings and source table names with, 549
exporting using, 578
importing using, 572–574
limitations of linked data, 533
linking to data sources, 536
performance issues, 688
record-locking refresh interval, 702
specification, 536
SQL Server connection using ODBC, 1227–1236

ODBC Time-out query property, 590
Office Button, 25. See also File menu or Office menu
Office integration. See Microsoft Office integration; specific

products
Office Online area

Automatically Update This Content from Office Online
button, 23

Blank Database button, 26
templates, 24

OLE Automation. See Automation
OLE Object data type or field

converting not allowed for, 55
described, 44, 46
editing embedded objects, 772, 779
embedding bound objects, 777–778
embedding objects, 777–778

embedding unbound objects, 773–775
in forms, 274–275
overview, 50, 1260
performance issues, 843
properties’ effect on data entry, 212–213
query criteria for, 190
report considerations, 48
rules for updating queries with, 150
Size Mode control property, 330
sorting or indexing not available with, 47, 48
SQL Server equivalent, 1262
storage requirements, 46

OLTP (Online Transaction Processing), 1218–1219
On Error statements

for ADO errors, 811–812
basic error trap, 807–808, 814
described, 808
Err object with, 812–813
On Error GoTo <label>, 807–808, 811–813, 814,

815–816
On Error GoTo 0, 816–817
On Error Resume Next, 815, 1084

OnAction attribute (XML), 1099
OnAction callback, 1101–1102
onClick event, assigning macro to, 1136–1137
OnCurrent event, 424
OnDirty event, 424
OnError action, 1153–1155
One-Step Security Wizard Report, 941
one-to-many relationships

in Access Auto Auctions database, 88, 100
in columnar reports, 299
creating, 115–116
defined, 102
examples, 102
join lines for, 146
overview, 102–103
as parent-child or master-detail relationships, 103
referential integrity for, 103
between tables involved in pass-through relationships,

106
typical example, 99
updating queries with, 150, 151

one-to-one relationships
defined, 101
rules for updating queries with, 150
uses for, 101–102

onGetLabel callback, 1102–1103
onGetLoginCount callback, 1111
onGetLogins callback, 1111

1330

IndexO

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1330

online Help for users, 881, 884, 1132
Online Transaction Processing (OLTP), 1218–1219
onLoad attribute (XML), 1114
OnUndo event, 424
OOP (object-oriented programming)

adding class modules to databases, 1043–1044
benefits of, 1038–1039, 1050–1052
class module basics, 1040–1042
creating bulletproof property procedures, 1049–1050
creating methods, 1045–1046
creating properties, 1044–1045
encapsulation in, 1038
never revealing user interface components from modules,

1053
object basics, 1039–1040
preserving class interface as class is updated, 1053–1054
rules, 1053–1054
simple class module example, 1042–1049
using property procedures, 1054–1059

Open Database Connectivity. See ODBC
Open event

for reports, 438
for unbound forms, 716–718
when triggered, 422

Open Exclusive permission, 934
Open method (ADO)

ActiveConnection parameter, 483
CursorType parameter, 484–485
LockType parameter, 484, 485, 706
overview, 483–485
pessimistic record locking using, 706
Source parameter, 483

Open permission, 934
OpenDatabase method (DAO), 691–692
OpenDatabaseTestADO sub, 691
OpenDatabaseTestDAO sub, 691
OpenForm action, 1141, 1142–1143
opening. See also viewing

add-in databases for read-only access, 835
database exclusively, 690–692, 836–837, 912
database files from earlier Access versions, 27–29
datasheets, 208
Field List window for forms, 249
File menu or Office menu, 25
form with event procedure, 431–433
forms, order of event firing, 428
Immediate window, 457, 512
making applications easy to start, 886, 887
obsolete databases in read-only mode, 29
Property Sheet, 263–264, 280–281

Report Design window, 310
reports, running event procedure upon, 438–439
Show Table dialog box, 131
standard modules, 367
templates for event procedures, 419–420

OpenQuery action, 1138, 1140
OpenReport action

mcrReportMenu macro, 1144–1145, 1146
mcrReportMenuEnhanced macro, 1149, 1150

operating systems
requirements for the CD, 1275
SharePoint capabilities with, 766

operators (Access). See also specific types
Boolean or logical (overview), 170–172
commonly used in queries, 176
for Date/Time fields in queries, 143
in expressions, 445
Find and Replace dialog box, 215
mathematical (overview), 162–165
miscellaneous, 172–173
overview, 161–162
parentheses with, 175
precedence, 173–175
relational or comparison (overview), 165–167
string (overview), 167–170
types of, 162

operators (VBA), 390
optimistic record locking

Error 3186 with, 709–711
Error 3197 with, 712–714
error handling, 704, 709–711, 712–714
setting for, 700
testing, 709–710

OptimisticLockRecordADO() function, 709–710
optimizing applications. See also performance

.accdb file format for, 826–827
compiled state issues, 829–832
distributing .accde files, 828–829
for distribution, 832–836
improving absolute speed, 836–849
improving perceived speed, 849–855
with large databases, 856–862
linked tables, 544
load on demand functionality for, 823–826

Option Button controls. See also controls
adding using Controls group, 248
changing control type, 251
described, 246

Option Explicit directive, 363, 380, 399

1331

Index O

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1331

Option Group controls. See also controls
creating, 277
described, 246, 277
Use Control Wizards command for, 246–247, 277
using, 277–278
Validation Rule property for, 66
for Yes/No fields, 278

Option Group Wizard, 277
Options dialog box. See also Current Database options

Advanced tab, 699–702
Auto Data Tips option, 380, 506, 517
Auto List Members option, 380, 505, 506
Auto Quick Info option, 380, 505–506
Auto Syntax Check option, 379, 499–500, 504
Break on All Errors option, 380, 504
Compile on Demand option, 380, 505, 825–826
Editor tab, 379–380, 504–506
Modules tab, 499–500
record-locking options, 699–702
Require Variable Declaration option, 380, 505

Or operator
with And across fields in a query, 196
with And in different fields, 199
for complex criteria selection, 177–180
complex query on different lines, 199–200
general usage in queries, 176–177
overview, 171, 190–191
QBE pane Or: cell for, 192
resultants, 171, 180
specifying criteria across fields of a query, 198
specifying multiple values for a field, 191

Oracle Database
Access compared to, 1213–1214
authentication, 1236–1237

ORDER BY clause (SQL), 473, 480
Order By on Load form property, 288
Order By property

of forms, 288
of queries, 591

order of event firing, 428–431
order of precedence for operators, 173–175
Orientation property

of forms, 287
of queries, 591

orphaned records. See also referential integrity
avoiding, 109
defined, 109, 603
finding, 603–604

outer joins
join lines for, 155
left, 159, 479
overview, 154–155, 158
right, 158–159, 479
specifying in SQL FROM clause, 479

Outlook (Microsoft)
automatic processing settings, 746
collecting data with, 740–747
creating an e-mail, 740–743
import settings, 744–745
importing folders from, 572
managing replies, 743–747

Output All Fields query property, 590
overtyping, selecting form data for, 628–629
owner of objects, setting, 929–931

P
Page Break controls, 246. See also controls
page breaks for reports, 335–336
Page controls, 246. See also controls
Page Footer Format event procedure, 671–672
Page Footer section of reports

aligning page numbers in, 671–672
creating, 341–343
overview, 314, 317

Page Header section of reports
adjusting, 338–339
hiding, 662–663
overview, 314, 315–316

page layout for reports, 306
page locking versus record locking, 699
page numbers

for forms, 632–633
for reports, 317, 324–325, 664, 665

page objects, 8
Page report event, 438
Page report property, 325, 665, 682
Pages report property, 665, 682–683
Palette Source form property, 287
Paradox tables

converting data types from, 575
file extensions for, 537
importing, 574–576
limitations of linked data, 533
linking to, 537

parameter queries, 871–873

1332

IndexO

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1332

parameters
calling functions and passing, 411–413
defined, 456
handling in functions, 409–411

parent-child relationships. See one-to-many relationships
parentheses [()]

ending functions, 456
order of precedence for, 175

ParseError() sub, 711–712
Partial Replica Wizard

creating filter for records, 1027–1028
replica set for, 1026
report for, 1029
specifying location, 1026
specifying tables, 1029
specifying type of replica, 1026–1027, 1029

partial replication
advantages of, 1025–1026
anonymous, 1029
defined, 1025
global, 1029
individual fields not replaced by, 1026
local, 1029
Partial Replica Wizard for, 1026–1029
programming, 1029–1034
WHERE clause for, 1026

pass-through queries
creating, 607–608
described, 604, 607
for ODBC data sources, 688

pass-through relationships, 105–106
passwords

for Admin user, 920
database, creating, 912–914
database, encrypting, 915
database, removing, 914
database, setting with VBA, 915
login form, 890
for modules, 944–945
naming conventions, 913
for SharePoint sites, 1194
user, creating or changing, 923–924

paste options
for datasheet values, 219
for tables, 83–84

pasting unbound objects, 773
Patterson, Bill (Beginning XML), 1171
Payments table. See tblSalesPayments (Sales Payments

table)

perceived speed. See also performance
defined, 836, 849
hourglass cursor for, 851
loading and hiding forms for, 851
progress meters for, 851–855
splash screens for, 849–850, 890

Percent number format, 57, 58
percent sign (%) in custom numeric formats, 58
performance. See also optimizing applications; perceived

speed
absolute versus perceived speed, 836
ADO versus DAO, 546, 1179
compacting database for, 837
of compiled versus uncompiled applications, 830
Debug.Print and reduction in, 511
defined, 1213
form design for, 842–844
Image control advantages for, 633–634
improving absolute speed, 836–849
improving perceived speed, 849–855
increasing RAM for, 823
indexing’s effect on, 69, 77–78, 79, 80, 838–841
module optimization for, 844–849
for multiuser applications, 686–687, 688
network, 686
normalization’s effect on, 97
ODBC data source issues, 688
opening database exclusively for, 836–837
of progress meters, speeding, 855
query design for, 840–841
report design for, 842–844
splash screen optimization for, 850
SQL for faster combo box refresh, 628
system tuning for, 838
transactions for improving, 688–689
With keyword for internal pointer to forms for, 876

period (.)
with asterisk wildcard in SQL, 475
in custom numeric formats, 58
for datasheet line styles, 227
identifier operator, 451, 453–454
in input mask strings, 64
not allowed in field names, 43
for specifying table names with fields, 148, 163, 179, 474

permissions. See also security
database, 933
default object permissions, 932–933
overview, 910–911
persistence of object permissions, 931

1333

Index P

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1333

permissions (continued)
removing from Admin user, 910, 932
for replica creation, 1012–1013
replication issues, 998–999
setting object permissions, 931–934
summary of assignable, 934

pessimistic record locking
error handling, 705–709
setting for, 700–701
testing, 706–709

PessimisticLockRecordADO() function, 706–708
Pfaffenberger, Bryan (HTML, XHTML, and CSS Bible), 1167
physical (natural) order, 75–76
Picture Alignment form property, 286
Picture form property, 286, 636–637
Picture property of tab control, 640
Picture Size Mode form property, 286
Picture Tiling form property, 287
Picture Type form property, 286
pictures

adding to Bound Object Frame control, 778
background, for forms, 636–637
for Button controls, 1130
changing image display for embedded objects, 776–777
embedding unbound objects, 773–775
form properties for, 286–287, 636–637
Image controls for, 246, 330, 633–634
in OLE objects, 274–275
performance impacts of, 842–843
report Detail section picture properties, 340–341
Size Mode control property for, 275

PIVOT command for crosstab queries, 599–600
PivotChart forms

changing PivotTable to, 798–799
creating, 237
specifying form view as, 282, 283

PivotTable forms
changing to PivotChart, 798–799
events, 424–425
PivotTable, defined, 793
PivotTable Wizard for, 793–799
query for, 793–795
specifying form view as, 282, 283

PivotTable Wizard, 793–799
PivotTableChange event, 425
plus sign (+)

addition operator, 163
concatenation operator, 163, 168
in Locals window, 517

PMT() function, 462

Pop Up form property, 289, 642
PopulatePartial method, 1033, 1034
pop-up form for progress meter, 853–855
portability

embedded macros for, 1157, 1159
VBA versus macros for, 347, 352
Windows API for, 953

pound sign (#)
around date/time values in expressions, 448, 449, 450
for conditional compilation directives, 509
in custom numeric formats, 58
delimiting date values in queries, 143
in input mask strings, 63
Like operator wildcard, 169, 183, 186
search wildcard, 215

Powell, Gavin (Beginning XML Databases), 1171
precedence of operators, 173–175
predicates (SQL), 475–478
prefixes for names

of controls, 266–267
of database objects, 36
of variables, 391, 400
of Windows API function arguments, 956

PrepareOutput() function, 415–416
previewing

hiding forms during Print Preview, 675
printing, 235, 280
reports, 308–309

Primary index property, 79
primary keys

added automatically by Access, 73
AutoNumber fields for, 73–74, 111, 114
benefits of, 73, 112–113
changing, 120
characteristics of, 73
composite, 74–75, 113
in composite indexes, 79
creating, 74, 114–115
deciding on, 110–112
defined, 19, 72
designating for tables, 42, 113–115
duplicates not allowed for, 73, 112, 210
entity integrity with, 72
error message for duplicate values, 210
guaranteeing uniqueness, 110
import errors for, 577
for imported spreadsheet data, 560
for imported tables, 576
indexing always done for, 73, 78
join condition for, 146

1334

IndexP

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1334

natural, avoiding, 75, 114
need for, 72, 73
not editable in multi-table queries, 149
null values not allowed for, 108
referential integrity rules for, 108–109
second normal form rule relating to, 92
surrogate versus natural, 75, 113–114
in table design process, 19–20
in table relationships, 99
for tblContacts table, 72, 110
updating, 151
violations in action queries, 615–616

Print report section event, 439
printer, default for upsizing to SQL Server, 1251
printing

blank even-numbered pages in reports, 321, 343
#Error printed in reports, 663, 677
forms, 279–280
hiding forms during Print Preview, 675
previewing, 235, 280, 308–309
queried data quickly, 674–675
records from datasheets, 233–235
recordsets, 144
reports, methods for, 310
table design, 81–82
two-sided reports, 670–672

Private keyword
for sub declarations, 405
for variable declarations, 395, 401

privileges (DDL), 1238
procedures. See also functions (VBA or Access); subs

(subroutines or subprocedures)
call tree for, 824–826
calling, 404–405
checking if compiled, 507
compiling, 365, 377–379, 382, 506–508
creating bulletproof property procedures, 1049–1050
creating in Code window, 363–364
creating in Design windows, 365–367
defined, 349
editing, 367
event procedures, 357
functions versus, 404
general rules for, 403
global, 360
Immediate window for checking results, 368
keeping small, 406
modules versus, 360
named arguments for, 415–416

naming, 403
optimizing routines for, 846–849
public, 360
scope, 403
Static keyword for, 402–403
terminator, 406

processor requirements for the CD, 1275
Product Display Report. See rptProductDisplay (Product

Display Report)
Products form. See frmProducts (Products form)
Products table. See tblProducts (Products table)
Products.xls file (on the CD), 537
programming, functions useful for, 464–465
programming partial replication

creating table relationships, 1032–1033
creating the partial replica, 1029–1030
filling the partial replica with data, 1033–1034
maintaining referential integrity, 1034
replicating partial replicas, 1034
setting filter criteria, 1030–1031

programming replication. See also programming partial
replication

advantages of, 998, 1014
converting database to Design Master, 1017–1020
DAO built-in for, 1014
IsLocal() function, 1015–1016
IsReplicable() function, 1018–1019
keeping objects local, 1014–1017
MakeAdditionalReplica sub, 1021
making new replicas, 1021
moving the Design Master, 1023–1024
overview, 997
properties added to database, 1023
scheduling synchronization events, 1024–1025
SetKeepLocal sub, 1017
SetNewDesignMaster sub, 1023–1024
SetReplicable() function, 1019–1020
steps required for, 1014
SynchronizeDB sub, 1022
synchronizing replicas, 1022

progress meters
built-in, 851–853
constants for, 852–853
creating, 853–855, 905
examples on the CD, 851, 853
initializing, 852
integrating into applications, 855
for providing user feedback, 905–906
removing, 853

1335

Index P

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1335

progress meters (continued)
SetPMeter() function for, 855
speeding display of, 855
updating, 852–853, 855

ProgressMeterCallingEveryRecord (on the CD),
853–855

ProgressMeterUsingBuiltInAccessMeter (on the
CD), 851–853

Project Properties dialog box
Conditional Compilation Arguments item, 382, 510–511
overview, 380–381
Project Description item, 381
Project Name item, 381

properties. See also control properties; field properties; form
properties; specific types

of class modules, 1044–1045, 1055–1056
control names for accessing, 452
creating bulletproof property procedures, 1049–1050
creating for classes, 1044–1045
of custom ribbons, 1106
for Design Master, 1019–1020, 1023
of events, 357, 418–419, 455
identifier operators for, 453–454
of indexes, 78–79
of joins, 117, 118, 157–158, 586
of linked tables, 543–544
for local objects in replica sets, 999–1000, 1015–1017
of objects, 1041–1042
overview, 262–263
Property Sheet for, 263–264
of queries, 589–591
of reports, 325, 337, 651, 658–659, 665
for startup options, 898, 900–902
of tables, 42–43, 134

Property Get procedure
for clsProduct2 class module, 1060, 1062–1063
described, 1054
events needed for, 1068–1069
raising events, 1070–1071
syntax, 1057
write-only properties from omitting, 1055

Property Let procedure
for clsProduct2 class module, 1060–1062, 1063
described, 1054
read-only properties from omitting, 1055
syntax, 1056

property procedures. See also specific procedures
bulletproof, creating, 1049–1050
data types for variables, 1058
in frmProductUnbound form, 1048–1049

naming, 1057
overview, 1054–1055
property value persistence, 1055–1056
rules, 1057–1058
types of, 1054

Property Set procedure
described, 1054
omitting, 1055
syntax, 1056

Property Sheet
displaying, 263–264, 280–281
overview, 264

property variables
data types for, 1058
property value persistence, 1055–1056
rules, 1058

Public keyword
for custom event declarations, 1069
for variable declarations, 394, 401

public procedures, 360
PV() function, 461

Q
q Date/Time format specifier, 60
QAT. See Quick Access toolbar
QBE grid

adding all fields to query, 133–134
adding fields from multiple tables to query, 148–149
adding multiple fields to query, 132–133
adding single field to query, 131–132
changing field order, 136
establishing aliases for fields, 138
hiding and showing fields, 138–139
inserting fields, 137
Or: cell, 192
overview, 130, 131
removing fields, 137
resizing columns, 136–137
selecting fields, 135–136
selection criteria specification, 141–144
sorting and left-to-right order of fields in, 140
specifying criteria for several fields in, 190
table names in, 148–149

QBE (Query by Example), 9. See also QBE grid
qryBooks query (on the CD)

Books.xml document created by, 1187–1190
DAO in code modules for, 1180–1187
GenerateXML1 sub, 1180–1181
GenerateXML2 sub, 1181–1182

1336

IndexP

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1336

GenerateXML3 sub, 1182–1183
GenerateXML4 sub, 1185–1187
GetIndent() function, 1184–1185
GetTab() function, 1182
overview, 1179–1180

qryFindCityIndexed query, 76–77
qryFindCityNotIndexed query, 76–77
qryProductFormReference query, 874–875
qryProductParameterQuery query (on the CD), 871
qrySalesJan08 query, 655–656
qrySimpleExpression query, 444–445
queries. See also joins; QBE grid; recordsets; specific types

Access 2007 specifications, 1269
adding all fields to, 133–134
adding fields from multiple tables, 148–149
adding multiple fields to, 132–133
adding multiple tables to, 145–146, 147
adding single field to, 131–132
adding single table to, 128–129, 147
ADP versus native Access, 1258
aliases for fields, 137–138
binding reports to, 318
calculated field creation in, 200–201, 581–584
changing field order in QBE grid, 136
compiled state for, 841
complex example, 125–126
creating forms based on, 238–243
criteria in multiple fields, 196–200
defined, 124
described, 8, 123
design tips for updating fields in, 151
dialog box forms for, 641–645
filtering forms, 871–876
finding duplicate records, 601–603
finding first (n) records, 585–586
finding number of records in, 585
finding unmatched records, 601, 603–604
Format() function for displaying data, 458–459
functions in, 181
for graph embedded in form, 783–784
hiding and showing fields in QBE grid, 138–139
hiding fields in Design View, 587–588
importing, 571
inserting fields from QBE grid, 137
joins needed for, 152
Like operator with wildcards for, 183–187
limitations of multi-table, 149–151
literal criteria for, 183
Memo field criteria, 182–183
multiple criteria in one field, 190–195

naming conventions, 36–37
not case sensitive, 143
numeric criteria, 188–189
object type value, 673
OLE object criteria, 190
operators commonly used in, 176
overview, 9, 124–126
performance optimization, 840–841
for PivotTables, 793–795
prefix for names, 36
printing data quickly, 674–675
properties, 589–591
recordsets retrieved by, 124
referencing fields in, 181
removing fields from QBE grid, 137
removing tables from, 129, 147
renaming fields in, 588–589
rules for updating, 150
running, 131, 134
saving, 131, 135, 145
selecting fields in QBE grid, 135–136
selection criteria for, complex, 177–180
selection criteria for, simple, 141–144
separating tables from, 1131
single-value field criteria for, 181–190
specifying non-matching values, 187–188
subqueries, 127
Text field criteria, 182–183
as top-level objects, 8
translated into SQL, 9
types of, 126–127
typical three-table select, 124–125
with unused fields, saving, 135
updating limitations, 150–151
user interface for, 130–131
uses for, 127–128
using operators in, 176–177
Yes/No criteria, 189–190

Query by Example (QBE), 9. See also QBE grid
Query Design ribbon

adding tables using, 145
buttons, 131
overview, 130–131

Query Design window. See also QBE grid
Field List window, 130, 131–134, 147
navigating, 130
overview, 130
switching between Datasheet View and, 131
table/query pane, 130, 146–147

Query event, 425

1337

Index Q

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1337

Query Wizard
creating calculated fields, 582, 583
creating summary queries, 592
finding duplicate records, 601–603
finding unmatched records, 601, 603–604

question mark (?)
in input mask strings, 63
Like operator wildcard, 169, 183, 186
for returning values in Immediate window, 513
search wildcard, 215

Quick Access toolbar (QAT)
customizing, 891–892, 1097–1098
Print icon, 233
scroll arrows for commands not displayed, 1098

QuickSort ribbon, 230
Quit object method, 730, 737
quitting. See closing
quotation marks (“). See double quotes (“)

R
Rafter, Jeff (Beginning XML), 1171
RaiseEvent statement, 1070, 1073
raising events, 1070–1071
RAM (memory)

DLL advantages for use of, 952
memory leaks, rebooting to clean up, 857
performance impacts of, 823, 838
requirements for Access, 823
requirements for the CD, 1275
swap file for, 838, 885
use by compiled versus uncompiled programs, 830

RDBMS (relational database management system), 4
Read Data permission, 934
Read Design permission, 934
reading control properties, 623–624
read-only database access

opening add-in databases for, 835
opening obsolete databases for, 29

read-only fields
queries not updateable with, 150
returned by DISTINCT query, 476

read-only properties of class modules, 1055
Really Simple Syndication feeds, XML for, 1176
rebooting large databases, 857
recompiling large databases, 860–861, 862
record locking. See also locked records; record-lock error

handling
All Records setting, 700
built-in features for, 699–702

Default Open Mode setting, 701
Edited Record setting (pessimistic locking), 700–701
multiuser application issues, 698–702
No Locks setting (optimistic locking), 700
Number of Update Retries setting, 701
ODBC Refresh Interval setting, 702
overview, 698–699
page locking versus, 699
Refresh Interval setting, 701–702
Update Retry Interval setting, 701

Record Locks property
of forms, 289
of queries, 590

Record Selectors form property, 284, 285, 642
record source, changing for corrupt forms, 857
Record Source property

of forms, 251, 282, 288
of reports, 658–659, 665

record-lock error handling
for Error 3021, 704
for Error 3186, 704, 709–711
for Error 3188, 711–712
for Error 3197, 704–705, 712–714
for Error 3260, 705–709
for Error 3421, 705
ErrorRoutine() function for, 703–705
need for, 702–703
for optimistic record locking, 704, 709–711, 712–714
for pessimistic record locking, 705–709

records or rows
adding to datasheets, 21, 85, 208–210
adding using ADO, 490–491
adding using append queries, 609, 610–611, 613–614
bookmarks for locating, 867–869
changing display height in datasheets, 224–225
in datasheets, 205
deleting, checking status after, 489–490
deleting from datasheets, 217
deleting from tables, 42
deleting related records in multiple tables, 492–495
deleting using ADO, 491–492
described, 5, 6
duplicates, finding, 601–603
entity integrity for, 72, 110
event procedure confirming deletion, 434–435
fields in, 205
finding first (n) in query, 585–586
finding number in table or query, 585
FindRecord method for, 848, 865–867
grouping by field value, 841

1338

IndexQ

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1338

hiding in datasheets, 225
moving between, in datasheets, 214
moving between, in forms, 273
order of adding to tables, 75–76
orphaned, finding, 603–604
pointers in datasheets, 210
printing from datasheets, 233–235
recalculating fields after deleting, 489–490
recalculating fields after updating or adding, 486–488
saving, 210, 229, 279
unmatched, finding, 601, 603–604
updating fields using ADO, 481–486

Recordset data type (ADO and DAO), 483, 484
Recordset object (ADO). See also specific methods

closing, 486
LockEdits parameter, 706
overview, 485

Recordset Type property
of forms, 289
of queries, 590

recordsets
asterisk in, 149
benefits of not saving, 128
changing sort order, 139–141
defined, 124, 128, 1179
displaying, 134–135
overview, 128
printing, 144
rules for updating queries, 150

Rectangle controls, 246. See also controls
referential integrity

in Access Auto Auctions database, 107
application-specific rules, 121–122
Cascade Delete Related Records option, 120
Cascade Update Related Fields option, 120
defined, 106, 107
for deleting records, 435
enforcing, 116, 118–120
first rule (no null values in primary keys), 108
general relational model rules, 108–109
join lines showing, 146
need for, 106, 107, 108, 109
for one-to-many relationships, 103
overview, 106–109
in partial replicas, 1034
rules enforced by Jet database engine, 106, 108
second rule (foreign keys matched by primary keys),

108–109

unmatched parent records allowed, 109
using SQL Server triggers for, avoiding, 1248

RegCloseKey API function, 985
RegCreateKeyEx API function, 980–982
RegDeleteKey API function, 985–986
RegFlushKey API function, 984
Registry, API functions for, 980–986
RegQueryValueEx API function, 984–985
RegSetValueExA API function, 982–984
relational (comparison) operators

for Date/Time fields in queries, 143
descending index with, 840
equal (=), 165
greater than (>), 166
greater than or equal to (>=), 166–167
less than (<), 166
less than or equal to (<=), 166
list of, 165
not equal (<>), 166, 179
Null return for, 165
numeric value returned for, 165
order of operators important for, 166, 167
with Partial Replica Wizard, 1027–1028
precedence, 174
in queries, 176–177, 179

relational database management system (RDBMS), 4
relational databases, 7
relationships. See also joins; referential integrity; specific types

in Access Auto Auctions database, 100
basic types of, 99
creating, 115–118
deleting, 121
deleting parent records not allowed, 222
dependent upon focus, 100
joins automatic for, 156
lacking in flat-file databases, 98–99
for linked tables, setting, 544
many-to-many (overview), 104–105
many-to-one, 100
modeling real-world situations, 87
one-to-many (overview), 102–103
one-to-one (overview), 101–102
pass-through, 105–106
primary key for, 99
rules for updating queries, 150
specifying join type for, 117–118
viewing all, 120–121

RemoveAllTempVars action, 1146

1339

Index R

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1339

RemoveTempVar action
mcrDivisionErrorHandling macro, 1154
mcrHelloWorldEnhanced macro, 1147, 1148
mcrReportMenuEnhanced macro, 1149, 1150
uses for, 1146

removing. See deleting or removing
renaming. See naming
repairing databases

large databases, 857
process of, 803–804
runtime errors avoided by, 502, 803–804

replica sets. See also synchronizing replicas
changes to database objects in, 1005–1011
creating, 997–998
database security in, 998–999
defined, 988
library databases in, 1086
local objects in, 988–989, 999–1000, 1014–1017
for Partial Replica Wizard, 1026
reverting to nonreplicable status, 1035–1036
system tables, 1000–1001, 1004, 1006–1009
transferring Design Master to another database, 1023–1024
viewing system table information for, 994

Replicable property, 1019–1020, 1023
ReplicaID property, 1023
replication. See also Design Master; MyDM.mdb database;

programming replication; synchronizing replicas
advantages and disadvantages of, 995–996
AutoNumber field changes, 1010–1011
backing up replicas, avoiding, 1013
changes to database objects in replica or Design Master,

1005–1011
changes to Design Master structure, 1011–1014
conflicts and errors, 1000–1004
controlling replica creation, 1011–1013
converting database to Design Master, 990–991, 992,

994, 1017–1020
creating a replica set, 997–998
defined, 988
demonstration of, 990–995
design errors, 1000–1001
Design Master, defined, 988
from developer’s perspective, 1005
field changes tracked as record changes for, 990, 1026
fields added to replicable tables, 1009–1010
guidelines for avoiding problems, 1035–1036
GUIDs added for, 1005–1006
high-volume updates, avoiding, 1013
housekeeping tasks, 1014

local objects in replica sets, 988–989, 999–1000,
1014–1017

menu options for, 990, 993, 994, 997, 998
for multiuser applications, 689–690
need for, 987–988
normal sequence of events, 989
in OLTP environment, 1218
overview, 988–990
partial replicas, 1024–1034
replica, defined, 988
replica set, defined, 988
reverting to nonreplicable status, 1035–1036
security in replica sets, 998–999
situations not appropriate for, 996
synchronization conflicts, 1001–1003
synchronization errors, 1003–1004
synchronization not allowed with password-protection, 914
system tables, 1000–1001, 1004, 1006–1009
topologies, 1004–1005
viewing system table information for replica sets, 994

report design
adding bullet characters, 658–660
adding information to footer, 665
adding user’s name to bound report, 666
assembling the data, 301
avoiding empty reports, 663
avoiding null values, 664–665
blank line every n records, 668–670
defining the layout, 301
in five-step design method, 13–14
grouping data alphabetically, 650–653
grouping on date intervals, 654–655
hiding and showing controls, 660–662
hiding page headers, 662–663
hiding repeating information, 648–650
laying out fields, 13
numbered lists, 655–658
performance optimization, 842–844
starting database design with, 13
starting new page number for each group, 664
tips, 676–677
vertical lines between columns, 666–668

Report Design window
illustrated, 310
Layout ribbon, 312
Layout view, 311–312
opening, 310
Report Design ribbon, 313
Report Design view, 312–313
sections in Report Design view, 314–317

1340

IndexR

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1340

Report Footer section of reports, 314, 317, 665
Report Header section of reports, 314, 315
report modules. See also modules

defined, 358
event procedures in, 359
overview, 359
public variables not allowed for, 394

report properties
for adding bullet characters, 658–659
for adding information to footer, 665
for adding page numbers to reports, 325, 665
Force New Page, 337
Group On, 651, 654
GroupInterval, 651

report snapshot (Upsizing Wizard), 1256–1257
Report Wizards

building reports using SharePoint data, 1198–1199
creating a new report, 302–303
defining group data, 304
opening the report design, 307–308
overview, 301–302
page layout selection, 306
previewing the report, 308–309
selecting fields for report, 302–303
selecting grouping levels, 303
sort order selection, 304–305
style selection, 307
summary options selection, 305–306
viewing the Report Design window, 310

Report_Error event procedure, 809
Report_No Data event procedure, 438–439
reports. See also report design; sections of reports; specific

reports
Access 2007 specifications, 1269–1270
ADP specifications, 1271
assembling the data, 301
banded report writer concepts, 313–317
basing on queries, 127
binding to queries or tables, 318
bitmaps on, 842–843
blank even-numbered pages in, 321, 343
building using SharePoint data, 1198–1200
Caption property for field labels, 56, 65–66
centering titles, 676
changing control text appearance, 323–324
columnar, 298–299
converting forms to, 296
creating and binding to a query, 319–320
creating from scratch, 317–337
creating with Report Wizards, 301–310

data types’ impact on, 48
defining layout, 301, 320–321
defining page size, 320–321
described, 8, 297
displaying in combo box, 672–673
embedded macros in, 352
embedding unbound objects in, 773–777
#Error printed in, 663, 677
event procedures, 438–441
events, 438
exporting functionality exclusive to, 579
forms versus, 300–301
graphs, 298
grouping data, 303–304, 650–655
hiding sections, 335
importing, 571
mailing labels, 298, 299–300
minimizing complexity and size, 842
moving controls between sections, 335–336
naming conventions, 36–37
new features in Access 2007, 1287
opening, running event procedure upon, 438–439
opening the report design, 307–308
overview, 10
page breaks, 337
page layout for, 306
page numbers for, 317, 324–325, 664, 665
placing controls, 321–322
prefix for names, 36
presentation quality, 337–343
previewing, 308–309
printing, 310, 670–672
for printing queried data quickly, 674–675
process of creating, 301
recalculating numeric fields for, 17
resizing sections, 322–323, 335
saving, 311, 343
selecting grouping levels, 303
separating tables from, 1131
snaking columns in, 298, 677–682
sort order for fields, 304–305
sort order for records, 333–334
starting with a blank form, 311–313
style of, 307
summary options, 305–306
table design for, 10
tabular, 298
as top-level objects, 8
two-pass processing, 682–684
two-sided, printing, 670–672

1341

Index R

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1341

reports (continued)
types of, 297–300
uses for, 297
working with text boxes and attached label controls,

324–332
Reports keyword, 454
Requery method versus Requery action, 846
Require Variable Declaration option, 380, 505
Required field property

Allow Zero Length property with, 67, 68–69
null values prevented by, 67, 68
overview, 56, 67

reserved words. See also keywords
identifier operators for, 452–453
in SQL Server, 1262

Resize event, 422
resizing

columns in datasheets, 223–224
columns in QBE grid, 136–137
controls, 252, 260, 325–326, 676–677
Field List window, 130, 147
form area, 244
micro-adjustment keystroke combinations for, 676
pictures in OLE controls, 275
report sections, 322–323
row height in datasheets, 224–225
sections of reports, 335
split forms, 239–240

Resolve sub, 1002–1003
Resume statements

Resume <label>, 819–820
Resume Next, 818–819
Resume (no label), 817–818

Retreat report section event, 439
reusability. See also library databases; OOP (object-oriented

programming)
Access provisions for, 1037
subs and functions for, 414

REVOKE command (DDL), 1238
ribbons. See also custom ribbons; specific ribbons

benefits of, 1090–1091
changed with different tasks, 32–33
controls new for, 1092–1095
described, 29
further information online, 1092
groups, 33
hierarchical structure of, 1100
removing, 1115–1116
removing commands from, 891

toolbars and menus replaced by, 1089, 1090–1091
XML syntax used by, 1091

Rich Site Summary feeds, XML for, 1176
Right() function, 464
right outer joins, 158–159, 479
Rnd() function, 456, 463
RollbackTransaction event, 426
Round() function, 462
rounding numbers

greater-than-0.5 rule for, 164
by integer operator, 164
by modulo operator, 165

rows. See records or rows
RowSource control property

for graph embedded in form, 791
overview, 620
SQL for faster combo box refresh, 628
for unbound Combo Box, 864, 865

rptBullets report, 658–660
rptContacts (Contacts report), 13
rptCustomerMailingLabels report, 300
rptGapsEvery5th report (on the CD), 668–670
rptInvoice (Sales Invoice report)

as columnar report, 299, 300
customer-related data items on, 15
described, 13–14
line item data on, 16
sales data items on, 16

rptMoreInfo report, 665
rptProductDisplay (Product Display Report)

adding text box controls, 324
adjusting Page Header, 335–336
changing appearance of multiple controls, 329
changing control text appearance, 323–324
changing Detail section picture properties, 340–341
changing label and text control properties, 330–331
creating and binding to a query, 319–320
creating expression in Group Header, 339–340
defining page size and layout, 320–321
entering an expression in a text control, 324–325
first page, 318
growing and shrinking text box controls, 331–332
hiding a section, 335
making presentation quality, 337–343
moving controls between sections, 335–336
moving label and text controls, 328–329
page breaks, 335–336
pasting labels into a section, 326–327
placing controls, 321–322

1342

IndexR

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1342

removing Group Header or Group Footer, 334
removing labels from text controls, 326–327
resizing a section, 322–323
resizing label and text controls, 325–326
resizing sections, 335
sorting data, 333–334

rptProducts report
as columnar report, 298–299
hiding controls with Format event, 440–441

rptProductsSummary report
sections in, 313–314
as tabular report, 298

rptProducts_Wizard report
creating a new report, 302–303
defining group data, 304
opening the report design, 307–308
page layout selection, 306
previewing, 308–309
in Report Design window, 310
selecting fields, 302–303
selecting grouping levels, 303
sort order selection, 304–305
style selection, 307
summary options selection, 305–306

rptSalesJan08Alpha1 report, 651–652
rptSalesJan08Alpha2 report, 652–653
rptSalesJan08ByWeek report, 654–655
rptSummary report, 683–684
rptTabularBad report, 648–649
rptTabularGood report, 649–650
rptUserName report (on the CD), 666
rptVerticalLines report (on the CD), 666–668
RSS feeds, XML for, 1176
RTrim() function, 464
Run permission, 934
Run Permissions query property, 590
RunMacro action, 1154
running. See calling or running
Running Sum report feature, 655–658
runtime. See also runtime errors

adding emphasis to reports at, 660–662
dynamic assignment of control properties at, 620–623
providing Access module to users, 882
runtime mode (/runtime option), 915–917, 1125

runtime errors
avoiding, 502, 803–804
causes of, 501–502, 803
database maintenance to avoid, 502, 803–804
default error handling for, 804–805, 807, 808

defined, 802
error messages for, 804–805
fatal, 803
results of, 802–803
simple, 803–804
unanticipated, 805–806

runtime mode (/runtime option)
.accdr file extension for, 916, 1125
creating shortcut to start in, 916–917
for debugging applications, 1125
described, 915

S
s and ss Date/Time format specifiers, 60
Sales form. See frmSales (Sales form)
Sales Invoice report. See rptInvoice (Sales Invoice report)
Sales Line Items table. See tblSalesLineItems (Sales Line

Items table)
Sales Payments table. See tblSalesPayments (Sales

Payments table)
Sales table. See tblSales (Sales table)
sandbox mode, enabling, 946–947
Save Splitter Bar Position form property, 288
SaveChanges() function, 713–714
SaveProduct method, 1063–1065
saving

action queries, 615
changes with optimistic record locking, 712–714
datasheet layout changes, 229
embedded or linked objects, 772
forms, 244
library database as .accde file, 1086
macros as VBA modules, 352–354
modules, 365
queries and exiting after, 145
queries, button for, 131, 145
queries having unused fields, 139
records in datasheets, 210, 229
records in forms, 279
reports, 311, 343
table design, 82
unbound form data, 720–722
work with API functions, 962

scalability
defined, 1213
of SharePoint implementations, 749–750

SCCS (System Center Configuration Server), 687
Schafer, Steven M. (HTML, XHTML, and CSS Bible), 1167

1343

Index S

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1343

Scientific number format, 58
scope of procedures

naming rules for, 403
private, 405

scope of variables
overview, 400–401
private, 395, 400–401
public, 394, 400–401

scoping criteria for action queries, 611
Screen object, 454
Scroll Bars form property, 285, 642
SDKs (Software Development Kits), 954, 955
searching

bookmarks for locating records, 867–869
Datasheet window search box for, 217
Find and Replace dialog box for, 215–216, 220–221
FindRecord method for, 848, 865–867
including formatting in criteria, 216
matching case in searches, 216
for null data, 195
and replacing datasheet values, 220–221
for values in datasheets, 215–217

second normal form (2NF)
breaking the rules, 96
decomposition for, 93–94
foreign key in, 95
overview, 92–93
rule for, 92

sections of reports. See also specific sections
available sections, 314
event procedures, 439–441
events, 439
Force New Page property, 337
hiding, 335
hiding controls with Format event, 440–441
moving controls between, 335–336
pasting labels into, 327
removing, 334
in Report Designer, 314–317
resizing, 322–323, 335
in rptProductsSummary, 313–314
sorting data within groups, 333–334

security. See also permissions; user-level security
bulletproofing applications, 879, 897, 1132
choosing level to implement, 912
Current Database options for, 917–919
database password creation, 912–915
Database Tools ribbon for, 911

DDL commands for, 1238–1239
decrypting/decoding databases, 943–944
digital certificates for, 947–948
enabling and disabling user-level, 920
encrypting/encoding databases, 942–943
Jet model, 909–911
limitations of, 911
macro security levels, 947
multiuser application issues, 685–686
new features in Access 2007, 1288
protecting Visual Basic code, 944–945
removing Admin user permissions, 910
in replica sets, 998–999
runtime mode for, 915–917
sandbox mode, 946–947
Security Wizard for, 934–941
separating data from interface objects for, 28
SQL Server, 1236–1239
Trust Center, 946, 948–949
virus infection prevention, 945–949
workgroups, 910, 921

Security Wizard
new database created by, 940
One-Step Security Wizard Report, 941
overview, 934–935
running again after changing original database, 941
steps for using, 935–940

Select Case...End Select statement
Case Else clause, 372
error handling using, 810, 812–813
overview, 371–372

SELECT keyword (SQL)
overview, 474–475
predicates, 475–478
purpose in SQL statements, 473
syntax, 474

select queries, 126
SelectAll() function, 628–629
selecting

controls, 252–253, 260
fields in QBE grid, 135–136
form data for overtyping, 628–629
tables for joins, 155

selection criteria for queries
not case sensitive, 143
for Number, Date/Time, and Yes/No fields, 143–144
overview, 141
simple strings, 141–143

SelectionChange event, 425

1344

IndexS

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1344

Sell method, 1043, 1045–1046
semicolon (;)

in custom Yes/No field formats, 62
ending SQL statements, 480
in input mask strings, 64
separating sections in custom formats, 58, 59, 61, 63

separators for custom ribbons, 1108–1109
servers. See also client/server architecture

application servers, 1216–1217
Automation servers, 727
defined, 750
SharePoint Portal Server, 750–751
Web servers, 1214–1216, 1222

Set Database Password command, 912
SetBypass() function, 899
SetFocus statement, 866
SetKeepLocal sub, 1017
SetNewDesignMaster sub, 1023–1024
SetObjectProperties sub, 1048
SetOption method, 900
SetPMeter() function, 855
SetProperty() function, 621–623
SetRelationship() function, 1032
SetReplicable() function, 1019–1020
SetTempVar action

mcrDivisionErrorHandling macro, 1153
mcrHelloWorldEnhanced macro, 1147, 1148
mcrReportMenuEnhanced macro, 1149, 1150
uses for, 1146

SetWarnings action, 1138, 1139
SetWindowTextA API function, 974–975
s_Generation field, 1010
Sgn() function, 463
SharePoint. See also SharePoint Lists; SharePoint Services

technology
building forms using data from, 1196–1198
building reports using data from, 1198–1200
copying from Access to, 1193–1196
as a data source, 1192
new features in Access 2007, 1288
operating system and capabilities of, 766
overview, 749–751, 1191
scalability of implementations, 749–750
SharePoint Designer for, 1207
tracking applications, 1201–1206
uses for, 1192
Web site applications, 751–754

SharePoint Designer (Microsoft), 1207

SharePoint Lists
built-in templates for, 1201–1202, 1204–1205
collaborative applications and databases, 1200, 1206
creating templates for, 1204–1205
exporting, 767–768
as external data, 767–768
importing, 561, 767–768
overview, 754, 1191
tracking applications, 1201–1206

SharePoint Portal Server, 750–751
SharePoint Services technology

defined, 750
example applications, 751–754
integrating with Access, 758–766
new features in Access 2007, 1288
sourcing data from a SharePoint Web site, 759–763
sourcing data from an Access database, 764–766
Web site example, 754–758

SharePoint Site Wizard, 1193–1194
Short Date format, 59
Short Time format, 59
Shortcut Menu Bar property

of controls, 621
of forms, 290

Shortcut Menu property
of controls, 621
of forms, 290, 642

side (conflict) tables in replication, 1001–1003
side-effect bugs, 402
signing projects digitally, 947–948
simple indexes, 76
Single data type (VBA), 396
sinking custom events, 1071–1073
Size commands for controls, 255
Size Mode control property, 275, 330, 776–777, 791
sizing. See resizing
slash. See backslash (\); forward slash (/)
s_Lineage field, 1010
Smart Tags field property, 56
snaking columns in reports, 298, 677–682
Snap to Grid feature for controls, 257–258
Snapshot Viewer, 579
Software Development Kits (SDKs), 954, 955
sorting. See also indexing

ascending versus descending, 140
changing order for, 139–141
Clear All Sorts command, 230
data types not allowing, 47, 48

1345

Index S

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1345

sorting (continued)
on hidden field, 135, 139
left-to-right order of fields in QBE grid and, 140
numeric versus text data types and, 48
primary key as default order for, 73, 112
queries for, 127
QuickSort feature for, 230
records in datasheets, 230
report fields, 304–305, 650–653
report records, 333–334

source code, distributing applications as, 832
Source Connect Str query property, 590
Source Database query property, 590
SourceTableName property

AttachExcel() function using, 547–549
LinkText() function using, 550–552
for ODBC data sources, 549
overview, 547

Space() function, 464
spaces

in custom format specifiers, 57
in names, avoiding, 37, 179
in names, using brackets in SQL queries, 474, 475
not allowed beginning field names, 44
around query criteria, 184
in SQL Server field names, 1262
between strings when concatenating, 167

specifications
Access 2007, 1267–1270
ADP, 1271–1272
developing to, 880, 895–897
SQL Server, 1272–1274

spell checking, 791–792
splash screens

billboards, 850
creating, 850
for distributed applications, 1127–1128
frmSplashScreen (on the CD), 850
information provided by, 890, 1128
perceived speed aided by, 849–850
performance optimization, 850
SplashScreenTemplateSimple for, 1128

SplashScreenTemplateSimple (on the CD), 1128
Split Form Datasheet form property, 287
Split Form Orientation form property, 287
Split Form Printing form property, 288
Split Form Size form property, 288
Split Form Splitter Bar form property, 288

split forms
creating using the ribbon, 239–240
described, 237
specifying form view as, 282
splitter bar for, 239–240

SplitButton controls, 1092, 1093
splitting databases. See also back-end database; front-end

database
benefits of, 692–695
Database Splitter Wizard for, 28, 696–698
file locations for multiuser applications, 696
linking external data, 533, 542–543
for network access, 692–698

spreadsheets. See also Excel (Microsoft)
connecting to named range in Excel, 547–549
importing data, 558–561
linking to Excel, 537–539
in OLE objects (Excel), 274–275

SQL Server. See also SQL Server Express; upsizing Access
databases to SQL Server

Access compared to, 1213–1214
ADO and ADO.NET not needed with, 1190
authentication, 1236
connecting from Access to, 1227–1236
connecting using SQLCMD utility, 1226–1227
connection strings, 1225–1227
importing tables to Access, 1239, 1240, 1241
linking to tables from Access, 1239, 1240, 1241–1243
listeners, 1225
naming instances of, 1233
reserved words, 1262
security, 1236–1239
specifications, 1272–1274
stored procedures, 1212, 1213, 1245–1247
triggers, 1212, 1213, 1247–1248
user-defined functions, 1212, 1213, 1247
using SQL Server tables from Access, 1239–1243
views, 1243–1245

SQL Server Express. See also SQL Server; upsizing Access
databases to SQL Server

downloading, 1223, 1224, 1249
installed on client computer in general, 1223
overview, 1249
SQL Server Enterprise versus, 1249
working with Access ADP files, 1257–1259

SQL (Structured Query Language)
Access, not compliant with ANSI SQL-92, 472
basic keywords, 473–474

1346

IndexS

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1346

for dialog box forms, 643–644
ending statements with semicolon, 480
for faster combo box refresh, 628
FROM clause, 473, 478–479
ORDER BY clause, 473, 480
overview, 471–472
primer, 473–480
QBE queries translated into, 9
SELECT keyword, 473, 474–478
SQL-specific queries, 150, 604–609
types of queries, 127
utilized by VBA procedures, 471
viewing statements in queries, 472–473
WHERE clause, 473, 480

SQLCMD utility, 1226–1227
SQL-specific queries

data definition, 604, 608
not updateable, 150
pass-through, 604, 607–608
subqueries, 604, 608–609
types of, 604
union, 604–607

Sqr() function, 463
square brackets. See brackets ([])
standard modules. See also modules

defined, 358
opening, 367
overview, 360
public procedures in, 360
stored in Module section of Navigation Pane, 360

Standard number format, 57, 58
standby failover, 1218–1219
starting applications, icon for, 886, 887
startup options

for bulletproofing applications, 886–889, 897–898
disabling startup bypass, 890, 898–902
getting property values, 901–902
properties, 898
setting in code, 897–898
setting property values, 900–901

statements. See also specific statements
continuation characters in, 358, 386–387
defined, 349, 350
typical example, 350

static data, 1201
Static keyword, 402–403
static linking. See early binding
status bar in Form View, 270
StatusBarText control property, 894

StDev() function, 595
Step keyword, 374
stepping through code

macros, 1156
VBA, 515–517

Stop statements (VBA), 515
stored procedures (SQL Server)

Access equivalents to, 1213
advantages and disadvantages of, 1246
creating in Access, 1246–1247
creating in SQL Server, 1247
defined, 1212, 1245
not accessible from Access, 1247
passing parameters to, 1247

Str() function, 457
stretching pictures in OLE controls, 275
String data type (VBA), 396
string manipulation functions, 456, 463–464
string operators

concatenation (&), 167–168
Like, 168–170, 183–187, 871, 873, 874
list of, 167
in queries, 176–177

strings (API), passing by value, 960–961
Structure and Data paste option, 83, 84
Structure Only paste option, 83, 84
Structured Query Language. See SQL
style of reports, 307
Style property of tab control, 640
Sub keyword, 405
Sub-datasheet Expanded form property, 287
Subdatasheet Expanded query property, 591
Sub-datasheet Height form property, 287
Subdatasheet Height query property, 591
SubDatasheet Name query property, 591
Subform/Subreport controls. See also controls

creating subforms, 625–626
described, 246
subforms within subforms, 626
syntax for subforms, 626
Use Control Wizards command for, 246–247
uses for, 624

subqueries
described, 127
SQL for creating, 604, 608–609

subs (subroutines or subprocedures). See also event
procedures; procedures; specific procedures

creating, 405–408
declaration, 406

1347

Index S

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1347

subs (subroutines or subprocedures) (continued)
defined, 350, 405
event procedures as, 357
Exit command button example, 357–358
grouped and stored in modules, 357
overview, 357–358
for reusable code, 414
Sub keyword beginning, 405
terminator, 406
Windows API subs, 958–961

subtraction operator
overview, 163–164
in queries, 176–177

Sum() function
described, 460, 595
for tallying check box values, 626–627
two-pass report processing for, 684

summary queries, Query Wizard for, 592
summary tabular reports

detail reports versus, 298
example, 298
grouping data for, 303–304
selecting summary options, 305–306

SuperTip controls, 1094–1095
surrogate primary keys, 75, 114
swap file, 838, 885
switchboards

for Access Auto Auctions database, 431–433
for bulletproofing applications, 891
described, 237, 431
for distributed applications, 1128–1129

SYD() function, 462
Synchronize method, 1022
SynchronizeDB sub, 1022
synchronizing replicas

compacting before, 1035
conflicts, 1001–1003
demonstration of, 993–994, 995
errors, 1003–1004
before making design changes, 1035
manual conflict resolution, 1002–1003
not allowed with password-protection, 914
overview, 988
programmatic conflict resolution, 1002–1003
scheduling synchronization events, 1024–1025
Synchronize Now button, avoiding on forms, 1035
SynchronizeDB sub for, 1022
View System Objects option, turning off, 1035

syntax errors
Auto Syntax Check option for, 379, 499–500, 504
checked when compiling, 506–507
debugging, 499–501

SysCmd function, 852–853
System Center Configuration Server (SCCS), 687
System Info dialog box, 962, 963
System Registry, API functions for, 980–986
system requirements

for Access, 823
for the CD, 1275

system tables
MSysObjects, 673
object type value, 673
replication-related, 1000–1001, 1004, 1006–1009

system tuning, 838
system.ini file, 975–980
SYSTEM.MDW file, 910, 999

T
tab controls. See also controls

adding or deleting pages, 639–641
described, 246
in frmContacts, 638–639
frmTabControl2 form examples (on the CD), 640–641
properties, 640–641
using, 638–641

tab order for forms
overview, 292–293
removing controls from, 626

Tab Stop form property, 626
tabbed user interface

changing to overlapping windows, 34
overview, 33–35

tab-delimited files. See also text files
fields with no values, 563
Import Specification window for, 567–569
importing, 561–563

TabFixedHeight property of tab control, 640
TabFixedWidth property of tab control, 640
table design

adding primary and foreign keys, 19–20
adding table relationships, 19–20
assigning field data types, 44–45, 46–51
assigning field properties, 55–70
changing, 52–55
changing field data type, 54–55
changing field location, 53

1348

IndexS

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1348

changing field name, 53
changing field size, 54
creating a new table, 38–41
data-entry rules, 45
deleting fields, 53
Design View for, 39
determining fields required for reports, 17–18
entering field descriptions, 51
entering field names, 43–44
in five-step design method, 17–21
indexing, 75–80
inserting fields, 52
integrity rules, 106–109, 118–120, 121–122
lookup tables, 45–46
planning required for, 35–36
primary key, 110–115
printing a design, 81–82
process overview, 37
relationships, 98–106, 115–118, 120–121
saving the design, 82
setting the primary key, 72–75
single entity per table, 21
specifying properties, 42–43
using multiple tables, 7–8, 88–89

table properties
in effect in datasheets, 134
specifying, 42–43

table scan, 77
Table window. See Field List window
tables. See also entities; normalization; table design; specific

tables
Access 2007 specifications, 1268–1269
adding fields later, 38
adding fields to queries from multiple, 148–149
adding records in Datasheet View, 85, 208–210, 221
adding records using ADO, 490–491
adding records using append queries, 609, 610–611,

613–614
adding to queries, multiple, 145–146, 147
adding to queries, single, 128–129, 147
ADP versus native Access, 1257
binding reports to, 318
calculation fields in, avoiding, 17
changed permanently by datasheet updates, 9
changing fields, avoiding, 38
changing names, avoiding, 36
changing with queries, 128
copying in a database, 83–84
copying to another database, 84

creating, 38–41
creating forms based on, 238–243, 269
creating from templates, 1202–1204
deleting from database, 83
deleting related records in multiple tables, 492–495
deleting rows, 42
described, 3, 5, 8, 205
embedding bound objects, 777–778
as entities, 5
finding number of records in, 585
importing from SQL Server, 1239, 1240, 1241
initial design, 17
inserting rows, 42
linked, avoiding moving, 532
linked, working with, 543–545
linking to, 530–537
local, defined, 28
make-table queries for creating, 609, 610–611, 612
moving to back-end database, 28
multiple, reasons for using, 7–8, 88–89
naming conventions, 36–37
new features in Access 2007, 1283
object type value, 673
planning required for, 35–36
prefix for names, 36
primary key designation for, 42
removing from queries, 129, 147
renaming, 82–83
report considerations when designing, 10
separating from code objects, 1131
templates for, 1201
as top-level objects, 8
updating using ADO, 481–486
updating using forms, 480–481
upsizing to SQL Server, situations preventing, 1263
viewing in QBE grid, 148–149
viewing objects not related, 32
viewing related objects, 31–32

tabular reports
avoiding null values, 664–665
hiding repeating information, 648–650
overview, 298
snaking columns in, 298, 677–682
summary versus detail, 298

Tag form property, 290, 716
tags for names. See prefixes for names
tags (XML)

content representation using, 1169
extensibility of, 1166

1349

Index T

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1349

tags (XML) (continued)
hierarchical structure of, 1169
properly formed, rules for, 1167
XSL use of, 1175

tallying check box values, 626–627
tax calculation function, 413–414
tblBookOrderDetails table, 93–94, 96, 115–116, 121
tblBookOrders1 table, 90–91
tblBookOrders2 table, 91
tblBookOrders3 table, 91–92
tblBookOrders4 table, 93–94
tblBookOrders5 table, 95, 115–116, 121
tblBookStores table, 95
tblContactLog (Contact Log table), 19–20, 100
tblContacts _Backup table (on the CD), 1138
tblContacts (Contacts table)

adding fields, 52
adding records using ADO, 490–491
AutoNumber data type in, 51
basic design, 40–41
comparing data items from other tables, 17–18
creating, 51–52
deleting records using ADO, 491–492
displayed as datasheet, 6
field properties, 71–72
indexing, 80–81
with keys, 19–20
overview, 5–6
primary key, 72, 110
relationships, 7, 100, 105

tblCustomers table, 95, 96
tblErrorLog table, 906, 907–908
tblPaymentTypes lookup table, 45
tblProducts _Backup table (on the CD), 1138
tblProducts (Products table)

adding a new record, 209
creating forms based on, 238–243
relationships, 100, 107

tblSales (Sales table)
comparing data items from other tables, 17–18
with keys, 19–20
relationships, 7, 100, 105

tblSalesLineItems (Sales Line Items table)
comparing data items from other tables, 17–18
with keys, 19–20
relationships, 100, 107

tblSalesPayments (Sales Payments table)
with keys, 19–20
linking to, 533–536
relationships, 100, 105

tblTaxRates lookup table, 45
tblZipCodesIndexed table, 76–77
tblZipCodesNotIndexed table, 76–77
templates

AboutTemplateA About box template (on the CD),
1130

creating for SharePoint Lists, 1204–1205
creating tables from, 1202–1204
opening for event procedures, 419–420
overview, 24
for SharePoint Lists, built-in, 1201–1202, 1204–1205
SplashScreenTemplateSimple (on the CD), 1128
for tables, 1201
Thanks.dotx Word template (on the CD), 723

temporary variables
for macros, 1146–1150
in VBA code, 1150–1151

TempVars object, 1151
Terminate class event, 1066–1067
terminator for procedures, 406
TestLinks() function, 552–554
text box controls. See also controls

adding page numbers and dates to forms, 632–633
adding special characters, 658–660
adding to reports, 324
adding using Controls group, 248
adding using Field List, 249–250
best-fit sizing, 255, 325
for blank report lines, 668–670
changing other control types to, 251
changing properties, 330–331
changing to Combo Box, 278
described, 246
entering expression in, 324–325
growing and shrinking, 331–332
for login forms, 890
moving, 328–329
removing from labels, 327
removing labels from, 326–327
for report page numbers, 324–325
resizing, 325–326
using different formats in same control, 674

Text data type or field
Allow Zero Length property for, 56, 68–69
changing field size, 54
converting, 54–55
custom formats, 61–62
Date/Time data type versus, 48
described, 44, 46
format examples, 61–62

1350

IndexT

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1350

Format property for, 61–62
input masks for, 65
limiting size of, 48, 55
overview, 48, 1260
properties’ effect on data entry, 212
query criteria for, 182–183
selection criteria for queries, 141–143
sorting numbers in, 48
SQL Server equivalents, 1261, 1263
storage requirements, 46
truncation by action queries, 616

text files
converting dates and times from, 566, 568–569
DAO for connecting to, 550–552
delimiters for, 561, 567
Import Specification window for, 565–566, 567–569
importing, 561–569
limitations of linked data, 532
linking to, 540–542
text qualifiers for, 568

Thanks.dotx Word template (on the CD), 723. See also
Word Automation example

bookmarks in, 731, 732–733
creating a document based on, 736
inserting data using bookmarks, 736–737
inserting pictures using bookmarks, 737–738
MergetoWord() function using, 730, 733–735

third normal form (3NF), 96
three-tier architecture, 1218
Time() function, 459
Timer event

for animating controls, 627–628
for forms, 422, 425

TimerInterval event, 422, 425
TimerInterval form property, 627
Tittel, Ed

HTML 4 For Dummies, 1167
XML For Dummies, 1171

Toggle Button controls, 246, 251. See also controls
Toolbar form property, 290
toolbars

Code window or editor, 362
Current Database options, 1123–1124
importing custom, 571
Quick Access toolbar (QAT), 233, 891–892, 1097–1098
replaced by ribbons, 1089, 1090–1091

ToolTips for controls, 245, 635–636
Top control property, 621
TOP predicate (SQL), 477–478

Top Values query property, 590
top-level objects, 8
top(n) queries, 127
topologies, replication, 1002–1003
total queries

Aggregate category of options, 593, 594–595
aggregate queries in Design View, 593–595
described, 126, 592
Expression option, 593, 594
filtering aggregates with criteria, 597–598
grand totals in aggregates, 595
Group By option, 593, 594
not updateable, 150
for number of records in table or query, 585
Query Wizard for, 592
subtotals in aggregates, 595–597
Where option, 593, 594

totals reports. See tabular reports
tracking applications (SharePoint), 1201–1206
transactions for ODBC data sources, 688–689
TRANSFORM command for crosstab queries, 599–600
transparent controls, 637
trapping custom events, 1071–1073
trapping errors. See error handling
trapping unwanted keystrokes, 893
triggering events, 1070–1071
triggers (SQL Server)

Access equivalents to, 1213
creating in SQL Server, 1248
defined, 1212, 1248
not accessible from Access, 1247
overview, 1248
for referential integrity, avoiding, 1248

Trim() function, 464
troubleshooting

action queries, 615–616
CD-ROM with this book, 1277
import errors, 566, 576–577

Trust Center, 946, 948–949
tttt Date/Time format specifier, 60
turning on and off. See disabling; enabling
two-pass report processing, 682–684
two-sided report printing, 670–672
two-tier architecture, 1217
txtPageNumber control, 671–672
txtTaxAmount control

recalculating after deleting records, 489–490
recalculating after updating or adding records, 486–488

Type statement (VBA), 957

1351

Index T

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1351

U
UCase() function, 456, 457
unanticipated errors, 805–806
unbound controls. See also controls

adding page numbers and dates to forms, 632–633
adding using Controls group, 247–248, 251–252
bound controls versus, 251
overview, 247
Unbound Object Frame controls, 246–247, 843

unbound forms
bound forms versus, 714–715
creating, 715–716
editing data, 720–722
moving through records, 718–720
in multiuser environments, 714–722
Open event, 716–718
Tag property, 716

Unbound Object Frame controls. See also controls
described, 246
Image controls versus, 843
Use Control Wizards command for, 246–247

unbound objects
bound objects versus, 770–771
changing image display, 776–778
Combo Box control, 863–865
described, 770
editing embedded objects, 772, 779–780
embedding, 773–777
inserting image-type objects, 773–775
pasting, 773

UnboundDisplay() function, 717–718
UnboundMoveFirst() function, 718
UnboundMoveLast() function, 718
UnboundMoveNext() function, 718–719
UnboundMovePrevious() function, 718, 719
UnboundSave() function, 721–722
UnboundSearch() function, 719–720
uncompiling code

actions causing, 831–832
for entire application, 832–833
for large databases, 858–859

underscore (_) VBA continuation character, 358, 386–387
Undo button

in Datasheet View, 219
for deleted fields, 53
for record changes in datasheets, 210

Undo event, 422, 427
UndoBatchEdit event, 426
unfreezing datasheet columns, 229

Unicode Compression field property, 56
Union command (SQL), 605, 606
union queries

duplicates removed by, 606
restrictions on, 605
retrieving rows from the same table twice, 604–605
returning all records, including duplicates, 606–607
on two different tables, 605–606

Unique index property, 79, 151, 616
Unique Records query property, 590
Unique Value property

DISTINCT predicate set by, 476
queries not updateable with, 150

Unique Values query property, 590
Unload event, 422
unmatched records

finding, 601, 603–604
parent records allowed, 109

untrapped errors, 805
update anomalies, 94–95, 97
Update Data permission, 934
Update method (ADO), 485
update queries. See also action queries

creating, 611–612
described, 609
viewing results of, 610
viewing set of data for, 610

Updated event, 427
UpdateRecords() function, 688–689
updating

calculated fields, 486–490
cascading updates, 120
fields in a record using ADO, 481–486
multi-table queries, 150–151
primary keys, 151
progress meters, 852–853, 855
queries, rules for, 150
records returned by DISTINCT query not updateable,

476
table data using forms, 480–481
update anomalies, 94–95, 97
update queries for, 609, 610, 611–612

upsizing Access databases to SQL Server
comparison of Access and SQL Server data types,

1259–1262, 1263
conversion issues, 1262–1263
downloading SQL Server Express, 1223, 1224, 1249
naming constraints for fields, 1262
need for, 1250–1251
preparing for, 1251

1352

IndexU

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1352

tables, situations preventing upsizing, 1263
Upsizing Wizard for, 1249–1257
working with Access ADP files, 1257–1259

Upsizing Wizard
ADP file created by, 1249
linking to SQL Server data versus, 1249–1250
preparing to use, 1251
report snapshot, 1256–1257
running, 1252–1256

usage logs, maintaining, 894–895
Use Default Paper Size form property, 290
Use Transaction query property, 591
user accounts

adding, 922–923
creating or changing passwords, 923–924
deleting, 923
object owner, 929
replication issues, 998–999

user interface (Access). See also specific elements
new features in Access 2007, 1279–1282
for queries, 130–131

user interface for applications. See forms
user-defined functions (SQL Server)

Access equivalents to, 1213
creating in SQL Server, 1247
defined, 1212
not accessible from Access, 1247

user-defined types (data structures), 957
user-level security. See also security

adding groups, 926–927
adding user accounts, 922–923
Admin user as default, 921–922
assigning group members, 928
blank Admin user password, 920
choosing level to implement, 912
creating new workgroup, 921
creating or changing user passwords, 923–924
deleting group members, 928–929
deleting groups, 927
deleting user accounts, 923
disabling, 920
enabling, 920
groups, 925–929
joining a workgroup, 921
restarting required for changes, 920
setting object owner, 929–931
setting object permissions, 931–934
steps for, 919

users. See also perceived speed
considering skill and training requirements, 882–883
hiding object names from, 37
keeping informed, 894
messaging system for, 882–883
online Help for, 881, 884, 1132
other terms for, 877
providing Access runtime module to, 882
providing feedback to, 879, 902–906
treating as clients, 877
understanding motivations of, 884
validating input, 894

USysRibbons table (on the CD)
adding XML to, 1104–1105
creating, 1103–1104
viewing, 1089

V
Val() function, 458
validating data. See data validation
Validation Rule field property

for dates, 66–67
enforcement of rules, 67
example, 66, 71
expressions for, 66
for new controls dragged onto forms, 67
not applicable to foreign tables, 67
for Option Group controls, 66
overview, 56, 66–67
warning dialog box, 66

Validation Text field property
overview, 56, 67
warning dialog box, 66

Value property of tab control, 640–641
values. See also null values

copying, 219
Default Value field property, 55, 56
described, 6
editing in datasheets, 217–218
editing in forms, 273–278
finding in datasheets, 215–217
list with In operator, 192–193
literal, in expressions, 446
New Values field property, 55
for object types, 673
returned by functions, 404
returned for relational operators, 165
single-value field criteria for queries, 181–190

1353

Index V

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1353

values (continued)
specifying multiple, for a field, 191
undoing changes, 219
for Yes/No fields, 62, 190, 211

Var() function, 595
variables

assigning values to, 389
for controls, 846–847
data types assigned to, 385
declaring, 362–363, 391–395
defined, 350
Dim statement for, 389, 393–394, 401
for fields, 847–848
global, 402
implicit versus explicit, 363, 392–393, 397–398
lifetime, 402–403
naming, 390–391, 399–400
operators for, 390
Option Explicit directive for, 363, 380, 399
overview, 385
prefix for names, 391, 400
property variables, 1055–1056, 1058
scope, 394–395, 400–401
side-effect bugs from changing, 402
simple example, 389–390
temporary, in VBA code, 1150–1151
temporary, macros using, 1146–1150
unused, eliminating, 849
Variant data type as default for, 397–398
viewing values at breakpoints, 514–515

Variant data type (VBA)
with characters, 396
as default for variables, 397–398
with numbers, 396

VBA (Visual Basic for Applications). See also modules; OOP
(object-oriented programming); procedures;
programming replication

avoiding naming ambiguities for, 36
callbacks, 1098–1099, 1101–1103
creating code with Command Button Wizard, 354–356
early binding an object, 724–725, 727
GetPrivateProfileString declaration, 956
language elements, 350
late binding an object, 725–727
load on demand functionality, 823–826
macros versus, 347–348, 351–352, 1159–1160
need for, 356
options for developers, 379–384
origin of name, 349

overview, 348–349
password-protecting modules, 944–945
setting database password with, 915
terminology, 349–350
using for Microsoft Office products, 723
Visual Basic product and Visual Basic.NET versus, 349

vertical lines between report columns, 666–668
video files in OLE objects, 274–275
ViewChange event, 425
viewing. See also opening; queries

all relationships, 120–121
long expressions, 448
objects not related to a table, 32
objects related to a table, 31–32
pictures in OLE controls, 275
previewing printing, 235, 280
recordsets, 134–135
SQL statements in queries, 472–473
table names in QBE grid, 148–149
text scrolled out of view, 214
variable values at breakpoints, 514–515

views (SQL Server), 1243–1245
ViewsAllowed form property, 893
virus infection prevention

digital certificates for, 947–948
enabling sandbox mode, 946–947
overview, 945–946
Trust Center information for, 946, 948–949

Visible control property
adding emphasis to reports, 660–662
hiding controls with, 620, 623
overview, 620
toggling values with Not, 629

Visible form property, 851
Visible Word object property, 736
Visual Basic for Applications. See VBA
Visual Basic product, 349
Visual Basic.NET, 349
VWD (Visual Web Developer 2005 Express)

downloading, 1091, 1112
using, 1112–1114

W
w and ww Date/Time format specifiers, 60
wallpaper, performance impacted by, 838
warnings. See error messages and warnings
Watch window, 518, 519–520

1354

IndexV

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1354

watches
conditional, 520
setting, 518–520
tips for using, 519

Watt, Andrew (Beginning XML), 1171
Web servers

Access not suitable for, 1222
overview, 1214–1216

Web sites. See Internet resources; SharePoint
Weekday() function, 459
welcome screen

Automatically Update This Content from Office Online
button, 23

File menu, 25
overview, 23–24
Templates section, 24

WHERE clause (SQL)
overview, 480
for partial replication, 1026
predicates in conjunction with, 475
purpose in SQL statements, 473

White, Chuck (HTML, XHTML, and CSS Bible), 1167
Width property

of controls, 621
of forms, 286

wildcards
for finding values in datasheets, 215
with Like operator, 168–170, 183–184, 186–187, 873

Wiley customer support, 1277
Windows API (application program interface). See also DLLs

(dynamic link libraries)
advantages of using, 952–953
Callback function not compatible with Access, 957
common argument prefixes, 956
common codebase provided by, 953
concepts applicable to other APIs, 951
controlling applications with the Registry, 980–986
data types, 954–957
for debugging runtime errors, 502
Declare statement, 958–961
described, 951–952
distribution sizes smaller with, 953
dynamic linking, 952
frmAPIDemo form (on the CD), 962, 963
general-purpose functions, 972–975
manipulating application settings, 975–980
passing arguments by value versus by reference, 960–961
portability aided by, 953
retrieving system information, 964–972

SDKs for, 954, 955
tested code provided by, 953
wrapper functions, 961–962

win.ini file, 975–980
With statement

For Each statement using, 376–377
For...Next statement using, 375–376
for internal pointer to forms, 876
MergetoWord() function using, 734–735

WithEvents keyword, 1072, 1075–1076
Word Automation example

activating the Word instance, 737
closing the Word instance, 737
creating a new document based on a template, 736
creating a Word object instance, 735–736
inserting data using bookmarks, 736–737
inserting pictures using bookmarks, 737–738
making the Word instance visible, 736
MergetoWord() function, 730, 733–735
moving the cursor, 737
overview, 730–736
Thanks.dotx Word template for, 731, 732–733, 736
using Macro Recorder, 738–740

Word (Microsoft)
Access macros not portable to, 352
Automation example using, 730–740
documents in OLE objects, 274–275
exporting reports to, 579
macros in, 351
Mail Merge, 579

WordIntegration module, 730, 733–735. See also Word
Automation example

workgroup information files, 910
workgroups

creating, 921
information files, 910
joining, 921

wrapper functions (API), 961–962. See also specific API
functions

WritePrivateProfileStringA API function, 978–979
WriteProfileStringA API function, 979–980

X
xBase systems

importing tables, 574–576
linking to tables, 536

XForms standard, 1177
XInclude standard, 1177

1355

Index X

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1355

XLink standard, 1176
XML (eXtensible Markup Language)

adding to USysRibbons table, 1104–1105
basic, for custom ribbons, 1106–1107
case sensitivity, 1168
for Check Box controls, 1109–1110
complex example, 1170
content representation in, 1169
DAO with, 1180–1187
data types, 1179
DOM structure, 1172
for DropDown controls, 1110
DTD standard, 1177–1178
exporting documents, 569–570
fragments, 1176
further information, 1171
generated by ADO, 1179
GetLabel attribute, 1102, 1103
growing importance of, 1165, 1190
HTML versus, 1167–1168
importing documents, 569
for label controls, 1108
Native XML database, 1177–1179
OnAction attribute, 1099
onLoad attribute, 1114
overview, 1167–1171
properly formed, rules for, 1167
ribbon button control example, 1099
root node, 1168
for separators, 1109
sharing data using, 1175–1176
simple example, 1169–1170
syntax used by ribbons, 1091
Visual Web Developer 2005 Express for, 1091,

1112–1114
XForms standard, 1177
XInclude standard, 1177
XLink standard, 1176
XML-FO standard, 1177
XPath expression language, 1176
XPointer standard, 1176
XQuery query language, 1176
XSD standard, 1178–1179

XML For Dummies (Dykes and Tittel), 1171

XML-FO standard, 1177
Xor operator, 170
XPath expression language, 1176
XPointer standard, 1176
XQuery query language, 1176
XSD (XML Schema Definition) standard, 1178–1179
XSL (eXtensible Style Sheet language)

overview, 1171, 1174–1175
script example, 1174

Y
y through yyyy Date/Time format specifiers, 60
Year() function, 459
Yes/No data type or field

converting, 54, 55
custom formats, 62
described, 44, 46
Format property for, 62
Option Group controls for, 278
overview, 50, 1260
positive and negative values used in fields, 190
problems when changing properties, 62
query criteria for, 189–190
selection criteria for queries, 143–144
SQL Server equivalent, 1261
storage requirements, 46
values for, 62, 190, 211

Z
zero (0)

in custom numeric formats, 58
divide-by-zero error, 1152–1153
in input mask strings, 63
leading, not stored in numeric fields, 47
zero-length strings in Text or Memo fields, 68–69

Zoom window
seeing text scrolled out of view, 214
for viewing long expressions, 448

zooming
controls, 276
pictures in OLE controls, 275

1356

IndexX

54_046732 bindex.qxp 11/21/06 9:12 AM Page 1356

Wiley Publishing, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software”) solely
for your own personal or business purposes on a single computer (whether a standard
computer or a workstation component of a multi-user network). The Software is in use
on a computer when it is loaded into temporary memory (RAM) or installed into perma-
nent memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not
expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the physical packet included with this
Book “Software Media”. Copyright to the individual programs recorded on the Software
Media is owned by the author or other authorized copyright owner of each program.
Ownership of the Software and all proprietary rights relating thereto remain with WPI
and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may trans-
fer the Software and user documentation on a permanent basis, provided that the
transferee agrees to accept the terms and conditions of this Agreement and you retain
no copies. If the Software is an update or has been updated, any transfer must include
the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual require-
ments and restrictions detailed for each individual program in the “What’s on the
CD-ROM” appendix of this Book or on the Software Media. These limitations are also
contained in the individual license agreements recorded on the Software Media. These
limitations may include a requirement that after using the program for a specified period
of time, the user must pay a registration fee or discontinue use. By opening the Software
packet(s), you agree to abide by the licenses and restrictions for these individual pro-
grams that are detailed in the “What’s on the CD-ROM” appendix and/or on the Software
Media. None of the material on this Software Media or listed in this Book may ever be
redistributed, in original or modified form, for commercial purposes.

55_046732 eula.qxp 11/21/06 9:12 AM Page 1362

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of
purchase of this Book. If WPI receives notification within the warranty period of
defects in materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE
CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFT-
WARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE
SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights
that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: Access 2007 Bible, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for
delivery. This Limited Warranty is void if failure of the Software Media has resulted
from accident, abuse, or misapplication. Any replacement Software Media will be war-
ranted for the remainder of the original warranty period or thirty (30) days, whichever
is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability
to use the Book or the Software, even if WPI has been advised of the possibility of
such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for
or on behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subpara-
graphs (c) (1) and (2) of the Commercial Computer Software - Restricted Rights clause at
FAR 52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modi-
fied or amended except in a writing signed by both parties hereto that specifically refers
to this Agreement. This Agreement shall take precedence over any other documents that
may be in conflict herewith. If any one or more provisions contained in this Agreement
are held by any court or tribunal to be invalid, illegal, or otherwise unenforceable, each
and every other provision shall remain in full force and effect.

55_046732 eula.qxp 11/21/06 9:12 AM Page 1363

Office heaven.
Get the first and last word on Microsoft® Office 2007 with our comprehensive

Bibles and expert authors. These are the books you need to succeed!

978-0-470-04691-3 978-0-470-04403-2 978-0-470-04689-0 978-0-470-04368-4

978-0-470-04702-6 978-0-470-04645-6 978-0-470-04673-9 978-0-470-00861-4

Wiley and the Wiley logo are registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates. All other trademarks are the property of their respective owners.

Available wherever books are sold

56_046732 bob.qxp 11/21/06 9:13 AM Page 1364

	Access 2007 Bible
	About the Authors
	Credits
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Is This Book for You?
	Conventions Used in This Book
	Icons and Alerts
	How This Book Is Organized
	Guide to the Examples

	Part I: Access Building Blocks
	Chapter 1: An Introduction to Database Development
	The Database Terminology of Access
	Relational Databases
	Access Database Objects and Views
	A Five-Step Design Method
	Summary

	Chapter 2: Creating Access Tables
	Getting Started with Access 2007
	Creating a Database
	The Access 2007 Environment
	Creating a New Table
	Creating tblContacts
	Changing a Table Design
	Understanding tblContacts Field Properties
	Setting the Primary Key
	Indexing Access Tables
	Printing a Table Design
	Saving the Completed Table
	Manipulating Tables in a Database Window
	Adding Records to a Database Table
	Understanding the Attachment Data Type
	Summary

	Chapter 3: Designing Bulletproof Databases
	Data Normalization
	Table Relationships
	Integrity Rules
	Understanding Keys
	Summary

	Chapter 4: Selecting Data with Queries
	Understanding Queries
	Creating a Query
	Selecting Fields
	Displaying the Recordset
	Working with Fields
	Changing the Sort Order
	Displaying Only Selected Records
	Printing a Query’s Recordset
	Saving a Query
	Adding More Than One Table to a Query
	Working with the Table/Query Pane
	Adding Fields from More Than One Table
	Understanding Multi-Table Query Limitations
	Creating and Working with Query Joins
	Understanding Table Join Types
	Summary

	Chapter 5: Using Operators and Expressions in Access
	What Are Operators?
	Moving beyond Simple Queries
	Entering Single-Value Field Criteria
	Entering Multiple Criteria in One Field
	Entering Criteria in Multiple Fields
	Creating a New Calculated Field in a Query
	Summary

	Chapter 6: Working with Datasheet View
	Understanding Datasheets
	The Datasheet Window
	Opening a Datasheet
	Entering New Data
	Navigating Records in a Datasheet
	Changing Values in a Datasheet
	Using the Undo Feature
	Copying and Pasting Values
	Replacing Values
	Adding New Records
	Deleting Records
	Displaying Records
	Sorting and Filtering Records in a Datasheet
	Printing Records
	Summary

	Chapter 7: Creating Basic Access Forms
	Adding Forms Using the Ribbon
	Adding Controls
	Selecting Controls
	Manipulating Controls
	Understanding Properties
	Summary

	Chapter 8: Working with Data on Access Forms
	Using Form View
	Changing Values in a Form
	Printing a Form
	Working with Form Properties
	Adding a Form Header or Footer
	Changing the Layout
	Creating a Calculated Control
	Converting a Form to a Report
	Summary

	Chapter 9: Presenting Data with Access Reports
	Understanding Reports
	Creating a Report with Report Wizards
	Printing a Report
	Saving the Report
	Starting with a Blank Form
	Banded Report Writer Concepts
	Creating a Report from Scratch
	Making the Report Presentation Quality
	Summary

	Part II: Programming Microsoft Access
	Chapter 10: VBA Programming Fundamentals
	Understanding the Limitations of Macros
	Introducing Visual Basic for Applications
	Understanding VBA Terminology
	Migrating from Macros to VBA
	Creating VBA Programs
	Understanding VBA Branching Constructs
	Repetitive Looping
	Working with Objects and Collections
	Using Compiler Directives
	Access 2007 Options for Developers
	Summary

	Chapter 11: Mastering VBA Data Types and Procedures
	The Access VBA Editor
	Using Variables
	Working with Data Types
	Understanding Subs and Functions
	Creating Functions
	Creating a Function to Calculate Taxes
	Summary

	Chapter 12: Understanding the Access Event Model
	Programming Events
	Common Events
	Form Event Procedures
	Control Event Procedures
	Event Order
	Report Event Procedures
	Report Section Event Procedures
	Summary

	Chapter 13: Using Expressions in Queries and VBA Code
	Understanding Expressions
	Understanding Functions
	Summary

	Chapter 14: Accessing Data with VBA Code
	Understanding SQL
	Creating Programs to Update a Table
	Summary

	Chapter 15: Using the VBA Debugging Tools
	Testing and Debugging Your Applications
	Understanding the Sources of Errors
	Using the Module Options
	Compiling VBA Code
	Traditional Debugging Techniques
	Using the Access Debugging Tools
	Summary

	Part III: More Advanced Access Techniques
	Chapter 16: Working with External Data
	Access and External Data
	Linking External Data
	Working with Linked Tables
	Using Code to Link Tables in Access
	Summary

	Chapter 17: Importing and Exporting Data
	Types of Imports and Exports
	Importing External Data
	Exporting to External Formats
	Summary

	Chapter 18: Advanced Access Query Techniques
	Using Calculated Fields
	Finding the Number of Records in a Table or Query
	Finding the Top (n) Records in a Query
	How Queries Save Field Selections
	Setting Query Properties
	Creating Queries That Calculate Totals
	Crosstab Queries
	Duplicate and Unmatched Queries
	SQL-Specific Queries
	Action Queries
	Summary

	Chapter 19: Advanced Access Form Techniques
	Setting Control Properties
	Working with Subforms
	Form Design Techniques
	Advanced Forms Techniques
	Using the Tab Control
	Using Dialog Boxes to Collect Information
	Summary

	Chapter 20: Advanced Access Report Techniques
	Hide Repeating Information
	Alphabetically Group Data
	Group on Date Intervals
	Create Numbered Lists
	Add Bullet Characters
	Add Emphasis at Runtime
	Hide a Page Header
	Avoid Empty Reports
	Start a New Page Number for Each Group
	Avoid Null Values in a Tabular Report
	Add More Information to Report
	Add the User’s Name to a Bound Report
	Add Vertical Lines between Columns
	Add a Blank Line Every
	Even-Odd Page Printing
	Display All Reports in a Combo Box
	Use Different Formats in the Same Text Box
	Fast Printing from Queried Data
	Hide Forms during Print Preview
	A Few Quick Report Tips
	Use Snaking Columns in a Report
	Exploiting Two-Pass Report Processing
	Summary

	Chapter 21: Building Multiuser Applications
	Network Issues
	Database Open Options
	Splitting Databases for Network Access
	Locking Issues
	Record-Lock Error Handling
	Using Unbound Forms in Multiuser Environments
	Summary

	Chapter 22: Integrating Access with Other Applications
	Using Automation to Integrate with Office
	An Automation Example Using Word
	Collecting Data with Outlook 2007
	Summary

	Chapter 23: Integrating Access with SharePoint
	What Is SharePoint?
	SharePoint Applications: Types of Web Sites
	What Is a SharePoint List?
	Introducing a SharePoint Services Web Site
	Integrating Access 2007 and SharePoint
	SharePoint and Different Operating Systems
	SharePoint Lists as External Data
	Summary

	Chapter 24: Using ActiveX Controls
	Understanding Objects
	Embedding Objects
	Linking Objects
	Creating a Graph or Chart
	Embedding a Graph in a Form
	Integration with Microsoft Office
	Summary

	Chapter 25: Handling Errors and Exceptions
	Dealing with Errors
	Which Errors Can Be Detected?
	Trapping Errors with VBA
	Summary

	Part IV: Professional Database Development
	Chapter 26: Optimizing Access Applications
	Understanding Module Load on Demand
	Using the Access 2007 Database File Format
	Distributing . accde Files
	Understanding the Compiled State
	Improving Absolute Speed
	Improving Perceived Speed
	Working with Large Program Databases in Access 2007
	Summary

	Chapter 27: Advanced Data Access with VBA
	Adding an Unbound Combo Box
	Using the FindRecord Method
	Using the Bookmark to Locate a Record
	Filtering a Form Using Code
	Using a Query to Filter a Form Interactively
	Summary

	Chapter 28: Bulletproofing Access Applications
	What Is Bulletproofing?
	Characteristics of Bulletproof Applications
	Bulletproofing Goes Beyond Code
	Principles of Bulletproofing
	Develop to a Specification
	Securing the Environment
	Setting Startup Options in Code
	Disable Startup Bypass
	Providing User Feedback
	Adding Logging to Applications
	Summary

	Chapter 29: Securing Access Applications
	Understanding Jet Security
	Choosing a Security Level to Implement
	Creating a Database Password
	Using the /runtime Option
	Using the Current Database Options
	Using the Jet User-Level Security Model
	Using the Access Security Wizard
	Encrypting/Encoding a Database
	Decrypting/Decoding a Database
	Protecting Visual Basic Code
	Preventing Virus Infections
	Summary

	Chapter 30: Using the Windows API
	What Is the Windows API?
	Why Use the Windows API?
	DLL Documentation
	How to Use the Windows API
	API Examples
	Summary

	Chapter 31: Using the Access Replication Features
	Understanding Replication
	A Replication Demonstration
	Replication Pros and Cons
	Introducing the Access Replication Tools
	Creating a Replica Set
	Understanding Database Security in Replication Sets
	The Importance of Local Objects
	Resolving Replication Conflicts
	Replication Topologies
	Replication from the Developer’s Perspective
	Understanding the Changes to Database Objects
	Changes to the Design Master Structure
	Programming Replication
	Partial Replicas
	Advanced Replication Considerations
	Summary

	Chapter 32: Object-Oriented Programming with VBA
	Benefits of Object-Oriented Programming
	Other Advantages of Object-Oriented Programming Techniques
	Object-Oriented Programming Rules
	Using Property Procedures
	Extending the Product Class
	Product Methods
	Class Events
	Adding Events to Class Modules
	Summary

	Chapter 33: Reusing VBA Code with Libraries
	What Are Libraries?
	Creating Library Databases
	Debugging Library Databases
	Library Database Object References
	Summary

	Chapter 34: Customizing Access Ribbons
	Why Replace Toolbars and Menus?
	Working with the Access 2007 Ribbon
	Working with the Quick Access Toolbar
	Access 2007 Ribbons: The Developer’s Perspective
	The Ribbon Hierarchy
	Getting Started with Access 2007 Ribbons
	The Basic Ribbon XML
	Adding Ribbon Controls
	Using Visual Web Developer 2005
	Managing Ribbons
	Completely Removing the Access 2007 Ribbon
	Summary

	Chapter 35: Distributing Access Applications
	Defining the Current Database Options
	Testing the Application before Distribution
	Polishing Your Application
	Bulletproofing an Application
	Summary

	Chapter 36: Using Access Macros
	Understanding Macros
	Multiaction Macros
	Macro Names
	Using Conditions
	Using T emporary Variables
	Handling Erors and Debuging Macros
	Embeded Macros
	Macros versus VBA Statements
	Summary

	Part V: Access as an Enterprise Platform
	Chapter 37: Using XML in Access 2007
	Introducing HTML and XML
	DAO, ADO, ADO.Net, Access 2007, and XML
	Summary

	Chapter 38: SharePoint as a Data Source
	Building Access Interfaces with SharePoint
	SharePoint Application Types
	Microsoft SharePoint Designer 2007
	Summary

	Chapter 39: Client/Server Concepts
	The Parts of Client/Server Architecture
	Multitier Architecture
	What Is an OLTP Database?
	Access, Client/Server, and Multiple Tiers
	Summary

	Chapter 40: SQL Server as an Access Companion
	Connecting to SQL Server
	Working with SQL Server Objects from Access
	Summary

	Chapter 41: Upsizing Access Databases to SQL Server
	Upsizing Access and the Upsizing Wizard
	Summary

	Part VI: Appendixes
	Appendix A: Access 2007 Specifications
	Microsoft Access Database Specifications
	Access Data Projects (ADP) Specifications
	Microsoft SQL Server 2005 Database Specifications

	Appendix B: What’s on the CD-ROM
	System Requirements
	Using the CD
	Files and Software on the CD
	Troubleshooting

	Appendix C: What’s New in Access 2007
	The User Interface
	Tables
	Datasheet View
	Forms
	Reports
	Macros
	Security
	SharePoint
	Summary

	Index

